Approximate Composite Minimization: Convergence Rates and Examples

Size: px
Start display at page:

Download "Approximate Composite Minimization: Convergence Rates and Examples"

Transcription

1 ISMP Bordeaux Approximate Composite Minimization: Convergence Rates and S. Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi MLO Lab, EPFL, Switzerland sebastian.stich@epfl.ch July 4, 2018 [AISTATS 2018] Adaptive balancing of gradient and update computation times S. U. Stich (Adaptive) Importance Sampling 1

2 1 Theory of Random Descent 2 Coordinate Descent Revisited Number of iterations Experiments 3 S. U. Stich (Adaptive) Importance Sampling 2

3 Convex Optimization S. U. Stich (Adaptive) Importance Sampling 3

4 Black-Box Optimization min f(x) x f(x) x Rn f : R n R, assume f C 1 oracle access to f (f(x), f(x)) or just ( i f(x)) Approximate solution x ɛ : f(x ɛ ) min x R n f(x) ɛ N(f, A, ɛ) number of oracle calls for algorithm A to find an approximate solution Worst case complexity of algorithm A on a class F: N(A, ɛ) = max f F N(f, A, ɛ) S. U. Stich (Adaptive) Importance Sampling 4

5 Function Classes Theory of Random Descent Upper bound: f C 1 L Lower bound: f C µ f(y) f(x) + f(x), y x y x 2 L }{{} =:u L x (y) f(x) f(y) f(x)+ f(x), y x + µ 2 y x 2 L f(x) (x 0, f(x 0 )) f(x 0 ) + f(x 0 ), t (x 0, f(x 0 )) f(x 0 ) + f(x 0 ), t Consequences: x := argmin x f(x) unique f(x) f(x ) 1 2µ f(x) 2 L 1 x L := x, Lx condition number κ := L /µ µl 2 f(x) L S. U. Stich (Adaptive) Importance Sampling 5

6 general framework F (x) := f(x) + Ψ(x) S. U. Stich (Adaptive) Importance Sampling 6

7 Setting: f C 1 L, f C1 µ f for µ f 0. Ψ C µψ for µ Ψ 0. Goal: min F (x) := f(x) + Ψ(x) x Rn Method 0: x 0 R n x = min u R n F (x 0 + u) This problem is too hard! Define easier subproblems! S. U. Stich (Adaptive) Importance Sampling 7

8 Relaxing Accuracy: Introduce relative accuracy parameter γ k 0: x k 1 γ k Method 1: x 0 R n F (x k+1 ) (1 γ k ) F (x k ) }{{} old value +γ k min u R n F (x k + u) } {{ } best value Verifying the condition requires function evaluations, which might be elusive! S. U. Stich (Adaptive) Importance Sampling 8

9 Option II: Optimize the upper bound Upper bound: F (x k + u) u L x k (x k + u) + Ψ(x k + u) }{{} =:m L x k (x k +u) Note: It suffices to pick L s.t. F (x k + u) m L x k (x k + u), i.e. f(x k + u) u L x k (x k + u) is not required. Method 2: x 0 R n F (x k+1 ) m L x k (x k+1 ) (1 γ k ) F (x k ) }{{} old value +γ k min u R n ml x k (x k + u) } {{ } best value This requires computation of f(x k ) (to evaluate u L x k (x k + u)) and Ψ(x k + u) instead of F (x k + u). S. U. Stich (Adaptive) Importance Sampling 9

10 Complexity Results Theory of Random Descent { 2D 2 ( 1 + µ Ψ F N(Method 2, ɛ) = min, γɛ (µ f + µ Ψ ) γ ln (x0 ) F (x ) } ) ɛ }{{}}{{} D = smooth case strongly convex case max y y : F (y) F (x 0 ) x L, average accuracy γ = 1 k k i=1 γ k. Both µ f and µ Ψ appear in the rate, thus L should ideally approximate the curvature of both f an Ψ. Extends and unifies [Stich et al. 13], [Qu et al. 15], [Tappenden et al. 16], [Mutny, Richtárik, 18], [...] S. U. Stich (Adaptive) Importance Sampling 10

