COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3)

Size: px
Start display at page:

Download "COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3)"

Transcription

1 COMP331/557 Chapter 6: Optimisation in Finance: Cash-Flow (Cornuejols & Tütüncü, Chapter 3) 159

2 Cash-Flow Management Problem A company has the following net cash flow requirements (in 1000 s of ): Month Jan Feb Mar Apr May Jun Net cash flow E.g.: In January we have to pay 150k and in March we get 200k. Initially we have no cash but the following possibilities to borrow/invest money: i ii iii a line of credit of up to 100k at an interest rate of 1% per month; in any one of the first three months, it can issue 90-day commercial paper bearing a total interest of 2% for the three-month period; excess funds can be invested at an interest rate of 0.3% per month. Task: We want to maximise the companies wealth in June, while fulfilling all payments. 160

3 Cash-Flow Management Problem Modelling as LP Decision Variables v.. wealth in June x i.. amount drawn from credit line in month i y i.. amount of commercial paper issued in month i z i.. excess funds in month i LP formulation: max v s.t. x 1 + y 1 z 1 = 150 x 2 + y x z 1 z 2 = 100 x 3 + y x z 2 z 3 = 200 x y x z 3 z 4 = 200 x y x z 4 z 5 = y x z 5 v = 300 x i 100 i x i, y i, z i 0 i 161

4 Cash-Flow Management Problem Modelling as LP cashflow.lp Maximize wealth: v Subject To Jan: x1 + y1 - z1 = 150 Feb: x2 + y x z1 - z2 = 100 Mar: x3 + y x z2 - z3 = -200 Apr: x y x z3 - z4 = 200 May: x y x z4 - z5 = -50 Jun: y x z5 - v = -300 Bounds 0 <= x1 <= <= x2 <= <= x3 <= <= x4 <= <= x5 <= 100 -Inf <= v <= Inf End 162

5 Cash-Flow Management Problem Modelling as LP Gurobi Output Solved in 5 iterations and 0.00 seconds Optimal objective e+01 v x1 0.0 y z1 0.0 x2 0.0 y z2 0.0 x3 0.0 y z x4 0.0 z4 0.0 x z5 0.0 Obj: Optimal Investment Strategy: Jan: Issue commercial paper for 150k. Feb: Issue commercial paper for 100k. Mar: Issue paper for 152k and invest 352k. Apr: Take excess to pay outgoing cashflow. May: Take a credit of 52k Jun: wealth 92k 163

6 The Fundamental Theorem of Asset Pricing (Cornuejols & Tütüncü, Chapter 4) 164

7 Derivative Securities Derivative Securities also known as contingent claims price depend on the value of another underlying security e.g. European call options European call option Gives the holder the right to buy (or sell, put option ) prescribed underlying security at expiration date (also known as maturity date) for prescribed amount (called strike price). 165

8 Example Payof 10 0 Payoff from option struck at Share of XYZ stock currently priced at $40. A month from today, we expect Figure 4.1 the Piecewise share linear price payoffto function either for adouble call optionor halve with equal probability. Consider a European call option on XYZ with strike price $50, which will expire in a month. Assume that interest rates for cash (borrowing or lending) are zero. What would be a fair price for the option? 4.1 The fundamental theorem of asset pricing European call option payoff function Share price of XYZ Figure 4.1 Piecewise linear payoff function for a call option r the share price of XYZ stock, which is currently valued at $40. A day, we expect the share price of XYZ to either double or halve, with lities. We also consider a European call option on XYZ with a strike hich will expire a month from today. The payoff function for the call Share price of XYZ We consider the share price of XYZ stock, which is currently valued at $40. A month from today, we expect the share price of XYZ to either double or halve, with equal probabilities. We also consider a European call option on XYZ with a strike price of $50 which will expire a month from today. The payoff function for the call is shown in Figure 4.1. We assume that interest rates for cash borrowing or lending are zero and that any amount of XYZ shares can be bought or sold with no commission: 80 = S 1 (u) S 0 = $40 20 = S 1 (d) (80 50) + = 30 and C 0 =? (20 50) + = 0 In Section we obtained a fair price of $10 for the option using a replication strategy identical and the no-arbitrage future payoff principle. Two same portfolios valueoftoday securities that have identical future payoffs under all possible realizations of the random states must have the same value today. In the example, the first portfolio is the option while the second one is the portfolio of a half share of XYZ and $10 in cash. Since we know the current value of the second portfolio, we can deduce the fair price of the option. To formalize this approach, we first give a definition of arbitrage: Definition 4.1 An arbitrage is a trading strategy that: has a positive initial cash flow and has no risk of a loss later (type A), or 166

