Golden-Section Search for Optimization in One Dimension

Size: px
Start display at page:

Download "Golden-Section Search for Optimization in One Dimension"

Transcription

1 Golden-Section Search for Optimization in One Dimension Golden-section search for maximization (or minimization) is similar to the bisection method for root finding. That is, it does not use the derivatives (like, for example, Newton s method) to find the optimization. Similar to bisection, it is an iterative technique that starts with a search range and narrows down the range until an approximate optimum value is found. The idea behind the golden-section method is based on the relative values of F (x) for different values x to narrow down the search space. Compare this with the bisection method, where the idea was to use the sign change narrow down the search space. Assume that the function is unimodal (only one peak at x ) in the interval x l to x u (see Figure 1). The range x l to x u will be used as the initial search range. x l x u Figure 1: Initial search range in golden-section The steps of the golden-section method are as follows. 1. Select x l to x u for the initial search range.. Select two intermediate values x 1 and x as x 1 = x l + d (1) x = x u d () The values of x 1 and x are such that x 1 >x. The ideal (golden) value of d is given by (justification is given later) (x u x l ) (3) 3. Evaluate F (x 1 )andf (x ) and based on their relative values, update (narrow down) the search range. If F (x 1 ) >F(x ), we have two possibilities as shown in Figure. As can be seen from Figure, the only conclusion we can make when x 1 > x and F (x 1 ) >F(x ) is that x >x. That is, for the next iteration, the lower limit on the search range can be updated as l = x. Similarly, if If F (x ) >F(x 1 ), we have two possibilities as shown in Figure 3. 1

2 OR x x1 x x 1 Figure : Possibilities when x 1 >x and F (x 1 ) >F(x ) OR x x 1 x x 1 Figure 3: Possibilities when x 1 >x but F (x ) >F(x 1 ) In this case, we can only conclude that x <x 1. That is, u = x 1 for the new iteration. To summarize, update the values of x l and x u, based on the relative values of F (x 1 )and F (x ), as follows: If F (x 1 ) >F(x ) (case 1), update the search ranges as If F (x ) >F(x 1 ) (case ), update the search ranges as l = x (4) u = x u (no change) (5) l = x l (no change) (6) u = x 1 (7) 4. Continue with the new values of x l and x u until the the optimum point is found (terminate when the optimum point or the optimum value does not change significantly from one iteration to the next). Note that at the end of each iteration, the optimum value is either x 1 or x (depending on the value of F (x 1 )andf (x )). The choice of d Anyvaluecanbeusedford as long as x 1 >x. However, if d is selected appropriately, the number of function evaluations (for different values x 1 and x ) can be minimized. As we saw earlier, either x 1 (case ) or x (case 1) in one iteration becomes the new x u or x l for the next iteration. If we chose the values of x 1 and x such that the unused value (x 1 in case 1 and x in case ) is also used in the next iteration, the number of function evaluations can be minimized. To achieve this, d should selected such that = x 1 in case 1 or 1 = x in case. See an illustration of this in Figure 4. From the figure, we have l 0 = + l (8)

3 Figure 4: The selection of d to minimize the number of function evaluations To minimize the number of function evaluations, we need Combining these two Writing l l1 = r, l 0 = l (9) + l = l () 1+r = 1 r (11) That is, r + r 1 = 0 (1) the roots of which are given by 1 4( 1) r = 1 ± = = (13) which explains the choice of d given in (3). The algorithm can be terminated when x u x l (1 r) x opt 0% <ɛ t (14) where x opt is either x 1 or x depending on which one gives the optimum value for the function and ɛ t is the desired threshold (e.g., 1%). 3