11 S. U. Stich (Adaptive) Importance Sampling 11

12 Gradient Method Theory of Random Descent L = LI n x k+1 = argmin u R n { f(x k ) + f(x k ), u x k + L } 2 u x k 2 + Ψ(x k + u) L 1 hard to compute: use an (arbitrary) iterative method to solve { x k+1 = f(x k )+γ k argmin f(x k ), u x k + 1 } u R n 2 u x k 2 L + Ψ(x k + u) Requires full f(x k ), which might be elusive for n 1. S. U. Stich (Adaptive) Importance Sampling 12

13 Random Methods T (iteration) T ( f) S. U. Stich (Adaptive) Importance Sampling 13

14 Random Pursuit Theory of Random Descent Choose a (random) sketch matrix U k R n m, rank U k = m. x k+1 = f(x k )+γ k argmin u span U k { f(x k ), u x k + 1 } 2 u x k 2 L + Ψ(x k + u) }{{} =: argmin u R n m L x k U k (x k + u) Requires computation of U k f(x k). Example: (Block)-Coordinate Descent U k U k = I m, U k f(x k) = [ i1 f(x k ),..., im f(x k )]. Assume Ψ (block)-separable structure: Ψ(x k + U k z) = Ψ U k (x k ) + Ψ Uk (x k + U k z) S. U. Stich (Adaptive) Importance Sampling 14

15 How does this fit in the framework? Option I: The γ k -approximate solution on m L x k U k a γ k -approximate solution on ml x k, γ k γ k. can be seen as Option II: For certain distributions of U k the results can be explicitly stated. Example: If E U k U k = m n I n the complexity increases by a factor of n m. [KSJ18] also states explicit results for parallel updates. S. U. Stich (Adaptive) Importance Sampling 15

16 Coordinate Descent Revisited Number of iterations Experiments Application: (Block) Coordinate Descent [ i1 f(x),..., im f(x)] S. U. Stich (Adaptive) Importance Sampling 16

17 Coordinate Descent Revisited Number of iterations Experiments Block Coordinate Descent: sketch matrix U k, U k U k = I m m ( n)-dimensional subproblem: m L x k (x k+1 ) (1 γ k )F (x k ) + γ k min m L x u span U k (x k + u) k Iteration comprises two steps: 1 Compute U k f(x k) = [ i1 f(x k ),... im f(x k )] 2 Compute approx. minimizer x k+1 Two different costs! : Cache misses, expensive operations to compute i f(x k ) Hard subproblem, Ψ(x) = x T V S. U. Stich (Adaptive) Importance Sampling 17

18 Towards optimal balancing Coordinate Descent Revisited Number of iterations Experiments Goal: Set accuracy γ k to optimally balance the costs Feasible strategy: Suppose we use an interative algorithm to approximately solve the model m L x k. I.e. x k = y 0, y 1,..., y t,..., y T = x k+1 Each intermediate solution y t corresponds to an approximate solution with parameter γ t k : m L x k (y t ) (1 γk t )F (x k) + γk t min m L x u span U k (x k + u) k Thus we can express the progress in terms of iterations on the model: ( ) p k (t) := γk t F (x k ) min m L x u span U k (x k + u) k }{{}}{{} relative progress scale S. U. Stich (Adaptive) Importance Sampling 18

19 Optimal balancing Theory of Random Descent Coordinate Descent Revisited Number of iterations Experiments Each (inner) iteration (y t y t+1 ) denotes one unit of time. Let c k = T (U k f(x k )) denote the time to compute the required coordinates of the gradient. Optimal number of inner iterations t : t k := argmax t p k (t) t + c k }{{} progress per time spent Can we compute t k? Can we compute approximate t k? Predict t k based on observations at iteration k 1. Goal: t k t k S. U. Stich (Adaptive) Importance Sampling 19

20 Coordinate Descent Revisited Number of iterations Experiments (Constant) strategies for approximating t k Constant Strategies: one: Set t k 1, k 0. arbitrary constant comp: t k = c k, balance time best practice Can we measure p k (t k )? p k (t k ) = F (x k ) m L x k (x k+1 ) And p k (t k)? d p k (t k ) = p k (t k)(t k + c k ) p k (t k ) dt t + c }{{ k (t } k + c k ) 2 =: g k (t k ) progress per time spent Can be estimated using p k (t k) p k (t k ) p k (t k 1 ). S. U. Stich (Adaptive) Importance Sampling 20

