Reinforcement Learning

Size: px
Start display at page:

Download "Reinforcement Learning"

Transcription

1 Reinforcement Learning MDP March May, 2013

2 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical Learning Rewards can be multiple: Multi Objective RL Rewards can be unknown: Inverse RL Rewards can be intrinsic: Intrinsically Motivated RL Information can be reused: Transfer learning There can be many learning agents: Stochastic/Markov Games

3 Visual States in a Maze

4 POMDP definition S, A, O, P, Ω, R, γ, µ O is the set of observation Ω(o s, a) is the conditional probability of getting observation o while reaching state s with action a Value function: V π (b) = s S b(s)v π (s) Bayesian belief propagation: b (s ) = Ω(o s, a) s S P(s s, a)b(s) s S Ω(o s, a) s S P(s s, a)b(s)

5 Value of Information capture the value of information Question: We don t know where the larger reward is should we go and read the map? Answer: it depends on: The difference between the rewards The cost of reading the map The accuracy of the map take all such considerations into account and provide an optimal policy

6 In MDPs the state contains all relevant information This aspect is covered in if the belief state is a sufficient statistic of the state This also implies Markovianity of

7 What are? Initial belief: b 0 (s) = Pr(S = s) Belief state updating b (s ) = Pr(s o, a, b) Observation probabilities: Ω(o s, a) Transition probabilities: P(s s, a) Rewards: R(s, a)

8 Role of Observations 1D belief space for a 2 state POMDP with 3 possible observations

9 POMDP is a Continuous Space Belief MDP B = infinite set of belief states A = finite set of actions Reward function: ρ(b, a) = s S b(s)r(s, a) Transition function: P(b b, a) = o O Pr(b b, a, o)pr(o b, a) where { Pr(b b, a, o) = 1 if belief update yields b given b, a, o 0 otherwise

10 A Way to Simplify: Policy Tree With one step remaining, agent selects an action With two steps, takes an action, makes an observation and then it takes a final action General t step policy is a tree

11 Value Function for Policy Tree If p is a one step policy tree, then the value of executing that action in state s is V p(s) = R(s, a(p)) More generally, if p is a t step policy tree then (in reality) V p(s) = R(s, a(p)) + γ P(s s, a(p)) Ω(o t s, a(p))v ot (p)(s ) s S o t O This V p(s) can be thought as a vector associated with the policy tree p since its dimension is the same as the number of states. We often use the notation α p to refer to this vector α p = V p(s 1 ), V p(s 2 ),..., V p(s n)

12 Value Function over Belief Space As the exact world cannot be observed, the agent must compute an expectation over world state of executing policy tree p for belief state b V p (b) = s S b(s)v p (s) = b α p To construct an optimal t step policy, we must maximize over the set of all trees P V p (b) = max p P b α p As V p (b) is linear in b for each p P, the value V t (b) is the upper surface of those functions i.e., V t (b) is piecewise linear and convex

13 Piecewise Linear Value Function Let V p1, V p2 and V p3 be the value functions induced by policy trees p 1, p 2 and p 3. Each of these value functions are of the form V pi (b) = b α pi which is a multi linear function of b. Thus, each value function can be represented as a line, plane, or hyperplane, depending on the number of states, and the optimal t step value V t (b) = max p i P b α p i

14 The Familiar Optimal t step Value Function

15 Optimal t step Policy The optimal t policy is determined by projecting the optimal value function back down onto the belief space The projection of the optimal t step value function yields a partition into regions within each of which there is a single policy tree p such that the value is maximal of the entire region The optimal action in that region a(p) is the action in the root of the policy tree p

16 POMDP APproximations PBVI: Point based value iteration Q MDPs AMDPs: Augmented MDPs Monte Carlo MDPs

17 Abstraction in Learning and Planning General problem in AI: Semantics of abstract knowledge Reduction of complexity by exploiting task structure How can different levels of abstraction be related? spatial: states temporal: time scales Environmentally implied or repeated action trajectories Options are also called: Skills, macros, temporally abstract actions In other contexts also: Behavioral primitives, behaviors, schemata