9 Arbitrage Definition Arbitrage is a trading strategy that: i has positive initial cash flow and no risk of loss later (type A) ii requires no initial cash input, has no risk of loss and has positive probability of making profit in the future (type B) In the example: any price other than $10 for the option would lead to a type A arbitrage. Notes: Prices adjust quickly so that arbitrage opportunities cannot persist in the marked. Pricing arguments usually assume no arbitrage. 167

10 Replication (in slightly more general setting) Consider portfolio of shares of underlying security and B cash. Two possible outcomes: Up-state: S0 u + B R, where R = 1 + (risk-less interest rate) Down-state: S0 d + B R For what values of and B does the portfolio have the same payoffs C u 1 and C d 1 as the call option? S 0 u + B R = C u 1 S 0 d + B R = C d 1 Solving for and B gives = C u 1 C d 1 S 0 (u d) and B = uc d 1 dc u 1 R(u d) 168

11 Replication (in slightly more general setting) Since portfolio is worth S 0 + B today, this should also be the price for the derivative security, i.e: no arbitrage d < R < u Definition: Risk-neutral probabilities C 0 = C 1 u C 1 d + uc 1 d dc 1 u u d R(u d) = 1 ( R d R u d C 1 u + u R ) u d C 1 d p u = R d u d and p d = u R u d Remark: If price C 0 then there is arbitrage opportunity. 169

12 Generalisation of binomial (2-stage) setting Let ω 1,..., ω m be a finite set of possible states. For securities S i, i = 0,... n: S i 0.. current price (at time 0) S i 1 (ω j ).. future price (at time 1) if in state ω j S 0.. risk-less security, i.e. S0 0 = 1 and S 1 0(ω j) = R 1 for all j Risk-neutral probabilities A risk-neutral probability measure (RNPM) on the set Ω = {ω 1,..., ω m } is a vector of positive numbers p 1,..., p m such that m j=1 p j = 1 and for every security S i, i = 0,... n, S0 i = 1 m p j S i R 1(ω j ). j=1 170

13 First Fundamental Theorem of Asset Pricing Theorem 6.1 (First Fundamental Theorem of Asset Pricing). A risk-neutral probability measure exists if and only if there is no arbitrage. Proof is a simple exercise in LP duality. We will make use of the following result of Goldman and Tucker on the existence of strictly complementary optimal solutions: Theorem 6.2 (Goldman-Tucker Theorem). Consider the following primal-dual pair: min c T x s.t. Ax b max b T p s.t. A T p = c p 0 If both, the primal and the dual LP, admit a feasible solution, then there are primal and dual optimal solutions x, p such that p + (Ax b) >

14 Arbitrage Detection Using Linear Programming Scenario: Portfolio (x 1,... x n ) of European call options S 1,..., S n of same underlying security S. Payoff of portfolio: Ψ x (S 1 ) := n i=1 Ψ 70 i(s 1 )x i, where 60 Ψi (S 1 ) = (S 1 K i ) + 50, and 40 Ki is strike price of call option S i 30. cost of forming portfolio at time 0 is: 20 n i=1 S 0 i x 10 i. 0 Determine arbitrage possibility Negative cost of portfolio with non-negative payoff (type A). Zero cost and strictly positive payoff (type B). Payoff from option struck at The fundamental theorem of asset pricing European call option payoff function Share price of XYZ Figure 4.1 Piecewise linear payoff function for a call option We consider the share price of XYZ stock, which is currently valued month from today, we expect the share price of XYZ to either double or ha equal probabilities. We also consider a European call option on XYZ wit price of $50 which will expire a month from today. The payoff function fo is shown in Figure 4.1. We assume that interest rates for cash borrowing or lending are zero and amount of XYZ shares can be bought or sold with no commission: 80 = S1(u) S0 = $40 20 = S1(d) (80 50) + = and C0 =? (20 50) + = In Section we obtained a fair price of $10 for the option using tion strategy and the no-arbitrage principle. Two portfolios of securities identical future payoffs under all possible realizations of the random sta have the same value today. In the example, the first portfolio is the opti the second one is the portfolio of a half share of XYZ and $10 in cash. know the current value of the second portfolio, we can deduce the fair pr option. To formalize this approach, we first give a definition of arbitrage: Definition 4.1 An arbitrage is a trading strategy that: has a positive initial cash flow and has no risk of a loss later (type A), or requires no initial cash input, has no risk of a loss, and has a positive pro making profits in the future (type B). 172