21 Coordinate Descent Revisited Number of iterations Experiments (Adaptive) strategies for approximating t k General adaptive strategy: Initialize t 0 := 1 Each iteration: Example strategy: add 1 Estimate g k (t k ) 2 t k+1 = A(t k, g k ) t k+1 = { t k + 1 if g k (t k ) > 0 max{t k 1, 1} otherwise Two more adaptive strategies: mult: t k+1 = {2t k, if g k (t k ) > 0, max{t k 1, 1}, else grad: t k+1 = t k + g t S. U. Stich (Adaptive) Importance Sampling 21

22 Coordinate Descent Revisited Number of iterations Experiments Experiments S. U. Stich (Adaptive) Importance Sampling 22

23 Improvement in Time Coordinate Descent Revisited Number of iterations Experiments Time relative to constant strategy one: adaptivity is important! best practice comp is not performing well! precise rule less important S. U. Stich (Adaptive) Importance Sampling 23

24 A closer look Theory of Random Descent Coordinate Descent Revisited Number of iterations Experiments mult strategy: Problem difficulty: (simulated) t k values v.s. iteration k t k required to reach accuracy γ k 0.1 vs. iteration k less time is spent as the subproblems get harder S. U. Stich (Adaptive) Importance Sampling 24

25 S. U. Stich (Adaptive) Importance Sampling 25

26 Contributions & Open Problem Theory: We present a sound theoretical framework where subproblems need to be solved just approximately (with arbitrary iterative solver) convergence rate depends on average quality of approximation parallel, distributed and primal-dual extensions Practice: We observe adaptivity is important, not all subproblems are the same! Open problem: Proof for adaptive schemes missing! The proofs do not extend to the fully-adaptive setting, i.e. when γ k depends on x k+1 (as it is the case for the adaptive strategies). S. U. Stich (Adaptive) Importance Sampling 26

27 References References Stich et al. 13 S.U. Stich, C.L. Müller, B. Gärtner. Optimization of convex functions with Random Pursuit, SIAM J.Opt Qu et al. 15 Z. Qu, P. Richtárik, M. Takac, O. Fercoq. SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization, Tappenden et al. 16 R. Tappenden, P. Richtárik, J. Gondzio. Inexact Coordinate Descent: Complexity and Preconditioning, J. Opt. T& A, Mutny, Richtárik, 18 M. Mutny, P. Richtárik, Parallel Stochastic Newton Method, J. Comp. Math, KSJ18 S.P.R. Karimireddy, S.U. Stich, M. Jaggi, Adaptive balancing of gradient and update computation times using global geometry and approximate subproblems, PMLR 84, S. U. Stich (Adaptive) Importance Sampling 27

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Large-Scale SVM Optimization: Taking a Machine Learning Perspective Large-Scale SVM Optimization: Taking a Machine Learning Perspective Shai Shalev-Shwartz Toyota Technological Institute at Chicago Joint work with Nati Srebro Talk at NEC Labs, Princeton, August, 2008 Shai

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Presented at OSL workshop, Les Houches, France. Joint work with Prateek Jain, Sham M. Kakade, Rahul Kidambi and Aaron Sidford Linear

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence

More information

Steepest descent and conjugate gradient methods with variable preconditioning

Steepest descent and conjugate gradient methods with variable preconditioning Ilya Lashuk and Andrew Knyazev 1 Steepest descent and conjugate gradient methods with variable preconditioning Ilya Lashuk (the speaker) and Andrew Knyazev Department of Mathematics and Center for Computational

More information

Decomposition Methods

Decomposition Methods Decomposition Methods separable problems, complicating variables primal decomposition dual decomposition complicating constraints general decomposition structures Prof. S. Boyd, EE364b, Stanford University

More information

Online Appendix: Extensions

Online Appendix: Extensions B Online Appendix: Extensions In this online appendix we demonstrate that many important variations of the exact cost-basis LUL framework remain tractable. In particular, dual problem instances corresponding