18 Options Sequences of actions that follow a common theme but are not of fixed lengths o = I, π, β call and return optional I S set of starting states π : S A [0, 1] probabilistic policy to be follow during o β : S [0, 1] probability to terminate in each state Example: Docking of a robot I : all states in which charges is in sight π: approach charger if recharging necessary bit is set β:: terminate when docked or charger not visible

19 Exploiting the Structure of the Environment: Rooms Example 4 rooms 4 hallways 4 unreliable primitive actions: up, left, right, down; fail 33% of the time 8 multi step options (to each room s 2 hallways) Given goal location plan shortest route All rewards 0 γ = 0.9

20 Options and Semi Markov Decision Processes (SMDPs) State discrete time, Homogeneous discount Continuous time, Discrete events, Interval dependent discount Discrete time, Overlaid discrete events, Interval dependent discount

21 Value Functions for Options Value functions for options can be defined similar to the MDP case V π (s) = E[r t+1 + γr t π, s, t] Q π (s, o) = E[r t+1 + γr t o, π, s, t] Consider policies π Π(O) that can choose only among options V O(s) = max π Π(O) V π (s) Q O(s, o) = max π Π(O) Qπ (s, o) Optimal w.r.t. the Bellman criterion for O

22 Consequences of choosing an option Reward part R(s, o) = E[r 1 +γr 2 + +γ k 1 r k s 0 = s, o taken in s 0, for k Next state part P(s s, o) = E[γ k δ sk s s 0 = s, o taken in s 0, for k steps]

23 Synchronous Value Iteration Generalized to Options Initialize Iterate V k+1 (s) max o O ( V 0 (s) 0, s S R(s, o) + s S P(s s, o)v k (s ) ), s S Converges to the optimal value function, given the options lim k V k = V O Once VO is computed, π O can be determined If O = A we are back to the conventional value iteration If A O, then V O = V

24 Rooms Example

25 If Goal Subgoal: Both Primitive Actions and Options

26 Benefits of Options Transfer Solutions to sub tasks can be saved and reused Domain knowledge can be provided as options and subgoals Potentially much faster learning and planning By representing action at an appropriate temporal scale Models of options are a form of knowledge representation Expressive Clear Suitable for learning and planning Much more to learn than just one policy, one set of values Framework for constructivism For finding models of the world that are useful for rapid planning and learning

27 Disadvantages of hierarchical RL Which options are useful? Suboptimal choice of options implies suboptimal behavior Option typically become rigid when high level planning sets in Negative transfer: Options learned for one task may be inappropriate for a relatively similar task Algorithm s complexity increase... no free lunches!

28 Tasks and Subgoals An option is the solution to a subtask E.g., in the rooms example: treat hallways as subgoals G, g Subgoal G S states that form a subgoal g : G R subgoal values Value function for option o V o g (s) = E[r 1 +γr 2 + +γ k 1 r k +g(s k ) s 0 = s, o, s k G] Vg (s) = max V o o g (s) Learning: intra option, off policy

29 Intra option Learning Learning with options does not exclude learning of options SMDP learning: execute option to termination then update only the option taken Intra option learning: after each primitive action, update all the options that could have taken that action Proven to converge to correct values under the assumptions of 1 step Q learning

30 Single-objective vs Multi-objective MDPs MOMDPs In some cases agents may have multiple objectives (i.e., reward functions) According to the importance given to the objectives the optimal policy may change The goal is to find the policies on the Pareto frontier each policy has a performance value for each objective if a policy performs worse than another for each objective, it is said to be dominated the Pareto frontier is the set of non dominated solutions The solution is a set of (eventually infinite) policies