15 Detecting arbitrage Checking for non-negative payoff: each Ψ i is piecewise-linear in S 1 with single breakpoint K i thus Ψ x is piecewise-linear in S 1 with breakpoints K 1,..., K n (assume K 1... K n ) Ψ x is non-negative in [0, ), if and only if Ψ x is Formally: non-negative at 0, non-negative at all breakpoints, and right-derivative after last breakpoint Kn is non-negative. Ψ x (0) 0 Ψ x (K j ) 0, Ψ x (K n + 1) Ψ x (K n ) 0. j, and 173

16 Detecting arbitrage Linear Program min s.t. n S0x i i (6.1) i=1 n Ψ i (0)x i 0 i=1 n Ψ i (K j )x i 0, j = 1,..., n, i=1 n (Ψ i (K n + 1) Ψ i (K n )) x i 0. i=1 174

17 Detecting arbitrage Theorem 6.3. There is no type-a arbitrage if and only if the optimal objective value of (6.1) is zero. Theorem 6.4. Suppose that there is no type-a arbitrage. Then, there is no type-b arbitrage if and only if the dual of (6.1) has a strictly positive feasible solution. 175

18 European call options - Constraint matrix Ψ i (K j ) = (K j K i ) + Constraint matrix A of (6.1) has the form A = K 2 K K 3 K 1 K 3 K K n K 1 K n K 2 K n K Theorem 6.5. Let K 1 < K 2 <... < K n denote the strike prices of European call options written on the same underlying security with the same maturity. There are no arbitrage opportunities if and only if the prices S i 0 satisfy:.. i S0 i > 0 for i = 1,..., n. ii S0 i > S 0 i+1 for i = 1,..., n 1. iii C(K i ) := S0 i defined on {K 1,..., K n } is a strictly convex function. 176

19 202

Lecture 7: Linear programming, Dedicated Bond Portfolios

Lecture 7: Linear programming, Dedicated Bond Portfolios Optimization Methods in Finance (EPFL, Fall 2010) Lecture 7: Linear programming, Dedicated Bond Portfolios 03.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Rached Hachouch Linear programming is

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

A Robust Option Pricing Problem

A Robust Option Pricing Problem IMA 2003 Workshop, March 12-19, 2003 A Robust Option Pricing Problem Laurent El Ghaoui Department of EECS, UC Berkeley 3 Robust optimization standard form: min x sup u U f 0 (x, u) : u U, f i (x, u) 0,

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

LINEAR PROGRAMMING. Homework 7

LINEAR PROGRAMMING. Homework 7 LINEAR PROGRAMMING Homework 7 Fall 2014 Csci 628 Megan Rose Bryant 1. Your friend is taking a Linear Programming course at another university and for homework she is asked to solve the following LP: Primal:

More information

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +...

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +... No-Arbitrage Pricing Theory Single-Period odel There are N securities denoted ( S,S,...,S N ), they can be stocks, bonds, or any securities, we assume they are all traded, and have prices available. Ω

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

Game Theory Tutorial 3 Answers

Game Theory Tutorial 3 Answers Game Theory Tutorial 3 Answers Exercise 1 (Duality Theory) Find the dual problem of the following L.P. problem: max x 0 = 3x 1 + 2x 2 s.t. 5x 1 + 2x 2 10 4x 1 + 6x 2 24 x 1 + x 2 1 (1) x 1 + 3x 2 = 9 x

More information

How do Variance Swaps Shape the Smile?