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

Budget Management In GSP (2018)

Budget Management In GSP (2018) Budget Management In GSP (2018) Yahoo! March 18, 2018 Miguel March 18, 2018 1 / 26 Today s Presentation: Budget Management Strategies in Repeated auctions, Balseiro, Kim, and Mahdian, WWW2017 Learning

More information

Convergence of trust-region methods based on probabilistic models

Convergence of trust-region methods based on probabilistic models Convergence of trust-region methods based on probabilistic models A. S. Bandeira K. Scheinberg L. N. Vicente October 24, 2013 Abstract In this paper we consider the use of probabilistic or random models

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

Robust Dual Dynamic Programming

Robust Dual Dynamic Programming 1 / 18 Robust Dual Dynamic Programming Angelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann American University of Beirut Olayan School of Business 31 May 217 2 / 18 Inspired by SDDP Stochastic optimization

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006 On the convergence of Q-learning Elif Özge Özdamar elif.ozdamar@helsinki.fi T-61.6020 Reinforcement Learning - Theory and Applications February 14, 2006 the covergence of stochastic iterative algorithms

More information

IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART II

IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART II 1 IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART II Alexander D. Shkolnik ads2@berkeley.edu MMDS Workshop. June 22, 2016. joint with Jeffrey Bohn and Lisa Goldberg. Identifying

More information

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization A Trust Region Algorithm for Heterogeneous Multiobjective Optimization Jana Thomann and Gabriele Eichfelder 8.0.018 Abstract This paper presents a new trust region method for multiobjective heterogeneous

More information

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models Math. Program., Ser. A DOI 10.1007/s10107-017-1137-4 FULL LENGTH PAPER Global convergence rate analysis of unconstrained optimization methods based on probabilistic models C. Cartis 1 K. Scheinberg 2 Received:

More information

Adaptive cubic overestimation methods for unconstrained optimization

Adaptive cubic overestimation methods for unconstrained optimization Report no. NA-07/20 Adaptive cubic overestimation methods for unconstrained optimization Coralia Cartis School of Mathematics, University of Edinburgh, The King s Buildings, Edinburgh, EH9 3JZ, Scotland,

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE392o, Stanford University

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE392o, Stanford University Ellipsoid Method ellipsoid method convergence proof inequality constraints feasibility problems Prof. S. Boyd, EE392o, Stanford University Challenges in cutting-plane methods can be difficult to compute

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

Optimal energy management and stochastic decomposition

Optimal energy management and stochastic decomposition Optimal energy management and stochastic decomposition F. Pacaud P. Carpentier J.P. Chancelier M. De Lara JuMP-dev workshop, 2018 ENPC ParisTech ENSTA ParisTech Efficacity 1/23 Motivation We consider a

More information

Machine Learning (CSE 446): Learning as Minimizing Loss

Machine Learning (CSE 446): Learning as Minimizing Loss Machine Learning (CSE 446): Learning as Minimizing Loss oah Smith c 207 University of Washington nasmith@cs.washington.edu October 23, 207 / 2 Sorry! o office hour for me today. Wednesday is as usual.

More information

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity Coralia Cartis, Nick Gould and Philippe Toint Department of Mathematics,

More information

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE364b, Stanford University

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE364b, Stanford University Ellipsoid Method ellipsoid method convergence proof inequality constraints feasibility problems Prof. S. Boyd, EE364b, Stanford University Ellipsoid method developed by Shor, Nemirovsky, Yudin in 1970s

More information

Chapter 7 One-Dimensional Search Methods

Chapter 7 One-Dimensional Search Methods Chapter 7 One-Dimensional Search Methods An Introduction to Optimization Spring, 2014 1 Wei-Ta Chu Golden Section Search! Determine the minimizer of a function over a closed interval, say. The only assumption

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

A Robust Option Pricing Problem

A Robust Option Pricing Problem IMA 2003 Workshop, March 12-19, 2003 A Robust Option Pricing Problem Laurent El Ghaoui Department of EECS, UC Berkeley 3 Robust optimization standard form: min x sup u U f 0 (x, u) : u U, f i (x, u) 0,

More information

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming Stochastic Dual Dynamic Programg Algorithm for Multistage Stochastic Programg Final presentation ISyE 8813 Fall 2011 Guido Lagos Wajdi Tekaya Georgia Institute of Technology November 30, 2011 Multistage

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

Recharging Bandits. Joint work with Nicole Immorlica.