4 The value of d is chosen to minimize the number of function evaluations (which can be expensive in practical problems). However, note that after each iteration the search range is reduced by a factor of (compare this with the.5 reduction in bisection). Thus, the golden-section method converges rather slowly. Example: Find the maximum of the function f(x) =sinx x with x l = 0 and x u = 4 as the starting search range. Iteration 1: (x u x l )= (4 0) =.47 (15) x 1 = x l =.47 (16) x = x u 4.47 = 1.58 (17) f(x ) = f(1.58) = 1.58 sin(1.58) = (18) f(x 1 ) = f(.47) =.47 sin(.47) = 0.63 (19) Since f(x ) >f(x 1 ), the values of x l and x u are updated as x u = x 1 =.47 (0) x l = x l = 0 (1) At the end of iteration 1, the optimum value of x is x =1.58 (since f(x ) >f(x 1 )). Iteration : (x u x l )= (.47 0) = 1.58 () x 1 = x l = 1.58 (3) x = x u = (4) f(x ) = f(0.944) = sin(0.944) = (5) f(x 1 ) = f(1.58) = (no need to evaluate again) (6) Note that the value of x 1 in the second iteration is the same as x in the first iteration. In this case, there is no need to evaluate f(x 1 ) in the second iteration (the value of f(x )canbe stored from iteration 1) Since f(x ) <f(x 1 ), the values of x l and x u are updated as x l = x =0.944 (7) x u = x u =.47 (8) 4

5 Also note that the range of x l to x u has been shortened. optimum value of x is x 1 =1.58 (since f(x ) <f(x 1 )). At the end of iteration, the This can be continued until the optimum value is found subject to the convergence condition given earlier. Figure 5 shows the progress of the algorithm in subsequent iterations. At the end of iteration 8, the optimum value of x is given by x =1.447 and the maximum value of the function is f(x) = Resources: Figure 5: Progress of the Golden-section method 1. Steven Chapra and Raymond Canale, Numerical Methods for Engineers, Fourth Edition, McGraw-Hill, 00 (see Section 13.1, 13.3)

Chapter 7 One-Dimensional Search Methods

Chapter 7 One-Dimensional Search Methods Chapter 7 One-Dimensional Search Methods An Introduction to Optimization Spring, 2014 1 Wei-Ta Chu Golden Section Search! Determine the minimizer of a function over a closed interval, say. The only assumption

More information

Solutions of Equations in One Variable. Secant & Regula Falsi Methods

Solutions of Equations in One Variable. Secant & Regula Falsi Methods Solutions of Equations in One Variable Secant & Regula Falsi Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Introduction to Numerical Methods (Algorithm)

Introduction to Numerical Methods (Algorithm) Introduction to Numerical Methods (Algorithm) 1 2 Example: Find the internal rate of return (IRR) Consider an investor who pays CF 0 to buy a bond that will pay coupon interest CF 1 after one year and

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Penalty Functions. The Premise Quadratic Loss Problems and Solutions

Penalty Functions. The Premise Quadratic Loss Problems and Solutions Penalty Functions The Premise Quadratic Loss Problems and Solutions The Premise You may have noticed that the addition of constraints to an optimization problem has the effect of making it much more difficult.

More information

Finding Roots by "Closed" Methods

Finding Roots by Closed Methods Finding Roots by "Closed" Methods One general approach to finding roots is via so-called "closed" methods. Closed methods A closed method is one which starts with an interval, inside of which you know

More information

February 2 Math 2335 sec 51 Spring 2016

February 2 Math 2335 sec 51 Spring 2016 February 2 Math 2335 sec 51 Spring 2016 Section 3.1: Root Finding, Bisection Method Many problems in the sciences, business, manufacturing, etc. can be framed in the form: Given a function f (x), find

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

EGR 102 Introduction to Engineering Modeling. Lab 09B Recap Regression Analysis & Structured Programming

EGR 102 Introduction to Engineering Modeling. Lab 09B Recap Regression Analysis & Structured Programming EGR 102 Introduction to Engineering Modeling Lab 09B Recap Regression Analysis & Structured Programming EGR 102 - Fall 2018 1 Overview Data Manipulation find() built-in function Regression in MATLAB using

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

Solution of Equations

Solution of Equations Solution of Equations Outline Bisection Method Secant Method Regula Falsi Method Newton s Method Nonlinear Equations This module focuses on finding roots on nonlinear equations of the form f()=0. Due to

More information

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1 of 6 Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1. Which of the following is NOT an element of an optimization formulation? a. Objective function