How do Variance Swaps Shape the Smile? How do Variance Swaps Shape the Smile? A Summary of Arbitrage Restrictions and Smile Asymptotics Vimal Raval Imperial College London & UBS Investment Bank www2.imperial.ac.uk/ vr402 Joint Work with Mark

More information

Optimization in Finance

Optimization in Finance Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

56:171 Operations Research Midterm Exam Solutions October 22, 1993

56:171 Operations Research Midterm Exam Solutions October 22, 1993 56:171 O.R. Midterm Exam Solutions page 1 56:171 Operations Research Midterm Exam Solutions October 22, 1993 (A.) /: Indicate by "+" ="true" or "o" ="false" : 1. A "dummy" activity in CPM has duration

More information

OPTIMIZATION METHODS IN FINANCE

OPTIMIZATION METHODS IN FINANCE OPTIMIZATION METHODS IN FINANCE GERARD CORNUEJOLS Carnegie Mellon University REHA TUTUNCU Goldman Sachs Asset Management CAMBRIDGE UNIVERSITY PRESS Foreword page xi Introduction 1 1.1 Optimization problems

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory ORF 307: Lecture 12 Linear Programming: Chapter 11: Game Theory Robert J. Vanderbei April 3, 2018 Slides last edited on April 3, 2018 http://www.princeton.edu/ rvdb Game Theory John Nash = A Beautiful

More information

Optimization Methods in Finance

Optimization Methods in Finance Optimization Methods in Finance Gerard Cornuejols Reha Tütüncü Carnegie Mellon University, Pittsburgh, PA 15213 USA January 2006 2 Foreword Optimization models play an increasingly important role in financial

More information

Super-replicating portfolios

Super-replicating portfolios Super-replicating portfolios 1. Introduction Assume that in one year from now the price for a stock X may take values in the set. Consider four derivative instruments and their payoffs which depends on

More information

Computing Bounds on Risk-Neutral Measures from the Observed Prices of Call Options

Computing Bounds on Risk-Neutral Measures from the Observed Prices of Call Options Computing Bounds on Risk-Neutral Measures from the Observed Prices of Call Options Michi NISHIHARA, Mutsunori YAGIURA, Toshihide IBARAKI Abstract This paper derives, in closed forms, upper and lower bounds

More information

Finance: Lecture 4 - No Arbitrage Pricing Chapters of DD Chapter 1 of Ross (2005)

Finance: Lecture 4 - No Arbitrage Pricing Chapters of DD Chapter 1 of Ross (2005) Finance: Lecture 4 - No Arbitrage Pricing Chapters 10-12 of DD Chapter 1 of Ross (2005) Prof. Alex Stomper MIT Sloan, IHS & VGSF March 2010 Alex Stomper (MIT, IHS & VGSF) Finance March 2010 1 / 15 Fundamental

More information

Radner Equilibrium: Definition and Equivalence with Arrow-Debreu Equilibrium

Radner Equilibrium: Definition and Equivalence with Arrow-Debreu Equilibrium Radner Equilibrium: Definition and Equivalence with Arrow-Debreu Equilibrium Econ 2100 Fall 2017 Lecture 24, November 28 Outline 1 Sequential Trade and Arrow Securities 2 Radner Equilibrium 3 Equivalence

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Uncertainty in Equilibrium

Uncertainty in Equilibrium Uncertainty in Equilibrium Larry Blume May 1, 2007 1 Introduction The state-preference approach to uncertainty of Kenneth J. Arrow (1953) and Gérard Debreu (1959) lends itself rather easily to Walrasian

More information

Practice Problems 1: Moral Hazard

Practice Problems 1: Moral Hazard Practice Problems 1: Moral Hazard December 5, 2012 Question 1 (Comparative Performance Evaluation) Consider the same normal linear model as in Question 1 of Homework 1. This time the principal employs

More information

1 Rational Expectations Equilibrium

1 Rational Expectations Equilibrium 1 Rational Expectations Euilibrium S - the (finite) set of states of the world - also use S to denote the number m - number of consumers K- number of physical commodities each trader has an endowment vector

More information

Optimization Approaches Applied to Mathematical Finance

Optimization Approaches Applied to Mathematical Finance Optimization Approaches Applied to Mathematical Finance Tai-Ho Wang tai-ho.wang@baruch.cuny.edu Baruch-NSD Summer Camp Lecture 5 August 7, 2017 Outline Quick review of optimization problems and duality