Recharging Bandits. Joint work with Nicole Immorlica. Recharging Bandits Bobby Kleinberg Cornell University Joint work with Nicole Immorlica. NYU Machine Learning Seminar New York, NY 24 Oct 2017 Prologue Can you construct a dinner schedule that: never goes

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS

GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS ANDREW R. CONN, KATYA SCHEINBERG, AND LUíS N. VICENTE Abstract. In this paper we prove global

More information

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints David Laibson 9/11/2014 Outline: 1. Precautionary savings motives 2. Liquidity constraints 3. Application: Numerical solution

More information

1 Asset Pricing: Bonds vs Stocks

1 Asset Pricing: Bonds vs Stocks Asset Pricing: Bonds vs Stocks The historical data on financial asset returns show that one dollar invested in the Dow- Jones yields 6 times more than one dollar invested in U.S. Treasury bonds. The return

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

Allocation of Risk Capital via Intra-Firm Trading

Allocation of Risk Capital via Intra-Firm Trading Allocation of Risk Capital via Intra-Firm Trading Sean Hilden Department of Mathematical Sciences Carnegie Mellon University December 5, 2005 References 1. Artzner, Delbaen, Eber, Heath: Coherent Measures

More information

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Anna Timonina University of Vienna, Abraham Wald PhD Program in Statistics and Operations

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3)

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3) COMP331/557 Chapter 6: Optimisation in Finance: Cash-Flow (Cornuejols & Tütüncü, Chapter 3) 159 Cash-Flow Management Problem A company has the following net cash flow requirements (in 1000 s of ): Month

More information

A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation

A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation E Bergou Y Diouane V Kungurtsev C W Royer July 5, 08 Abstract Globally convergent variants of the Gauss-Newton

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

Asset Allocation and Risk Assessment with Gross Exposure Constraints

Asset Allocation and Risk Assessment with Gross Exposure Constraints Asset Allocation and Risk Assessment with Gross Exposure Constraints Forrest Zhang Bendheim Center for Finance Princeton University A joint work with Jianqing Fan and Ke Yu, Princeton Princeton University

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Partitioned Analysis of Coupled Systems

Partitioned Analysis of Coupled Systems Partitioned Analysis of Coupled Systems Hermann G. Matthies, Rainer Niekamp, Jan Steindorf Technische Universität Braunschweig Brunswick, Germany wire@tu-bs.de http://www.wire.tu-bs.de Coupled Problems

More information

Journal of Computational and Applied Mathematics. The mean-absolute deviation portfolio selection problem with interval-valued returns

Journal of Computational and Applied Mathematics. The mean-absolute deviation portfolio selection problem with interval-valued returns Journal of Computational and Applied Mathematics 235 (2011) 4149 4157 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Parameterized Expectations

Parameterized Expectations Parameterized Expectations A Brief Introduction Craig Burnside Duke University November 2006 Craig Burnside (Duke University) Parameterized Expectations November 2006 1 / 10 Parameterized Expectations

More information

Problems and Solutions

Problems and Solutions 1 CHAPTER 1 Problems 1.1 Problems on Bonds Exercise 1.1 On 12/04/01, consider a fixed-coupon bond whose features are the following: face value: $1,000 coupon rate: 8% coupon frequency: semiannual maturity:

More information

Building Consistent Risk Measures into Stochastic Optimization Models

Building Consistent Risk Measures into Stochastic Optimization Models Building Consistent Risk Measures into Stochastic Optimization Models John R. Birge The University of Chicago Graduate School of Business www.chicagogsb.edu/fac/john.birge JRBirge Fuqua School, Duke University

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques

Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques 1 Introduction Martin Branda 1 Abstract. We deal with real-life portfolio problem with Value at Risk, transaction