More information

Feb. 4 Math 2335 sec 001 Spring 2014

Feb. 4 Math 2335 sec 001 Spring 2014 Feb. 4 Math 2335 sec 001 Spring 2014 Propagated Error in Function Evaluation Let f (x) be some differentiable function. Suppose x A is an approximation to x T, and we wish to determine the function value

More information

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 18 PERT

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 18 PERT Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 18 PERT (Refer Slide Time: 00:56) In the last class we completed the C P M critical path analysis

More information

CS227-Scientific Computing. Lecture 6: Nonlinear Equations

CS227-Scientific Computing. Lecture 6: Nonlinear Equations CS227-Scientific Computing Lecture 6: Nonlinear Equations A Financial Problem You invest $100 a month in an interest-bearing account. You make 60 deposits, and one month after the last deposit (5 years

More information

lecture 31: The Secant Method: Prototypical Quasi-Newton Method

lecture 31: The Secant Method: Prototypical Quasi-Newton Method 169 lecture 31: The Secant Method: Prototypical Quasi-Newton Method Newton s method is fast if one has a good initial guess x 0 Even then, it can be inconvenient and expensive to compute the derivatives

More information

Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd,

Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd, Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.35258 Improving the Robustness of Difference of Convex Algorithm in the Research

More information

The method of false position is also an Enclosure or bracketing method. For this method we will be able to remedy some of the minuses of bisection.

The method of false position is also an Enclosure or bracketing method. For this method we will be able to remedy some of the minuses of bisection. Section 2.2 The Method of False Position Features of BISECTION: Plusses: Easy to implement Almost idiot proof o If f(x) is continuous & changes sign on [a, b], then it is GUARANTEED to converge. Requires

More information

V(0.1) V( 0.5) 0.6 V(0.5) V( 0.5)

V(0.1) V( 0.5) 0.6 V(0.5) V( 0.5) In-class exams are closed book, no calculators, except for one 8.5"x11" page, written in any density (student may bring a magnifier). Students are bound by the University of Florida honor code. Exam papers

More information

Threshold Accepting for Credit Risk Assessment and Validation

Threshold Accepting for Credit Risk Assessment and Validation Threshold Accepting for Credit Risk Assessment and Validation M. Lyra 1 A. Onwunta P. Winker COMPSTAT 2010 August 24, 2010 1 Financial support from the EU Commission through COMISEF is gratefully acknowledged

More information

Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger

Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger Due Date: Friday, December 12th Instructions: In the final project you are to apply the numerical methods developed in the

More information

Decomposition Methods

Decomposition Methods Decomposition Methods separable problems, complicating variables primal decomposition dual decomposition complicating constraints general decomposition structures Prof. S. Boyd, EE364b, Stanford University

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it.

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it. Finding Roots by "Open" Methods The differences between "open" and "closed" methods The differences between "open" and "closed" methods are closed open ----------------- --------------------- uses a bounded

More information

Finding Zeros of Single- Variable, Real Func7ons. Gautam Wilkins University of California, San Diego

Finding Zeros of Single- Variable, Real Func7ons. Gautam Wilkins University of California, San Diego Finding Zeros of Single- Variable, Real Func7ons Gautam Wilkins University of California, San Diego General Problem - Given a single- variable, real- valued func7on, f, we would like to find a real number,

More information

Numerical Analysis Math 370 Spring 2009 MWF 11:30am - 12:25pm Fowler 110 c 2009 Ron Buckmire

Numerical Analysis Math 370 Spring 2009 MWF 11:30am - 12:25pm Fowler 110 c 2009 Ron Buckmire Numerical Analysis Math 37 Spring 9 MWF 11:3am - 1:pm Fowler 11 c 9 Ron Buckmire http://faculty.oxy.edu/ron/math/37/9/ Worksheet 9 SUMMARY Other Root-finding Methods (False Position, Newton s and Secant)

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015 Optimization for Chemical Engineers, 4G3 Written midterm, 23 February 2015 Kevin Dunn, kevin.dunn@mcmaster.ca McMaster University Note: No papers, other than this test and the answer booklet are allowed