31 MDP without Reward Intrinsically motivated and Inverse Reinforcement learning It may happen that the reward function is not available This framework is interesting in two scenarios: Intrinsically motivated learning Is that kind of learning that allows puppies and babies to autonomously develop skills The reward signal is not extrinsic, but is produced by the learning algorithm itself according to the environmental characteristics Inverse reinforcement learning In many real-world applications, we do not want an agent to learn from scratch, performing random exploring actions By observing the behavior of an expert, we want to infer which is the reward function she is optimizing It is related to imitation learning

32 Learning from Scratch vs Reuse of Knowledge Usually, RL algorithms are designed to learn from scratch Animals and human beings never learn from scratch New tasks can be solved by reusing knowledge learned when solving similar tasks Transfer Learning What kind of knowledge can be transferred? value functions policies experience samples Problems when two tasks are similar? how to prevent negative transfer?

33 Stationary vs Non-stationary MDPs Multi-agent learning In many real world problems, transition dynamics and the reward function may be time dependent. In the cyclostationary case, time can be added to the state space What happens in presence of other agents? if other agents policies are stationary, we can ignore them if other agents are learning, things get interesting... multi-agent learning is much more complex than single-agent learning strictly related to Game Theory optimal policy is replaced by best response and equilibrium policy competitive agents cooperative agents

The Problem of Temporal Abstraction

The Problem of Temporal Abstraction The Problem of Temporal Abstraction How do we connect the high level to the low-level? " the human level to the physical level? " the decide level to the action level? MDPs are great, search is great,

More information

Temporal Abstraction in RL

Temporal Abstraction in RL Temporal Abstraction in RL How can an agent represent stochastic, closed-loop, temporally-extended courses of action? How can it act, learn, and plan using such representations? HAMs (Parr & Russell 1998;

More information

Temporal Abstraction in RL. Outline. Example. Markov Decision Processes (MDPs) ! Options

Temporal Abstraction in RL. Outline. Example. Markov Decision Processes (MDPs) ! Options Temporal Abstraction in RL Outline How can an agent represent stochastic, closed-loop, temporally-extended courses of action? How can it act, learn, and plan using such representations?! HAMs (Parr & Russell

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

TDT4171 Artificial Intelligence Methods

TDT4171 Artificial Intelligence Methods TDT47 Artificial Intelligence Methods Lecture 7 Making Complex Decisions Norwegian University of Science and Technology Helge Langseth IT-VEST 0 helgel@idi.ntnu.no TDT47 Artificial Intelligence Methods

More information

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Outline Sequential Decision Processes Markov chains Highlight Markov property Discounted rewards Value iteration Markov

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Markov Decision Models Manfred Huber 2015 1 Markov Decision Process Models Markov models represent the behavior of a random process, including its internal state and the externally

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Hierarchical Reinforcement Learning Action hierarchy, hierarchical RL, semi-mdp Vien Ngo Marc Toussaint University of Stuttgart Outline Hierarchical reinforcement learning Learning

More information

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 12: MDP1 Victor R. Lesser CMPSCI 683 Fall 2010 Biased Random GSAT - WalkSat Notice no random restart 2 Today s lecture Search where there is Uncertainty in Operator Outcome --Sequential Decision

More information

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based Search Reinforcement Learning and Simulation-Based Search David Silver Outline 1 Reinforcement Learning 2 3 Planning Under Uncertainty Reinforcement Learning Markov Decision Process Definition A Markov Decision

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

CS885 Reinforcement Learning Lecture 3b: May 9, 2018

CS885 Reinforcement Learning Lecture 3b: May 9, 2018 CS885 Reinforcement Learning Lecture 3b: May 9, 2018 Intro to Reinforcement Learning [SutBar] Sec. 5.1-5.3, 6.1-6.3, 6.5, [Sze] Sec. 3.1, 4.3, [SigBuf] Sec. 2.1-2.5, [RusNor] Sec. 21.1-21.3, CS885 Spring

