Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE392o, Stanford University

Size: px
Start display at page:

Download "Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE392o, Stanford University"

Transcription

1 Ellipsoid Method ellipsoid method convergence proof inequality constraints feasibility problems Prof. S. Boyd, EE392o, Stanford University

2 Challenges in cutting-plane methods can be difficult to compute appropriate next query point localization polyhedron grows in complexity as algorithm progresses can get around these challenges... ellipsoid method is another approach developed in 70s by Shor and Yudin used in 1979 by Khachian to give polynomial time algorithm for LP Prof. S. Boyd, EE392o, Stanford University 1

3 Ellipsoid algorithm idea: localize x in an ellipsoid instead of a polyhedron 1. at iteration k we know x E (k) 2. set x (k+1) := center(e (k) ); evaluate f(x (k+1) ) (or g (k) f(x (k+1) )) 3. hence we know (a half-ellipsoid) x E (k) {z f(x (k+1) ) T (z x (k+1) ) 0} 4. set E (k+1) := minimum volume ellipsoid covering E (k) {z f(x (k+1) ) T (z x (k+1) ) 0} Prof. S. Boyd, EE392o, Stanford University 2

4 E (k+1) x (k+1) E (k) f(x (k+1) ) compared to cutting-plane method: localization set doesn t grow more complicated easy to compute query point but, we add unnecessary points in step 4 Prof. S. Boyd, EE392o, Stanford University 3

5 Properties of ellipsoid method reduces to bisection for n = 1 simple formula for E (k+1) given E (k), f(x (k+1) ) E (k+1) can be larger than E (k) in diameter (max semi-axis length), but is always smaller in volume vol(e (k+1) ) < e 1 2n vol(e (k) ) (note that volume reduction factor depends on n) Prof. S. Boyd, EE392o, Stanford University 4

6 Example x (0) x (1) x (2) lacements Prof. S. Boyd, EE392o, Stanford University 5

7 x (3) x (4) x (5) cements Prof. S. Boyd, EE392o, Stanford University 6

8 Updating the ellipsoid E(x, A) = { z (z x) T A 1 (z x) 1 } E E + x g x + Prof. S. Boyd, EE392o, Stanford University 7

9 (for n > 1) minimum volume ellipsoid containing is given by E { z g T (z x) 0 } x + = x 1 n + 1 A g A + = n 2 n 2 1 ( A 2 n + 1 A g gt A ) where g = g / gt Ag Prof. S. Boyd, EE392o, Stanford University 8

10 Stopping criterion x E k, so simple stopping criterion: f(x ) f(x (k) ) + f(x (k) ) T (x x (k) ) f(x (k) ) + inf f(x (k) ) T (x x (k) ) x E (k) = f(x (k) ) f(x (k) ) T A (k) f(x (k) ) f(x (k) ) T A (k) f(x (k) ) ɛ Prof. S. Boyd, EE392o, Stanford University 9

11 f f(x (k) ) f(x (k) ) f(x (k) ) T A (k) f(x (k) ) k Prof. S. Boyd, EE392o, Stanford University 10

12 more sophisticated stopping criterion: U k L k ɛ, where U k = min L k = max i k i k f(x(i) ) ( f(x (i) ) ) f(x (i) ) T A (i) f(x (i) ) Prof. S. Boyd, EE392o, Stanford University 11

13 f U k L k k Prof. S. Boyd, EE392o, Stanford University 12

14 Basic ellipsoid algorithm ellipsoid described as E(x, A) = { z (z x) T A 1 (z x) 1 } given ellipsoid E(x, A) containing x, accuracy ɛ > 0 repeat 1. evaluate f(x) (or g f(x)) 2. if f(x) T A f(x) ɛ, return(x) 3. update ellipsoid 3a. g := f(x) / f(x)t A f(x) 3b. x := x 1 3c. A := n2 n 2 1 n+1 A g ( ) A 2 n+1 A g gt A Prof. S. Boyd, EE392o, Stanford University 13

15 Interpretation change coordinates so uncertainty (E) is unit ball take gradient (or subgradient) step with fixed length 1/(n + 1) properties: can propagate Cholesky factor of A; get O(n 2 ) update not a descent method often slow but robust in practice Prof. S. Boyd, EE392o, Stanford University 14