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations

Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations Volume 29, N. 1, pp. 19 30, 2010 Copyright 2010 SBMAC ISSN 0101-8205 www.scielo.br/cam Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations MEHDI DEHGHAN*

More information

Approximate Composite Minimization: Convergence Rates and Examples

Approximate Composite Minimization: Convergence Rates and Examples ISMP 2018 - Bordeaux Approximate Composite Minimization: Convergence Rates and S. Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi MLO Lab, EPFL, Switzerland sebastian.stich@epfl.ch July 4, 2018

More information

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class Homework #4 CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts

More information

Interpolation. 1 What is interpolation? 2 Why are we interested in this?

Interpolation. 1 What is interpolation? 2 Why are we interested in this? Interpolation 1 What is interpolation? For a certain function f (x we know only the values y 1 = f (x 1,,y n = f (x n For a point x different from x 1,,x n we would then like to approximate f ( x using

More information

Budget Management In GSP (2018)

Budget Management In GSP (2018) Budget Management In GSP (2018) Yahoo! March 18, 2018 Miguel March 18, 2018 1 / 26 Today s Presentation: Budget Management Strategies in Repeated auctions, Balseiro, Kim, and Mahdian, WWW2017 Learning

More information

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE392o, Stanford University

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE392o, Stanford University Ellipsoid Method ellipsoid method convergence proof inequality constraints feasibility problems Prof. S. Boyd, EE392o, Stanford University Challenges in cutting-plane methods can be difficult to compute

More information

A New Hybrid Estimation Method for the Generalized Pareto Distribution

A New Hybrid Estimation Method for the Generalized Pareto Distribution A New Hybrid Estimation Method for the Generalized Pareto Distribution Chunlin Wang Department of Mathematics and Statistics University of Calgary May 18, 2011 A New Hybrid Estimation Method for the GPD

More information

The objectives of the producer

The objectives of the producer The objectives of the producer Laurent Simula October 19, 2017 Dr Laurent Simula (Institute) The objectives of the producer October 19, 2017 1 / 47 1 MINIMIZING COSTS Long-Run Cost Minimization Graphical

More information

Makinde, V. 1,. Akinboro, F.G 1., Okeyode, I.C. 1, Mustapha, A.O. 1., Coker, J.O. 2., and Adesina, O.S. 1.

Makinde, V. 1,. Akinboro, F.G 1., Okeyode, I.C. 1, Mustapha, A.O. 1., Coker, J.O. 2., and Adesina, O.S. 1. Implementation of the False Position (Regula Falsi) as a Computational Physics Method for the Determination of Roots of Non-Linear Equations Using Java Makinde, V. 1,. Akinboro, F.G 1., Okeyode, I.C. 1,

More information

69

69 Implementation of the False Position (Regula Falsi) as a Computational Physics Method for the Determination of Roots of Non-Linear Equations using Java 1.* Makinde, V., 1. Akinboro, F.G., 1. Okeyode, I.C.,

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Time and Cost Optimization Techniques in Construction Project Management

Time and Cost Optimization Techniques in Construction Project Management Time and Cost Optimization Techniques in Construction Project Management Mr.Bhushan V 1. Tatar and Prof.Rahul S.Patil 2 1. INTRODUCTION In the field of Construction the term project refers as a temporary

More information

MATH 104 Practice Problems for Exam 3

MATH 104 Practice Problems for Exam 3 MATH 14 Practice Problems for Exam 3 There are too many problems here for one exam, but they re good practice! For each of the following series, say whether it converges or diverges, and explain why. 1..