More information

Optimization Models in Financial Mathematics

Optimization Models in Financial Mathematics Optimization Models in Financial Mathematics John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge Illinois Section MAA, April 3, 2004 1 Introduction Trends in financial mathematics

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA 1. Refresh the concept of no arbitrage and how to bound option prices using just the principle of no arbitrage 2. Work on applying

More information

Lecture 5: Iterative Combinatorial Auctions

Lecture 5: Iterative Combinatorial Auctions COMS 6998-3: Algorithmic Game Theory October 6, 2008 Lecture 5: Iterative Combinatorial Auctions Lecturer: Sébastien Lahaie Scribe: Sébastien Lahaie In this lecture we examine a procedure that generalizes

More information

General Equilibrium under Uncertainty

General Equilibrium under Uncertainty General Equilibrium under Uncertainty The Arrow-Debreu Model General Idea: this model is formally identical to the GE model commodities are interpreted as contingent commodities (commodities are contingent

More information

UNIVERSITY OF TORONTO Joseph L. Rotman School of Management SOLUTIONS

UNIVERSITY OF TORONTO Joseph L. Rotman School of Management SOLUTIONS UNIVERSITY OF TORONTO Joseph L. Rotman School of Management Oct., 08 Corhay/Kan RSM MID-TERM EXAMINATION Yang/Wang SOLUTIONS. a) The optimal consumption plan is C 0 = Y 0 = 0 and C = Y = 0. Therefore,

More information

Cash Flows on Options strike or exercise price

Cash Flows on Options strike or exercise price 1 APPENDIX 4 OPTION PRICING In general, the value of any asset is the present value of the expected cash flows on that asset. In this section, we will consider an exception to that rule when we will look

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

On an optimization problem related to static superreplicating

On an optimization problem related to static superreplicating On an optimization problem related to static superreplicating strategies Xinliang Chen, Griselda Deelstra, Jan Dhaene, Daniël Linders, Michèle Vanmaele AFI_1491 On an optimization problem related to static

More information

1 Shapley-Shubik Model

1 Shapley-Shubik Model 1 Shapley-Shubik Model There is a set of buyers B and a set of sellers S each selling one unit of a good (could be divisible or not). Let v ij 0 be the monetary value that buyer j B assigns to seller i

More information

56:171 Operations Research Midterm Exam Solutions October 19, 1994

56:171 Operations Research Midterm Exam Solutions October 19, 1994 56:171 Operations Research Midterm Exam Solutions October 19, 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3.

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Topics in Contract Theory Lecture 5. Property Rights Theory. The key question we are staring from is: What are ownership/property rights?

Topics in Contract Theory Lecture 5. Property Rights Theory. The key question we are staring from is: What are ownership/property rights? Leonardo Felli 15 January, 2002 Topics in Contract Theory Lecture 5 Property Rights Theory The key question we are staring from is: What are ownership/property rights? For an answer we need to distinguish

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

Help Session 4. David Sovich. Washington University in St. Louis

Help Session 4. David Sovich. Washington University in St. Louis Help Session 4 David Sovich Washington University in St. Louis TODAY S AGENDA More on no-arbitrage bounds for calls and puts Some discussion of American options Replicating complex payoffs Pricing in the

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

DUALITY AND SENSITIVITY ANALYSIS

DUALITY AND SENSITIVITY ANALYSIS DUALITY AND SENSITIVITY ANALYSIS Understanding Duality No learning of Linear Programming is complete unless we learn the concept of Duality in linear programming. It is impossible to separate the linear

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Robert Almgren University of Chicago Program on Financial Mathematics MAA Short Course San Antonio, Texas January 11-12, 1999 1 Robert Almgren 1/99 Mathematics in Finance 2 1. Pricing

More information

Hedging and Pricing in the Binomial Model

Hedging and Pricing in the Binomial Model Hedging and Pricing in the Binomial Model Peter Carr Bloomberg LP and Courant Institute, NYU Continuous Time Finance Lecture 2 Wednesday, January 26th, 2005 One Period Model Initial Setup: 0 risk-free

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

Macroeconomics and finance

Macroeconomics and finance Macroeconomics and finance 1 1. Temporary equilibrium and the price level [Lectures 11 and 12] 2. Overlapping generations and learning [Lectures 13 and 14] 2.1 The overlapping generations model 2.2 Expectations