16 Proof of convergence assumptions: f is Lipschitz: f(y) f(x) G y x E (0) is ball with radius R suppose f(x (i) ) > f + ɛ, i = 0,..., k then f(x) f + ɛ = x E (k) since at iteration i we only discard points with f f(x (i) ) Prof. S. Boyd, EE392o, Stanford University 15

17 from Lipschitz condition, x x ɛ/g = f(x) f + ɛ = x E (k) so B = {x x x ɛ/g} E (k) hence vol(b) vol(e (k) ), so β n (ɛ/g) n e k/2n vol(e (0) ) = e k/2n β n R n (β n is volume of unit ball in R n ) therefore k 2n 2 log(rg/ɛ) Prof. S. Boyd, EE392o, Stanford University 16

18 E (0) x x (k) E (k) B = {x x x ɛ/g} f(x) f + ɛ conclusion: for K > 2n 2 log(rg/ɛ), min i=0,...,k f(x(i) ) f + ɛ Prof. S. Boyd, EE392o, Stanford University 17

19 Interpretation of complexity since x E 0 = {x x x (0) R}, our prior knowledge of f is f [f(x (0) ) GR, f(x (0) )] our prior uncertainty in f is GR after k iterations our knowledge of f is f [ ] min i=0,...,k f(x(i) ) ɛ, min i=0,...,k f(x(i) ) posterior uncertainty in f is ɛ Prof. S. Boyd, EE392o, Stanford University 18

20 iterations required: 2n 2 log RG ɛ = 2n 2 log prior uncertainty posterior uncertainty efficiency: 0.72/n 2 bits per gradient evaluation (degrades with n) Prof. S. Boyd, EE392o, Stanford University 19

21 Inequality constrained problems minimize subject to f 0 (x) f i (x) 0, i = 1,..., m same idea: maintain ellipsoids E (k) that contain x decrease in volume to zero Prof. S. Boyd, EE392o, Stanford University 20

22 case 1: x (k) feasible, i.e., f i (x (k) ) 0, i = 1,..., m then do usual update of E (k) based on f 0 (x (k) ) rules out halfspace of points with larger function value than current point case 2: x (k) infeasible, say, f j (x (k) ) > 0; then f j (x (k) ) T (x x (k) ) 0 = f j (x) > 0 = x infeasible so update E (k) based on f j (x (k) ) rules out halfspace of infeasible points Prof. S. Boyd, EE392o, Stanford University 21

23 Example f 1 (x) = 0 lacements x (0) x (1) f 0(x (1) ) f 0 (x (2) ) x (2) f 1 (x (0) ) Prof. S. Boyd, EE392o, Stanford University 22

24 cements x (3) f 0 (x (4) ) x (4) x (5) f 0 (x (5) ) f 1 (x (3) ) Prof. S. Boyd, EE392o, Stanford University 23

25 Stopping criterion if x (k) is feasible, we have a lower bound on f as before: f f(x (k) ) f(x (k) ) T A (k) f(x (k) ) if x (k) is infeasible, we have for all x E (k) f j (x) f j (x (k) ) + f j (x (k) ) T (x x (k) ) f j (x (k) ) + inf x E (k) f j (x (k) ) T (x x (k) ) = f j (x (k) ) f j (x (k) ) T A (k) f j (x (k) ) Prof. S. Boyd, EE392o, Stanford University 24

26 hence, problem is infeasible if for some j, f j (x (k) ) f j (x (k) ) T A (k) f j (x (k) ) > 0 stopping criteria: if x (k) is feasible and f 0 (x (k) ) T A (k) f 0 (x (k) ) ɛ (x (k) is ɛ-suboptimal) if f j (x (k) ) f j (x (k) ) T A (k) f j (x (k) ) > 0 (problem is infeasible) Prof. S. Boyd, EE392o, Stanford University 25

27 Ellipsoid method for feasibility abstract feasibility problem: find x C R n or determine C = separating hyperplane oracle: for any x, oracle either confirms x C, or returns g 0 s.t. z C g T (z x) 0 E (k+1) x (k) g (k) E (k) C Prof. S. Boyd, EE392o, Stanford University 26