More information

CPS 270: Artificial Intelligence Markov decision processes, POMDPs

CPS 270: Artificial Intelligence  Markov decision processes, POMDPs CPS 270: Artificial Intelligence http://www.cs.duke.edu/courses/fall08/cps270/ Markov decision processes, POMDPs Instructor: Vincent Conitzer Warmup: a Markov process with rewards We derive some reward

More information

Reinforcement learning and Markov Decision Processes (MDPs) (B) Avrim Blum

Reinforcement learning and Markov Decision Processes (MDPs) (B) Avrim Blum Reinforcement learning and Markov Decision Processes (MDPs) 15-859(B) Avrim Blum RL and MDPs General scenario: We are an agent in some state. Have observations, perform actions, get rewards. (See lights,

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N Markov Decision Processes: Making Decision in the Presence of Uncertainty (some of) R&N 16.1-16.6 R&N 17.1-17.4 Different Aspects of Machine Learning Supervised learning Classification - concept learning

More information

Intro to Reinforcement Learning. Part 3: Core Theory

Intro to Reinforcement Learning. Part 3: Core Theory Intro to Reinforcement Learning Part 3: Core Theory Interactive Example: You are the algorithm! Finite Markov decision processes (finite MDPs) dynamics p p p Experience: S 0 A 0 R 1 S 1 A 1 R 2 S 2 A 2

More information

2D5362 Machine Learning

2D5362 Machine Learning 2D5362 Machine Learning Reinforcement Learning MIT GALib Available at http://lancet.mit.edu/ga/ download galib245.tar.gz gunzip galib245.tar.gz tar xvf galib245.tar cd galib245 make or access my files

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

Introduction to Reinforcement Learning. MAL Seminar

Introduction to Reinforcement Learning. MAL Seminar Introduction to Reinforcement Learning MAL Seminar 2014-2015 RL Background Learning by interacting with the environment Reward good behavior, punish bad behavior Trial & Error Combines ideas from psychology

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Reinforcement Learning. Monte Carlo and Temporal Difference Learning

Reinforcement Learning. Monte Carlo and Temporal Difference Learning Reinforcement Learning Monte Carlo and Temporal Difference Learning Manfred Huber 2014 1 Monte Carlo Methods Dynamic Programming Requires complete knowledge of the MDP Spends equal time on each part of

More information

17 MAKING COMPLEX DECISIONS

17 MAKING COMPLEX DECISIONS 267 17 MAKING COMPLEX DECISIONS The agent s utility now depends on a sequence of decisions In the following 4 3grid environment the agent makes a decision to move (U, R, D, L) at each time step When the

More information

Between MDPs and semi-mdps: A framework for temporal abstraction in reinforcement learning

Between MDPs and semi-mdps: A framework for temporal abstraction in reinforcement learning Artificial Intelligence 112 (1999) 181 211 Between MDPs and semi-mdps: A framework for temporal abstraction in reinforcement learning Richard S. Sutton a,, Doina Precup b, Satinder Singh a a AT&T Labs.-Research,

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

Reinforcement Learning Lectures 4 and 5

Reinforcement Learning Lectures 4 and 5 Reinforcement Learning Lectures 4 and 5 Gillian Hayes 18th January 2007 Reinforcement Learning 1 Framework Rewards, Returns Environment Dynamics Components of a Problem Values and Action Values, V and

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 9: MDPs 9/22/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 2 Grid World The agent lives in

More information

Lecture 4: Model-Free Prediction

Lecture 4: Model-Free Prediction Lecture 4: Model-Free Prediction David Silver Outline 1 Introduction 2 Monte-Carlo Learning 3 Temporal-Difference Learning 4 TD(λ) Introduction Model-Free Reinforcement Learning Last lecture: Planning

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

MDPs: Bellman Equations, Value Iteration

MDPs: Bellman Equations, Value Iteration MDPs: Bellman Equations, Value Iteration Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) Adapted from slides kindly shared by Stuart Russell Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 1 Appreciations