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Recovering portfolio default intensities implied by CDO quotes. Rama CONT & Andreea MINCA. March 1, Premia 14

Recovering portfolio default intensities implied by CDO quotes. Rama CONT & Andreea MINCA. March 1, Premia 14 Recovering portfolio default intensities implied by CDO quotes Rama CONT & Andreea MINCA March 1, 2012 1 Introduction Premia 14 Top-down" models for portfolio credit derivatives have been introduced as

More information

Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP

Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP ICASQF 2016, Cartagena - Colombia C. Alexander Grajales 1 Santiago Medina 2 1 University of Antioquia, Colombia 2 Nacional

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

Regret Minimization and Correlated Equilibria

Regret Minimization and Correlated Equilibria Algorithmic Game heory Summer 2017, Week 4 EH Zürich Overview Regret Minimization and Correlated Equilibria Paolo Penna We have seen different type of equilibria and also considered the corresponding price

More information

Multi-Armed Bandit, Dynamic Environments and Meta-Bandits

Multi-Armed Bandit, Dynamic Environments and Meta-Bandits Multi-Armed Bandit, Dynamic Environments and Meta-Bandits C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud and M. Sebag Lab. of Computer Science CNRS INRIA Université Paris-Sud, Orsay, France Abstract This

More information

High Dimensional Bayesian Optimisation and Bandits via Additive Models

High Dimensional Bayesian Optimisation and Bandits via Additive Models 1/20 High Dimensional Bayesian Optimisation and Bandits via Additive Models Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos ICML 15 July 8 2015 2/20 Bandits & Optimisation Maximum Likelihood inference

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming 1 / 43 Stochastic Dual Dynamic Programming Operations Research Anthony Papavasiliou 2 / 43 Contents [ 10.4 of BL], [Pereira, 1991] 1 Recalling the Nested L-Shaped Decomposition 2 Drawbacks of Nested Decomposition

More information

Stochastic Proximal Algorithms with Applications to Online Image Recovery

Stochastic Proximal Algorithms with Applications to Online Image Recovery 1/24 Stochastic Proximal Algorithms with Applications to Online Image Recovery Patrick Louis Combettes 1 and Jean-Christophe Pesquet 2 1 Mathematics Department, North Carolina State University, Raleigh,

More information

BAYESIAN NONPARAMETRIC ANALYSIS OF SINGLE ITEM PREVENTIVE MAINTENANCE STRATEGIES

BAYESIAN NONPARAMETRIC ANALYSIS OF SINGLE ITEM PREVENTIVE MAINTENANCE STRATEGIES Proceedings of 17th International Conference on Nuclear Engineering ICONE17 July 1-16, 9, Brussels, Belgium ICONE17-765 BAYESIAN NONPARAMETRIC ANALYSIS OF SINGLE ITEM PREVENTIVE MAINTENANCE STRATEGIES

More information

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory Strategies and Nash Equilibrium A Whirlwind Tour of Game Theory (Mostly from Fudenberg & Tirole) Players choose actions, receive rewards based on their own actions and those of the other players. Example,

More information

arxiv: v1 [q-fin.pm] 13 Mar 2014

arxiv: v1 [q-fin.pm] 13 Mar 2014 MERTON PORTFOLIO PROBLEM WITH ONE INDIVISIBLE ASSET JAKUB TRYBU LA arxiv:143.3223v1 [q-fin.pm] 13 Mar 214 Abstract. In this paper we consider a modification of the classical Merton portfolio optimization

More information

Convex-Cardinality Problems

Convex-Cardinality Problems l 1 -norm Methods for Convex-Cardinality Problems problems involving cardinality the l 1 -norm heuristic convex relaxation and convex envelope interpretations examples recent results Prof. S. Boyd, EE364b,

More information

Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity

Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity Coralia Cartis,, Nicholas I. M. Gould, and Philippe L. Toint September

More information

Supply Chain Outsourcing Under Exchange Rate Risk and Competition

Supply Chain Outsourcing Under Exchange Rate Risk and Competition Supply Chain Outsourcing Under Exchange Rate Risk and Competition Published in Omega 2011;39; 539-549 Zugang Liu and Anna Nagurney Department of Business and Economics The Pennsylvania State University