28 start with E (0) which intersects C 1. If x (k) := center(e (k) ) C, quit. Else, compute g 0, s.t. x C g T (x x (k) ) 0 2. E (k+1) := minimum volume ellipsoid covering E (k) {z g T (z x (k) ) 0} Prof. S. Boyd, EE392o, Stanford University 27

29 Example Sfrag replacements Sfrag replacements Prof. S. Boyd, EE392o, Stanford University 28

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE364b, Stanford University

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE364b, Stanford University Ellipsoid Method ellipsoid method convergence proof inequality constraints feasibility problems Prof. S. Boyd, EE364b, Stanford University Ellipsoid method developed by Shor, Nemirovsky, Yudin in 1970s

More information

Decomposition Methods

Decomposition Methods Decomposition Methods separable problems, complicating variables primal decomposition dual decomposition complicating constraints general decomposition structures Prof. S. Boyd, EE364b, Stanford University

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1 IE 495 Lecture 11 The LShaped Method Prof. Jeff Linderoth February 19, 2003 February 19, 2003 Stochastic Programming Lecture 11 Slide 1 Before We Begin HW#2 $300 $0 http://www.unizh.ch/ior/pages/deutsch/mitglieder/kall/bib/ka-wal-94.pdf

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

A Robust Option Pricing Problem

A Robust Option Pricing Problem IMA 2003 Workshop, March 12-19, 2003 A Robust Option Pricing Problem Laurent El Ghaoui Department of EECS, UC Berkeley 3 Robust optimization standard form: min x sup u U f 0 (x, u) : u U, f i (x, u) 0,

More information

Penalty Functions. The Premise Quadratic Loss Problems and Solutions

Penalty Functions. The Premise Quadratic Loss Problems and Solutions Penalty Functions The Premise Quadratic Loss Problems and Solutions The Premise You may have noticed that the addition of constraints to an optimization problem has the effect of making it much more difficult.

More information

GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS

GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS ANDREW R. CONN, KATYA SCHEINBERG, AND LUíS N. VICENTE Abstract. In this paper we prove global

More information

Finding Roots by "Closed" Methods

Finding Roots by Closed Methods Finding Roots by "Closed" Methods One general approach to finding roots is via so-called "closed" methods. Closed methods A closed method is one which starts with an interval, inside of which you know

More information

Approximate Composite Minimization: Convergence Rates and Examples

Approximate Composite Minimization: Convergence Rates and Examples ISMP 2018 - Bordeaux Approximate Composite Minimization: Convergence Rates and S. Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi MLO Lab, EPFL, Switzerland sebastian.stich@epfl.ch July 4, 2018

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION Abstract. This is the rst part in my tutorial series- Follow me to Optimization Problems. In this tutorial, I will touch on the basic concepts of portfolio

More information

Convergence of trust-region methods based on probabilistic models

Convergence of trust-region methods based on probabilistic models Convergence of trust-region methods based on probabilistic models A. S. Bandeira K. Scheinberg L. N. Vicente October 24, 2013 Abstract In this paper we consider the use of probabilistic or random models

More information

Feb. 4 Math 2335 sec 001 Spring 2014

Feb. 4 Math 2335 sec 001 Spring 2014 Feb. 4 Math 2335 sec 001 Spring 2014 Propagated Error in Function Evaluation Let f (x) be some differentiable function. Suppose x A is an approximation to x T, and we wish to determine the function value

More information

Chapter 7 One-Dimensional Search Methods

Chapter 7 One-Dimensional Search Methods Chapter 7 One-Dimensional Search Methods An Introduction to Optimization Spring, 2014 1 Wei-Ta Chu Golden Section Search! Determine the minimizer of a function over a closed interval, say. The only assumption

More information

The method of false position is also an Enclosure or bracketing method. For this method we will be able to remedy some of the minuses of bisection.