More information

POMDPs: Partially Observable Markov Decision Processes Advanced AI

POMDPs: Partially Observable Markov Decision Processes Advanced AI POMDPs: Partially Observable Markov Decision Processes Advanced AI Wolfram Burgard Types of Planning Problems Classical Planning State observable Action Model Deterministic, accurate MDPs observable stochastic

More information

Decision Theory: Value Iteration

Decision Theory: Value Iteration Decision Theory: Value Iteration CPSC 322 Decision Theory 4 Textbook 9.5 Decision Theory: Value Iteration CPSC 322 Decision Theory 4, Slide 1 Lecture Overview 1 Recap 2 Policies 3 Value Iteration Decision

More information

CS 461: Machine Learning Lecture 8

CS 461: Machine Learning Lecture 8 CS 461: Machine Learning Lecture 8 Dr. Kiri Wagstaff kiri.wagstaff@calstatela.edu 2/23/08 CS 461, Winter 2008 1 Plan for Today Review Clustering Reinforcement Learning How different from supervised, unsupervised?

More information

Causal Graph Based Decomposition of Factored MDPs

Causal Graph Based Decomposition of Factored MDPs Journal of Machine Learning Research 7 (2006) 2259-2301 Submitted 10/05; Revised 7/06; Published 11/06 Causal Graph Based Decomposition of Factored MDPs Anders Jonsson Departament de Tecnologia Universitat

More information

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning)

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) 1 / 24 Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) Julie Nutini MLRG - Winter Term 2 January 24 th, 2017 2 / 24 Monte Carlo Methods Monte Carlo (MC) methods are learning methods, used

More information

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions Optimality and Approximation Finite MDP: {S, A, R, p, γ}

More information

Overview: Representation Techniques

Overview: Representation Techniques 1 Overview: Representation Techniques Week 6 Representations for classical planning problems deterministic environment; complete information Week 7 Logic programs for problem representations including

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 247 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action A will have possible outcome states Result

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532l Lecture 10 Stochastic Games and Bayesian Games CPSC 532l Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games 4 Analyzing Bayesian

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

CS 360: Advanced Artificial Intelligence Class #16: Reinforcement Learning

CS 360: Advanced Artificial Intelligence Class #16: Reinforcement Learning CS 360: Advanced Artificial Intelligence Class #16: Reinforcement Learning Daniel M. Gaines Note: content for slides adapted from Sutton and Barto [1998] Introduction Animals learn through interaction

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics ECON5200 - Fall 2014 Introduction What you have done: - consumers maximize their utility subject to budget constraints and firms maximize their profits given technology and market

More information

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration COS402- Artificial Intelligence Fall 2015 Lecture 17: MDP: Value Iteration and Policy Iteration Outline The Bellman equation and Bellman update Contraction Value iteration Policy iteration The Bellman

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Monte Carlo Methods Heiko Zimmermann 15.05.2017 1 Monte Carlo Monte Carlo policy evaluation First visit policy evaluation Estimating q values On policy methods Off policy methods

More information

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig]

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig] Basic Framework [This lecture adapted from Sutton & Barto and Russell & Norvig] About this class Markov Decision Processes The Bellman Equation Dynamic Programming for finding value functions and optimal

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Ryan P. Adams COS 324 Elements of Machine Learning Princeton University We now turn to a new aspect of machine learning, in which agents take actions and become active in their

More information

Intra-Option Learning about Temporally Abstract Actions

Intra-Option Learning about Temporally Abstract Actions Intra-Option Learning about Temporally Abstract Actions Richard S. Sutton Department of Computer Science University of Massachusetts Amherst, MA 01003-4610 rich@cs.umass.edu Doina Precup Department of

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532L Lecture 10 Stochastic Games and Bayesian Games CPSC 532L Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games Stochastic Games

More information

Inverse reinforcement learning from summary data

Inverse reinforcement learning from summary data Inverse reinforcement learning from summary data Antti Kangasrääsiö, Samuel Kaski Aalto University, Finland ECML PKDD 2018 journal track Published in Machine Learning (2018), 107:1517 1535 September 12,