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Economia Financiera Avanzada

Economia Financiera Avanzada Economia Financiera Avanzada José Fajardo EBAPE- Fundação Getulio Vargas Universidad del Pacífico, Julio 5 21, 2011 José Fajardo Economia Financiera Avanzada Prf. José Fajardo Two-Period Model: State-Preference

More information

Lecture 8: Introduction to asset pricing

Lecture 8: Introduction to asset pricing THE UNIVERSITY OF SOUTHAMPTON Paul Klein Office: Murray Building, 3005 Email: p.klein@soton.ac.uk URL: http://paulklein.se Economics 3010 Topics in Macroeconomics 3 Autumn 2010 Lecture 8: Introduction

More information

56:171 Operations Research Midterm Exam Solutions Fall 1994

56:171 Operations Research Midterm Exam Solutions Fall 1994 56:171 Operations Research Midterm Exam Solutions Fall 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3. Simplex

More information

A New Tool For Correlation Risk Management: The Market Implied Comonotonicity Gap

A New Tool For Correlation Risk Management: The Market Implied Comonotonicity Gap A New Tool For Correlation Risk Management: The Market Implied Comonotonicity Gap Peter Michael Laurence Department of Mathematics and Facoltà di Statistica Universitá di Roma, La Sapienza A New Tool For

More information

Lecture 8. Spring Semester, Rutgers University. Lecture 8. Options Markets and Pricing. Prof. Paczkowski

Lecture 8. Spring Semester, Rutgers University. Lecture 8. Options Markets and Pricing. Prof. Paczkowski Rutgers University Spring Semester, 2009 (Rutgers University) Spring Semester, 2009 1 / 31 Part I Assignment (Rutgers University) Spring Semester, 2009 2 / 31 Assignment (Rutgers University) Spring Semester,

More information

3 Arbitrage pricing theory in discrete time.

3 Arbitrage pricing theory in discrete time. 3 Arbitrage pricing theory in discrete time. Orientation. In the examples studied in Chapter 1, we worked with a single period model and Gaussian returns; in this Chapter, we shall drop these assumptions

More information

Pricing Kernel. v,x = p,y = p,ax, so p is a stochastic discount factor. One refers to p as the pricing kernel.

Pricing Kernel. v,x = p,y = p,ax, so p is a stochastic discount factor. One refers to p as the pricing kernel. Payoff Space The set of possible payoffs is the range R(A). This payoff space is a subspace of the state space and is a Euclidean space in its own right. 1 Pricing Kernel By the law of one price, two portfolios

More information

The text book to this class is available at

The text book to this class is available at The text book to this class is available at www.springer.com On the book's homepage at www.financial-economics.de there is further material available to this lecture, e.g. corrections and updates. Financial

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

56:171 Operations Research Midterm Examination Solutions PART ONE

56:171 Operations Research Midterm Examination Solutions PART ONE 56:171 Operations Research Midterm Examination Solutions Fall 1997 Write your name on the first page, and initial the other pages. Answer both questions of Part One, and 4 (out of 5) problems from Part

More information

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

56:171 Operations Research Midterm Examination October 25, 1991 PART ONE

56:171 Operations Research Midterm Examination October 25, 1991 PART ONE 56:171 O.R. Midterm Exam - 1 - Name or Initials 56:171 Operations Research Midterm Examination October 25, 1991 Write your name on the first page, and initial the other pages. Answer both questions of

More information

Compulsory Assignment

Compulsory Assignment An Introduction to Mathematical Finance UiO-STK-MAT300 Autumn 2018 Professor: S. Ortiz-Latorre Compulsory Assignment Instructions: You may write your answers either by hand or on a computer for instance

More information

Integer Programming Models

Integer Programming Models Integer Programming Models Fabio Furini December 10, 2014 Integer Programming Models 1 Outline 1 Combinatorial Auctions 2 The Lockbox Problem 3 Constructing an Index Fund Integer Programming Models 2 Integer

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Consumption, Investment and the Fisher Separation Principle

Consumption, Investment and the Fisher Separation Principle Consumption, Investment and the Fisher Separation Principle Consumption with a Perfect Capital Market Consider a simple two-period world in which a single consumer must decide between consumption c 0 today

More information

Robust Hedging of Options on a Leveraged Exchange Traded Fund

Robust Hedging of Options on a Leveraged Exchange Traded Fund Robust Hedging of Options on a Leveraged Exchange Traded Fund Alexander M. G. Cox Sam M. Kinsley University of Bath Recent Advances in Financial Mathematics, Paris, 10th January, 2017 A. M. G. Cox, S.