More information

On Complexity of Multistage Stochastic Programs

On Complexity of Multistage Stochastic Programs On Complexity of Multistage Stochastic Programs Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA e-mail: ashapiro@isye.gatech.edu

More information

Portfolio Optimization. Prof. Daniel P. Palomar

Portfolio Optimization. Prof. Daniel P. Palomar Portfolio Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST, Hong

More information

Project 1: Double Pendulum

Project 1: Double Pendulum Final Projects Introduction to Numerical Analysis II http://www.math.ucsb.edu/ atzberg/winter2009numericalanalysis/index.html Professor: Paul J. Atzberger Due: Friday, March 20th Turn in to TA s Mailbox:

More information

Generalized Recovery

Generalized Recovery Generalized Recovery Christian Skov Jensen Copenhagen Business School David Lando Copenhagen Business School and CEPR Lasse Heje Pedersen AQR Capital Management, Copenhagen Business School, NYU, CEPR December,

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Maximum Contiguous Subsequences

Maximum Contiguous Subsequences Chapter 8 Maximum Contiguous Subsequences In this chapter, we consider a well-know problem and apply the algorithm-design techniques that we have learned thus far to this problem. While applying these

More information

Lecture 11: Bandits with Knapsacks

Lecture 11: Bandits with Knapsacks CMSC 858G: Bandits, Experts and Games 11/14/16 Lecture 11: Bandits with Knapsacks Instructor: Alex Slivkins Scribed by: Mahsa Derakhshan 1 Motivating Example: Dynamic Pricing The basic version of the dynamic

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Bounds on some contingent claims with non-convex payoff based on multiple assets

Bounds on some contingent claims with non-convex payoff based on multiple assets Bounds on some contingent claims with non-convex payoff based on multiple assets Dimitris Bertsimas Xuan Vinh Doan Karthik Natarajan August 007 Abstract We propose a copositive relaxation framework to

More information

The ruin probabilities of a multidimensional perturbed risk model

The ruin probabilities of a multidimensional perturbed risk model MATHEMATICAL COMMUNICATIONS 231 Math. Commun. 18(2013, 231 239 The ruin probabilities of a multidimensional perturbed risk model Tatjana Slijepčević-Manger 1, 1 Faculty of Civil Engineering, University

More information

Catalyst Acceleration for Gradient-Based Non-Convex Optimization

Catalyst Acceleration for Gradient-Based Non-Convex Optimization Catalyst Acceleration for Gradient-Based Non-Convex Optimization Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, Zaid Harchaoui To cite this version: Courtney Paquette, Hongzhou Lin,

More information

Predicting the Success of a Retirement Plan Based on Early Performance of Investments

Predicting the Success of a Retirement Plan Based on Early Performance of Investments Predicting the Success of a Retirement Plan Based on Early Performance of Investments CS229 Autumn 2010 Final Project Darrell Cain, AJ Minich Abstract Using historical data on the stock market, it is possible

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

Optimal Order Placement

Optimal Order Placement Optimal Order Placement Peter Bank joint work with Antje Fruth OMI Colloquium Oxford-Man-Institute, October 16, 2012 Optimal order execution Broker is asked to do a transaction of a significant fraction

More information

MORE DATA OR BETTER DATA? A Statistical Decision Problem. Jeff Dominitz Resolution Economics. and. Charles F. Manski Northwestern University

MORE DATA OR BETTER DATA? A Statistical Decision Problem. Jeff Dominitz Resolution Economics. and. Charles F. Manski Northwestern University MORE DATA OR BETTER DATA? A Statistical Decision Problem Jeff Dominitz Resolution Economics and Charles F. Manski Northwestern University Review of Economic Studies, 2017 Summary When designing data collection,

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Where Has All the Value Gone? Portfolio risk optimization using CVaR

Where Has All the Value Gone? Portfolio risk optimization using CVaR Where Has All the Value Gone? Portfolio risk optimization using CVaR Jonathan Sterbanz April 27, 2005 1 Introduction Corporate securities are widely used as a means to boost the value of asset portfolios;

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information