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

AIRCURRENTS: PORTFOLIO OPTIMIZATION FOR REINSURERS

AIRCURRENTS: PORTFOLIO OPTIMIZATION FOR REINSURERS MARCH 12 AIRCURRENTS: PORTFOLIO OPTIMIZATION FOR REINSURERS EDITOR S NOTE: A previous AIRCurrent explored portfolio optimization techniques for primary insurance companies. In this article, Dr. SiewMun

More information

Math Lab 5 Assignment

Math Lab 5 Assignment Math 340 - Lab 5 Assignment Dylan L. Renaud February 22nd, 2017 Introduction In this lab, we approximate the roots of various functions using the Bisection, Newton, Secant, and Regula Falsi methods. The

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

Technical analysis of selected chart patterns and the impact of macroeconomic indicators in the decision-making process on the foreign exchange market

Technical analysis of selected chart patterns and the impact of macroeconomic indicators in the decision-making process on the foreign exchange market Summary of the doctoral dissertation written under the guidance of prof. dr. hab. Włodzimierza Szkutnika Technical analysis of selected chart patterns and the impact of macroeconomic indicators in the

More information

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm Sanja Lazarova-Molnar, Graham Horton Otto-von-Guericke-Universität Magdeburg Abstract The paradigm of the proxel ("probability

More information

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions Optimality and Approximation Finite MDP: {S, A, R, p, γ}

More information

Axioma Research Paper No January, Multi-Portfolio Optimization and Fairness in Allocation of Trades

Axioma Research Paper No January, Multi-Portfolio Optimization and Fairness in Allocation of Trades Axioma Research Paper No. 013 January, 2009 Multi-Portfolio Optimization and Fairness in Allocation of Trades When trades from separately managed accounts are pooled for execution, the realized market-impact

More information

MATH 104 Practice Problems for Exam 3

MATH 104 Practice Problems for Exam 3 MATH 4 Practice Problems for Exam 3 There are too many problems here for one exam, but they re good practice! For each of the following series, say whether it converges or diverges, and explain why.. 2.

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

SAMPLE - NOT ACCURATE

SAMPLE - NOT ACCURATE Maximizing Your Social Security Benefits Your Personal Roadmap Your Order Order: #9999 Date: Need Help? Email: help@socialsecuritychoices.com Phone: (443)-990-1675 WHAT YOU LL FIND IN THIS GUIDE 1. Introduction:

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

(v 50) > v 75 for all v 100. (d) A bid of 0 gets a payoff of 0; a bid of 25 gets a payoff of at least 1 4

(v 50) > v 75 for all v 100. (d) A bid of 0 gets a payoff of 0; a bid of 25 gets a payoff of at least 1 4 Econ 85 Fall 29 Problem Set Solutions Professor: Dan Quint. Discrete Auctions with Continuous Types (a) Revenue equivalence does not hold: since types are continuous but bids are discrete, the bidder with

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Numerical Differentiation & Integration. Romberg Integration

Numerical Differentiation & Integration. Romberg Integration Numerical Differentiation & Integration Romberg Integration Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole,

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Appendix: Numerical Model

Appendix: Numerical Model Appendix to: Costs of Alternative Environmental Policy Instruments in the Presence of Industry Compensation Requirements A. Lans Bovenberg Lawrence H. Goulder Mark R. Jacobsen Appendix: Numerical Model

More information

Introduction to Reinforcement Learning. MAL Seminar

Introduction to Reinforcement Learning. MAL Seminar Introduction to Reinforcement Learning MAL Seminar 2014-2015 RL Background Learning by interacting with the environment Reward good behavior, punish bad behavior Trial & Error Combines ideas from psychology

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Reinforcement Learning Analysis, Grid World Applications

Reinforcement Learning Analysis, Grid World Applications Reinforcement Learning Analysis, Grid World Applications Kunal Sharma GTID: ksharma74, CS 4641 Machine Learning Abstract This paper explores two Markov decision process problems with varying state sizes.

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Principles of Financial Computing

Principles of Financial Computing Principles of Financial Computing Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University

More information

Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo

Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo Jenny A. Baglivo 2002. All rights reserved. Calculus and nonlinear programming (NLP): In nonlinear programming (NLP), either

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 21 Successive Shortest Path Problem In this lecture, we continue our discussion

More information

A Linear Programming Approach for Optimum Project Scheduling Taking Into Account Overhead Expenses and Tardiness Penalty Function

A Linear Programming Approach for Optimum Project Scheduling Taking Into Account Overhead Expenses and Tardiness Penalty Function A Linear Programming Approach for Optimum Project Scheduling Taking Into Account Overhead Expenses and Tardiness Penalty Function Mohammed Woyeso Geda, Industrial Engineering Department Ethiopian Institute