More information

Markov Decision Processes. Lirong Xia

Markov Decision Processes. Lirong Xia Markov Decision Processes Lirong Xia Today ØMarkov decision processes search with uncertain moves and infinite space ØComputing optimal policy value iteration policy iteration 2 Grid World Ø The agent

More information

Markov Decision Processes. CS 486/686: Introduction to Artificial Intelligence

Markov Decision Processes. CS 486/686: Introduction to Artificial Intelligence Markov Decision Processes CS 486/686: Introduction to Artificial Intelligence 1 Outline Markov Chains Discounted Rewards Markov Decision Processes (MDP) - Value Iteration - Policy Iteration 2 Markov Chains

More information

Adaptive Experiments for Policy Choice. March 8, 2019

Adaptive Experiments for Policy Choice. March 8, 2019 Adaptive Experiments for Policy Choice Maximilian Kasy Anja Sautmann March 8, 2019 Introduction The goal of many experiments is to inform policy choices: 1. Job search assistance for refugees: Treatments:

More information

A selection of MAS learning techniques based on RL

A selection of MAS learning techniques based on RL A selection of MAS learning techniques based on RL Ann Nowé 14/11/12 Herhaling titel van presentatie 1 Content Single stage setting Common interest (Claus & Boutilier, Kapetanakis&Kudenko) Conflicting

More information

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints David Laibson 9/11/2014 Outline: 1. Precautionary savings motives 2. Liquidity constraints 3. Application: Numerical solution

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

Monte-Carlo Planning: Basic Principles and Recent Progress

Monte-Carlo Planning: Basic Principles and Recent Progress Monte-Carlo Planning: Basic Principles and Recent Progress Alan Fern School of EECS Oregon State University Outline Preliminaries: Markov Decision Processes What is Monte-Carlo Planning? Uniform Monte-Carlo

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

Motivation: disadvantages of MC methods MC does not work for scenarios without termination It updates only at the end of the episode (sometimes - it i

Motivation: disadvantages of MC methods MC does not work for scenarios without termination It updates only at the end of the episode (sometimes - it i Temporal-Di erence Learning Taras Kucherenko, Joonatan Manttari KTH tarask@kth.se manttari@kth.se March 7, 2017 Taras Kucherenko, Joonatan Manttari (KTH) TD-Learning March 7, 2017 1 / 68 Motivation: disadvantages

More information

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Spring 2009 Main question: How much are patents worth? Answering this question is important, because it helps

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 253 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action a will have possible outcome states Result(a)

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma

Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma Recap Last class (September 20, 2016) Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma Today (October 13, 2016) Finitely

More information

INVERSE REWARD DESIGN

INVERSE REWARD DESIGN INVERSE REWARD DESIGN Dylan Hadfield-Menell, Smith Milli, Pieter Abbeel, Stuart Russell, Anca Dragan University of California, Berkeley Slides by Anthony Chen Inverse Reinforcement Learning (Review) Inverse

More information

Chapter 3. Dynamic discrete games and auctions: an introduction

Chapter 3. Dynamic discrete games and auctions: an introduction Chapter 3. Dynamic discrete games and auctions: an introduction Joan Llull Structural Micro. IDEA PhD Program I. Dynamic Discrete Games with Imperfect Information A. Motivating example: firm entry and

More information

Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks

Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks Hussein Abouzeid Department of Electrical Computer and Systems Engineering Rensselaer Polytechnic Institute abouzeid@ecse.rpi.edu

More information

Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs. SS223B-Empirical IO

Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs. SS223B-Empirical IO Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs SS223B-Empirical IO Motivation There have been substantial recent developments in the empirical literature on

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Lecture 18: Markov Decision Processes Yiling Chen and David Parkes Lesson Plan Markov decision processes Policies and Value functions Solving: average reward,