The method of false position is also an Enclosure or bracketing method. For this method we will be able to remedy some of the minuses of bisection. Section 2.2 The Method of False Position Features of BISECTION: Plusses: Easy to implement Almost idiot proof o If f(x) is continuous & changes sign on [a, b], then it is GUARANTEED to converge. Requires

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Convex-Cardinality Problems

Convex-Cardinality Problems l 1 -norm Methods for Convex-Cardinality Problems problems involving cardinality the l 1 -norm heuristic convex relaxation and convex envelope interpretations examples recent results Prof. S. Boyd, EE364b,

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization for Strongly Convex Stochastic Optimization Microsoft Research New England NIPS 2011 Optimization Workshop Stochastic Convex Optimization Setting Goal: Optimize convex function F ( ) over convex domain

More information

February 2 Math 2335 sec 51 Spring 2016

February 2 Math 2335 sec 51 Spring 2016 February 2 Math 2335 sec 51 Spring 2016 Section 3.1: Root Finding, Bisection Method Many problems in the sciences, business, manufacturing, etc. can be framed in the form: Given a function f (x), find

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming Stochastic Dual Dynamic Programg Algorithm for Multistage Stochastic Programg Final presentation ISyE 8813 Fall 2011 Guido Lagos Wajdi Tekaya Georgia Institute of Technology November 30, 2011 Multistage

More information

Robust Dual Dynamic Programming

Robust Dual Dynamic Programming 1 / 18 Robust Dual Dynamic Programming Angelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann American University of Beirut Olayan School of Business 31 May 217 2 / 18 Inspired by SDDP Stochastic optimization

More information

Convex-Cardinality Problems Part II

Convex-Cardinality Problems Part II l 1 -norm Methods for Convex-Cardinality Problems Part II total variation iterated weighted l 1 heuristic matrix rank constraints Prof. S. Boyd, EE364b, Stanford University Total variation reconstruction

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 2018 Instructor: Dr. Sateesh Mane. September 16, 2018

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 2018 Instructor: Dr. Sateesh Mane. September 16, 2018 Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 208 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 208 2 Lecture 2 September 6, 208 2. Bond: more general

More information

Machine Learning (CSE 446): Learning as Minimizing Loss

Machine Learning (CSE 446): Learning as Minimizing Loss Machine Learning (CSE 446): Learning as Minimizing Loss oah Smith c 207 University of Washington nasmith@cs.washington.edu October 23, 207 / 2 Sorry! o office hour for me today. Wednesday is as usual.

More information

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models Math. Program., Ser. A DOI 10.1007/s10107-017-1137-4 FULL LENGTH PAPER Global convergence rate analysis of unconstrained optimization methods based on probabilistic models C. Cartis 1 K. Scheinberg 2 Received:

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

CS227-Scientific Computing. Lecture 6: Nonlinear Equations

CS227-Scientific Computing. Lecture 6: Nonlinear Equations CS227-Scientific Computing Lecture 6: Nonlinear Equations A Financial Problem You invest $100 a month in an interest-bearing account. You make 60 deposits, and one month after the last deposit (5 years

More information

Optimization 101. Dan dibartolomeo Webinar (from Boston) October 22, 2013

Optimization 101. Dan dibartolomeo Webinar (from Boston) October 22, 2013 Optimization 101 Dan dibartolomeo Webinar (from Boston) October 22, 2013 Outline of Today s Presentation The Mean-Variance Objective Function Optimization Methods, Strengths and Weaknesses Estimation Error

More information

18.440: Lecture 32 Strong law of large numbers and Jensen s inequality

18.440: Lecture 32 Strong law of large numbers and Jensen s inequality 18.440: Lecture 32 Strong law of large numbers and Jensen s inequality Scott Sheffield MIT 1 Outline A story about Pedro Strong law of large numbers Jensen s inequality 2 Outline A story about Pedro Strong

More information

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it.