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

Public Good Provision: Lindahl Tax, Income Tax, Commodity Tax, and Poll Tax, A Simulation

Public Good Provision: Lindahl Tax, Income Tax, Commodity Tax, and Poll Tax, A Simulation 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Public Good Provision: Lindahl Tax, Income Tax, Commodity Tax, and Poll Tax,

More information

2 Maximizing pro ts when marginal costs are increasing

2 Maximizing pro ts when marginal costs are increasing BEE14 { Basic Mathematics for Economists BEE15 { Introduction to Mathematical Economics Week 1, Lecture 1, Notes: Optimization II 3/12/21 Dieter Balkenborg Department of Economics University of Exeter

More information

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory 1 Table of Contents Estimating Path Loss Exponent and Application with Log Normal Shadowing...2 Abstract...3 1Path Loss Models...4 1.1Free Space Path Loss Model...4 1.1.1Free Space Path Loss Equation:...4

More information

June 11, Dynamic Programming( Weighted Interval Scheduling)

June 11, Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) June 11, 2014 Problem Statement: 1 We have a resource and many people request to use the resource for periods of time (an interval of time) 2 Each interval

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

Regret Minimization and Correlated Equilibria

Regret Minimization and Correlated Equilibria Algorithmic Game heory Summer 2017, Week 4 EH Zürich Overview Regret Minimization and Correlated Equilibria Paolo Penna We have seen different type of equilibria and also considered the corresponding price

More information

Sample Size Calculations for Odds Ratio in presence of misclassification (SSCOR Version 1.8, September 2017)

Sample Size Calculations for Odds Ratio in presence of misclassification (SSCOR Version 1.8, September 2017) Sample Size Calculations for Odds Ratio in presence of misclassification (SSCOR Version 1.8, September 2017) 1. Introduction The program SSCOR available for Windows only calculates sample size requirements

More information

Classifying Market States with WARS

Classifying Market States with WARS Lixiang Shen and Francis E. H. Tay 2 Department of Mechanical and Production Engineering, National University of Singapore 0 Kent Ridge Crescent, Singapore 9260 { engp8633, 2 mpetayeh}@nus.edu.sg Abstract.

More information

Machine Learning (CSE 446): Learning as Minimizing Loss

Machine Learning (CSE 446): Learning as Minimizing Loss Machine Learning (CSE 446): Learning as Minimizing Loss oah Smith c 207 University of Washington nasmith@cs.washington.edu October 23, 207 / 2 Sorry! o office hour for me today. Wednesday is as usual.

More information

Segmenting the Middle Market: Retirement Risks and Solutions Phase I Report Update to 2010 Data

Segmenting the Middle Market: Retirement Risks and Solutions Phase I Report Update to 2010 Data Segmenting the Middle Market: RETIREMENT RISKS AND SOLUTIONS PHASE I UPDATE Segmenting the Middle Market: Retirement Risks and Solutions Phase I Report Update to 2010 Data Sponsored By Committee on Post-Retirement

More information

TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 152 ENGINEERING SYSTEMS Spring Lesson 16 Introduction to Game Theory

TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 152 ENGINEERING SYSTEMS Spring Lesson 16 Introduction to Game Theory TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 52 ENGINEERING SYSTEMS Spring 20 Introduction: Lesson 6 Introduction to Game Theory We will look at the basic ideas of game theory.

More information

Online Shopping Intermediaries: The Strategic Design of Search Environments

Online Shopping Intermediaries: The Strategic Design of Search Environments Online Supplemental Appendix to Online Shopping Intermediaries: The Strategic Design of Search Environments Anthony Dukes University of Southern California Lin Liu University of Central Florida February

More information

Course title: Corporate Finance Course code: PPM 122 No. of credits: 3 L-T-P: Learning hours: 42

Course title: Corporate Finance Course code: PPM 122 No. of credits: 3 L-T-P: Learning hours: 42 Course title: Corporate Finance Course code: PPM 122 No. of credits: 3 L-T-P: 31-11-00 Learning hours: 42 Pre-requisite course code and title (if any): NA Department: Business Sustainability Course coordinator:

More information

Identifying Market Bottoms: IBD Follow-Through Days

Identifying Market Bottoms: IBD Follow-Through Days Issue 39 Wednesday, June 13, 2012 Identifying Market Bottoms: IBD Follow-Through Days Erik Skyba, CMT Senior Quantitative Analyst TSLabs@TradeStation.com Features Studies/Files Included: Focus: Technical

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Stretching the match: Unintended effects on plan contributions

Stretching the match: Unintended effects on plan contributions Stretching the match: Unintended effects on plan contributions Vanguard Research December 2018 Galina Young, Jean A. Young One strategy proposed to increase plan contributions, in plans not opting for

More information

arxiv: v1 [q-fin.pr] 5 Mar 2016

arxiv: v1 [q-fin.pr] 5 Mar 2016 On Mortgages and Refinancing Khizar Qureshi, Cheng Su July 3, 2018 arxiv:1605.04941v1 [q-fin.pr] 5 Mar 2016 Abstract In general, homeowners refinance in response to a decrease in interest rates, as their

More information

Random Search Techniques for Optimal Bidding in Auction Markets

Random Search Techniques for Optimal Bidding in Auction Markets Random Search Techniques for Optimal Bidding in Auction Markets Shahram Tabandeh and Hannah Michalska Abstract Evolutionary algorithms based on stochastic programming are proposed for learning of the optimum

More information

Yale ICF Working Paper No First Draft: February 21, 1992 This Draft: June 29, Safety First Portfolio Insurance

Yale ICF Working Paper No First Draft: February 21, 1992 This Draft: June 29, Safety First Portfolio Insurance Yale ICF Working Paper No. 08 11 First Draft: February 21, 1992 This Draft: June 29, 1992 Safety First Portfolio Insurance William N. Goetzmann, International Center for Finance, Yale School of Management,

More information

Cost Slope Analysis 1

Cost Slope Analysis 1 Cost Slope Analysis 1 Running head: Cost Slope Analysis Cost Slope Analysis Technique Summary Su-Cheng Wu Cost Slope Analysis 2 Abstract: Cost Slope Analysis considers the following: direct, indirect cost,

More information

Energy Efficiency s Role in Business Investment

Energy Efficiency s Role in Business Investment Energy Efficiency s Role in Business Investment Christopher Russell, Energy Pathfinder Management Consulting ABSTRACT Rates of return are used to measure the investment performance of most assets, including

More information

Mt4 High Probability Forex Trading Method

Mt4 High Probability Forex Trading Method We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with mt4 high probability

More information

1. Introduction 2. Model Formulation 3. Solution Approach 4. Case Study and Findings 5. On-going Research

1. Introduction 2. Model Formulation 3. Solution Approach 4. Case Study and Findings 5. On-going Research 1. Introduction 2. Model Formulation 3. Solution Approach 4. Case Study and Findings 5. On-going Research Natural disasters have caused: Huge amount of economical loss Fatal injuries Through effective

More information

Slides credited from Hsu-Chun Hsiao

Slides credited from Hsu-Chun Hsiao Slides credited from Hsu-Chun Hsiao Greedy Algorithms Greedy #1: Activity-Selection / Interval Scheduling Greedy #2: Coin Changing Greedy #3: Fractional Knapsack Problem Greedy #4: Breakpoint Selection

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Large-Scale SVM Optimization: Taking a Machine Learning Perspective Large-Scale SVM Optimization: Taking a Machine Learning Perspective Shai Shalev-Shwartz Toyota Technological Institute at Chicago Joint work with Nati Srebro Talk at NEC Labs, Princeton, August, 2008 Shai

More information

Decision Trees An Early Classifier

Decision Trees An Early Classifier An Early Classifier Jason Corso SUNY at Buffalo January 19, 2012 J. Corso (SUNY at Buffalo) Trees January 19, 2012 1 / 33 Introduction to Non-Metric Methods Introduction to Non-Metric Methods We cover

More information