More information

PAULI MURTO, ANDREY ZHUKOV

PAULI MURTO, ANDREY ZHUKOV GAME THEORY SOLUTION SET 1 WINTER 018 PAULI MURTO, ANDREY ZHUKOV Introduction For suggested solution to problem 4, last year s suggested solutions by Tsz-Ning Wong were used who I think used suggested

More information

MDP Algorithms. Thomas Keller. June 20, University of Basel

MDP Algorithms. Thomas Keller. June 20, University of Basel MDP Algorithms Thomas Keller University of Basel June 20, 208 Outline of this lecture Markov decision processes Planning via determinization Monte-Carlo methods Monte-Carlo Tree Search Heuristic Search

More information

Compositional Planning Using Optimal Option Models

Compositional Planning Using Optimal Option Models David Silver d.silver@cs.ucl.ac.uk Kamil Ciosek k.ciosek@cs.ucl.ac.uk Department of Computer Science, CSML, University College London, Gower Street, London WC1E 6BT. Abstract In this paper we introduce

More information

CS221 / Spring 2018 / Sadigh. Lecture 7: MDPs I

CS221 / Spring 2018 / Sadigh. Lecture 7: MDPs I CS221 / Spring 2018 / Sadigh Lecture 7: MDPs I cs221.stanford.edu/q Question How would you get to Mountain View on Friday night in the least amount of time? bike drive Caltrain Uber/Lyft fly CS221 / Spring

More information

Lecture 7: MDPs I. Question. Course plan. So far: search problems. Uncertainty in the real world

Lecture 7: MDPs I. Question. Course plan. So far: search problems. Uncertainty in the real world Lecture 7: MDPs I cs221.stanford.edu/q Question How would you get to Mountain View on Friday night in the least amount of time? bike drive Caltrain Uber/Lyft fly CS221 / Spring 2018 / Sadigh CS221 / Spring

More information

Pricing Problems under the Markov Chain Choice Model

Pricing Problems under the Markov Chain Choice Model Pricing Problems under the Markov Chain Choice Model James Dong School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853, USA jd748@cornell.edu A. Serdar Simsek

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Reinforcement Learning 04 - Monte Carlo. Elena, Xi

Reinforcement Learning 04 - Monte Carlo. Elena, Xi Reinforcement Learning 04 - Monte Carlo Elena, Xi Previous lecture 2 Markov Decision Processes Markov decision processes formally describe an environment for reinforcement learning where the environment

More information

Long-Term Values in MDPs, Corecursively

Long-Term Values in MDPs, Corecursively Long-Term Values in MDPs, Corecursively Applied Category Theory, 15-16 March 2018, NIST Helle Hvid Hansen Delft University of Technology Helle Hvid Hansen (TU Delft) MDPs, Corecursively NIST, 15/Mar/2018

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger

Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger Due Date: Friday, December 12th Instructions: In the final project you are to apply the numerical methods developed in the

More information

SAQ KONTROLL AB Box 49306, STOCKHOLM, Sweden Tel: ; Fax:

SAQ KONTROLL AB Box 49306, STOCKHOLM, Sweden Tel: ; Fax: ProSINTAP - A Probabilistic Program for Safety Evaluation Peter Dillström SAQ / SINTAP / 09 SAQ KONTROLL AB Box 49306, 100 29 STOCKHOLM, Sweden Tel: +46 8 617 40 00; Fax: +46 8 651 70 43 June 1999 Page

More information

Multi-step Bootstrapping

Multi-step Bootstrapping Multi-step Bootstrapping Jennifer She Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto February 7, 2017 J February 7, 2017 1 / 29 Multi-step Bootstrapping Generalization

More information

Sequential Coalition Formation for Uncertain Environments

Sequential Coalition Formation for Uncertain Environments Sequential Coalition Formation for Uncertain Environments Hosam Hanna Computer Sciences Department GREYC - University of Caen 14032 Caen - France hanna@info.unicaen.fr Abstract In several applications,

More information