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it. Finding Roots by "Open" Methods The differences between "open" and "closed" methods The differences between "open" and "closed" methods are closed open ----------------- --------------------- uses a bounded

More information

Exercise sheet 10. Discussion: Thursday,

Exercise sheet 10. Discussion: Thursday, Exercise sheet 10 Discussion: Thursday, 04.02.2016. Exercise 10.1 Let K K n o, t > 0. Show that N (K, t B n ) N (K, 4t B n ) N (B n, (t/16)k ), N (B n, t K) N (B n, 4t K) N (K, (t/16)b n ). Hence, e.g.,

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 21 Successive Shortest Path Problem In this lecture, we continue our discussion

More information

Socially-Optimal Design of Crowdsourcing Platforms with Reputation Update Errors

Socially-Optimal Design of Crowdsourcing Platforms with Reputation Update Errors Socially-Optimal Design of Crowdsourcing Platforms with Reputation Update Errors 1 Yuanzhang Xiao, Yu Zhang, and Mihaela van der Schaar Abstract Crowdsourcing systems (e.g. Yahoo! Answers and Amazon Mechanical

More information

Recall: Data Flow Analysis. Data Flow Analysis Recall: Data Flow Equations. Forward Data Flow, Again

Recall: Data Flow Analysis. Data Flow Analysis Recall: Data Flow Equations. Forward Data Flow, Again Data Flow Analysis 15-745 3/24/09 Recall: Data Flow Analysis A framework for proving facts about program Reasons about lots of little facts Little or no interaction between facts Works best on properties

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

Regret Minimization and Correlated Equilibria

Regret Minimization and Correlated Equilibria Algorithmic Game heory Summer 2017, Week 4 EH Zürich Overview Regret Minimization and Correlated Equilibria Paolo Penna We have seen different type of equilibria and also considered the corresponding price

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

Golden-Section Search for Optimization in One Dimension

Golden-Section Search for Optimization in One Dimension Golden-Section Search for Optimization in One Dimension Golden-section search for maximization (or minimization) is similar to the bisection method for root finding. That is, it does not use the derivatives

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

On solving multistage stochastic programs with coherent risk measures

On solving multistage stochastic programs with coherent risk measures On solving multistage stochastic programs with coherent risk measures Andy Philpott Vitor de Matos y Erlon Finardi z August 13, 2012 Abstract We consider a class of multistage stochastic linear programs

More information

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity Coralia Cartis, Nick Gould and Philippe Toint Department of Mathematics,

More information

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Presented at OSL workshop, Les Houches, France. Joint work with Prateek Jain, Sham M. Kakade, Rahul Kidambi and Aaron Sidford Linear

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

Sublinear Time Algorithms Oct 19, Lecture 1

Sublinear Time Algorithms Oct 19, Lecture 1 0368.416701 Sublinear Time Algorithms Oct 19, 2009 Lecturer: Ronitt Rubinfeld Lecture 1 Scribe: Daniel Shahaf 1 Sublinear-time algorithms: motivation Twenty years ago, there was practically no investigation

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

Stability in geometric & functional inequalities

Stability in geometric & functional inequalities Stability in geometric & functional inequalities A. Figalli The University of Texas at Austin www.ma.utexas.edu/users/figalli/ Alessio Figalli (UT Austin) Stability in geom. & funct. ineq. Krakow, July

More information

arxiv: v1 [math.st] 6 Jun 2014

arxiv: v1 [math.st] 6 Jun 2014 Strong noise estimation in cubic splines A. Dermoune a, A. El Kaabouchi b arxiv:1406.1629v1 [math.st] 6 Jun 2014 a Laboratoire Paul Painlevé, USTL-UMR-CNRS 8524. UFR de Mathématiques, Bât. M2, 59655 Villeneuve

More information

Homework. Part 1. Computer Implementation: Solve Wilson problem by the Lindo and compare the results with your graphical solution.

Homework. Part 1. Computer Implementation: Solve Wilson problem by the Lindo and compare the results with your graphical solution. Homework. Part 1. Computer Implementation: Solve Wilson problem by the Lindo and compare the results with your graphical solution. Graphical Solution is attached to email. Lindo The results of the Wilson

More information

Data-Driven Optimization for Portfolio Selection

Data-Driven Optimization for Portfolio Selection Delage E., Data-Driven Optimization for Portfolio Selection p. 1/16 Data-Driven Optimization for Portfolio Selection Erick Delage, edelage@stanford.edu Yinyu Ye, yinyu-ye@stanford.edu Stanford University

More information

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization A Trust Region Algorithm for Heterogeneous Multiobjective Optimization Jana Thomann and Gabriele Eichfelder 8.0.018 Abstract This paper presents a new trust region method for multiobjective heterogeneous

More information

Nonlinear programming without a penalty function or a filter

Nonlinear programming without a penalty function or a filter Report no. NA-07/09 Nonlinear programming without a penalty function or a filter Nicholas I. M. Gould Oxford University, Numerical Analysis Group Philippe L. Toint Department of Mathematics, FUNDP-University

More information

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016 First-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 1 / 48 Smooth

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Lecture l(x) 1. (1) x X

Lecture l(x) 1. (1) x X Lecture 14 Agenda for the lecture Kraft s inequality Shannon codes The relation H(X) L u (X) = L p (X) H(X) + 1 14.1 Kraft s inequality While the definition of prefix-free codes is intuitively clear, we

More information

Optimization Models one variable optimization and multivariable optimization

Optimization Models one variable optimization and multivariable optimization Georg-August-Universität Göttingen Optimization Models one variable optimization and multivariable optimization Wenzhong Li lwz@nju.edu.cn Feb 2011 Mathematical Optimization Problems in optimization are

More information

Stock Market Prediction using Artificial Neural Networks IME611 - Financial Engineering Indian Institute of Technology, Kanpur (208016), India

Stock Market Prediction using Artificial Neural Networks IME611 - Financial Engineering Indian Institute of Technology, Kanpur (208016), India Stock Market Prediction using Artificial Neural Networks IME611 - Financial Engineering Indian Institute of Technology, Kanpur (208016), India Name Pallav Ranka (13457) Abstract Investors in stock market

More information

Statistics and Machine Learning Homework1

Statistics and Machine Learning Homework1 Statistics and Machine Learning Homework1 Yuh-Jye Lee National Taiwan University of Science and Technology dmlab1.csie.ntust.edu.tw/leepage/index c.htm Exercise 1: (a) Solve 1 min x R 2 2 xt 1 0 0 900

More information

Uncertainty in Equilibrium

Uncertainty in Equilibrium Uncertainty in Equilibrium Larry Blume May 1, 2007 1 Introduction The state-preference approach to uncertainty of Kenneth J. Arrow (1953) and Gérard Debreu (1959) lends itself rather easily to Walrasian

More information

Universal Portfolios

Universal Portfolios CS28B/Stat24B (Spring 2008) Statistical Learning Theory Lecture: 27 Universal Portfolios Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals Portfolio optimization setting Suppose we have

More information

Lecture 5: Iterative Combinatorial Auctions

Lecture 5: Iterative Combinatorial Auctions COMS 6998-3: Algorithmic Game Theory October 6, 2008 Lecture 5: Iterative Combinatorial Auctions Lecturer: Sébastien Lahaie Scribe: Sébastien Lahaie In this lecture we examine a procedure that generalizes

More information

Adaptive cubic overestimation methods for unconstrained optimization

Adaptive cubic overestimation methods for unconstrained optimization Report no. NA-07/20 Adaptive cubic overestimation methods for unconstrained optimization Coralia Cartis School of Mathematics, University of Edinburgh, The King s Buildings, Edinburgh, EH9 3JZ, Scotland,

More information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information Algorithmic Game Theory and Applications Lecture 11: Games of Perfect Information Kousha Etessami finite games of perfect information Recall, a perfect information (PI) game has only 1 node per information

More information

Estimating Term Structure of U.S. Treasury Securities: An Interpolation Approach

Estimating Term Structure of U.S. Treasury Securities: An Interpolation Approach Estimating Term Structure of U.S. Treasury Securities: An Interpolation Approach Feng Guo J. Huston McCulloch Our Task Empirical TS are unobservable. Without a continuous spectrum of zero-coupon securities;

More information

Optimal Portfolio Selection Under the Estimation Risk in Mean Return

Optimal Portfolio Selection Under the Estimation Risk in Mean Return Optimal Portfolio Selection Under the Estimation Risk in Mean Return by Lei Zhu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Appendices. A Simple Model of Contagion in Venture Capital

Appendices. A Simple Model of Contagion in Venture Capital Appendices A A Simple Model of Contagion in Venture Capital Given the structure of venture capital financing just described, the potential mechanisms by which shocks might propagate across companies in

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd,

Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd, Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.35258 Improving the Robustness of Difference of Convex Algorithm in the Research

More information

Nonlinear programming without a penalty function or a filter

Nonlinear programming without a penalty function or a filter Nonlinear programming without a penalty function or a filter N I M Gould Ph L Toint October 1, 2007 RAL-TR-2007-016 c Science and Technology Facilities Council Enquires about copyright, reproduction and

More information

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers Econ 805 Advanced Micro Theory I Dan Quint Fall 2009 Lecture 20 November 13 2008 So far, we ve considered matching markets in settings where there is no money you can t necessarily pay someone to marry

More information

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? DOI 0.007/s064-006-9073-z ORIGINAL PAPER Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? Jules H. van Binsbergen Michael W. Brandt Received:

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Large-Scale SVM Optimization: Taking a Machine Learning Perspective Large-Scale SVM Optimization: Taking a Machine Learning Perspective Shai Shalev-Shwartz Toyota Technological Institute at Chicago Joint work with Nati Srebro Talk at NEC Labs, Princeton, August, 2008 Shai

More information

The Duration Derby: A Comparison of Duration Based Strategies in Asset Liability Management

The Duration Derby: A Comparison of Duration Based Strategies in Asset Liability Management The Duration Derby: A Comparison of Duration Based Strategies in Asset Liability Management H. Zheng Department of Mathematics, Imperial College London SW7 2BZ, UK h.zheng@ic.ac.uk L. C. Thomas School

More information

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems NLA p.1/13 Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems... 0 0 0 etc. a n 1,n 1 x n 1 = b n 1 a n 1,n x n solve a n,n x n = b n then back substitution: takes n

More information

Allocation of Risk Capital via Intra-Firm Trading

Allocation of Risk Capital via Intra-Firm Trading Allocation of Risk Capital via Intra-Firm Trading Sean Hilden Department of Mathematical Sciences Carnegie Mellon University December 5, 2005 References 1. Artzner, Delbaen, Eber, Heath: Coherent Measures

More information

Principles of Financial Computing

Principles of Financial Computing Principles of Financial Computing Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning MDP March May, 2013 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical

More information

Nonlinear programming without a penalty function or a filter

Nonlinear programming without a penalty function or a filter Math. Program., Ser. A (2010) 122:155 196 DOI 10.1007/s10107-008-0244-7 FULL LENGTH PAPER Nonlinear programming without a penalty function or a filter N. I. M. Gould Ph.L.Toint Received: 11 December 2007

More information

Maximum Contiguous Subsequences

Maximum Contiguous Subsequences Chapter 8 Maximum Contiguous Subsequences In this chapter, we consider a well-know problem and apply the algorithm-design techniques that we have learned thus far to this problem. While applying these

More information

Competitive Market Model

Competitive Market Model 57 Chapter 5 Competitive Market Model The competitive market model serves as the basis for the two different multi-user allocation methods presented in this thesis. This market model prices resources based

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

The Probabilistic Method - Probabilistic Techniques. Lecture 7: Martingales

The Probabilistic Method - Probabilistic Techniques. Lecture 7: Martingales The Probabilistic Method - Probabilistic Techniques Lecture 7: Martingales Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2015-2016 Sotiris Nikoletseas, Associate

More information

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009)

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009) Technical Report Doc ID: TR-1-2009. 14-April-2009 (Last revised: 02-June-2009) The homogeneous selfdual model algorithm for linear optimization. Author: Erling D. Andersen In this white paper we present

More information

On-line Supplement for Constraint Aggregation in Column Generation Models for Resource-Constrained Covering Problems

On-line Supplement for Constraint Aggregation in Column Generation Models for Resource-Constrained Covering Problems Submitted to INFORMS Journal on Computing manuscript (Please, provide the mansucript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

Introduction to Numerical Methods (Algorithm)

Introduction to Numerical Methods (Algorithm) Introduction to Numerical Methods (Algorithm) 1 2 Example: Find the internal rate of return (IRR) Consider an investor who pays CF 0 to buy a bond that will pay coupon interest CF 1 after one year and

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information