More information

Lecture 8: Asset pricing

Lecture 8: Asset pricing BURNABY SIMON FRASER UNIVERSITY BRITISH COLUMBIA Paul Klein Office: WMC 3635 Phone: (778) 782-9391 Email: paul klein 2@sfu.ca URL: http://paulklein.ca/newsite/teaching/483.php Economics 483 Advanced Topics

More information

Electricity Swing Options: Behavioral Models and Pricing

Electricity Swing Options: Behavioral Models and Pricing Electricity Swing Options: Behavioral Models and Pricing Georg C.Pflug University of Vienna, georg.pflug@univie.ac.at Nikola Broussev University of Vienna, nikola.broussev@univie.ac.at ABSTRACT. Electricity

More information

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures Lecture 3 Fundamental Theorems of Asset Pricing 3.1 Arbitrage and risk neutral probability measures Several important concepts were illustrated in the example in Lecture 2: arbitrage; risk neutral probability

More information

5. COMPETITIVE MARKETS

5. COMPETITIVE MARKETS 5. COMPETITIVE MARKETS We studied how individual consumers and rms behave in Part I of the book. In Part II of the book, we studied how individual economic agents make decisions when there are strategic

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

One-Period Valuation Theory

One-Period Valuation Theory One-Period Valuation Theory Part 1: Basic Framework Chris Telmer March, 2013 Develop a simple framework for understanding what the pricing kernel is and how it s related to the economics of risk, return

More information

Kim Weston (Carnegie Mellon University) Market Stability and Indifference Prices. 1st Eastern Conference on Mathematical Finance.

Kim Weston (Carnegie Mellon University) Market Stability and Indifference Prices. 1st Eastern Conference on Mathematical Finance. 1st Eastern Conference on Mathematical Finance March 216 Based on Stability of Utility Maximization in Nonequivalent Markets, Finance & Stochastics (216) Basic Problem Consider a financial market consisting

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Arbitrage-Free Option Pricing by Convex Optimization

Arbitrage-Free Option Pricing by Convex Optimization Arbitrage-Free Option Pricing by Convex Optimization Alex Bain June 1, 2011 1 Description In this project we consider the problem of pricing an option on an underlying stock given a risk-free interest

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: Monday, December 14, 2015. Examination

More information

56:171 Operations Research Midterm Examination October 28, 1997 PART ONE

56:171 Operations Research Midterm Examination October 28, 1997 PART ONE 56:171 Operations Research Midterm Examination October 28, 1997 Write your name on the first page, and initial the other pages. Answer both questions of Part One, and 4 (out of 5) problems from Part Two.

More information

Portfolio Optimization with Alternative Risk Measures

Portfolio Optimization with Alternative Risk Measures Portfolio Optimization with Alternative Risk Measures Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics

More information

Journal of Computational and Applied Mathematics. The mean-absolute deviation portfolio selection problem with interval-valued returns

Journal of Computational and Applied Mathematics. The mean-absolute deviation portfolio selection problem with interval-valued returns Journal of Computational and Applied Mathematics 235 (2011) 4149 4157 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Step 2: Determine the objective and write an expression for it that is linear in the decision variables.

Step 2: Determine the objective and write an expression for it that is linear in the decision variables. Portfolio Modeling Using LPs LP Modeling Technique Step 1: Determine the decision variables and label them. The decision variables are those variables whose values must be determined in order to execute

More information

Solutions to Midterm Exam. ECON Financial Economics Boston College, Department of Economics Spring Tuesday, March 19, 10:30-11:45am

Solutions to Midterm Exam. ECON Financial Economics Boston College, Department of Economics Spring Tuesday, March 19, 10:30-11:45am Solutions to Midterm Exam ECON 33790 - Financial Economics Peter Ireland Boston College, Department of Economics Spring 209 Tuesday, March 9, 0:30 - :5am. Profit Maximization With the production function

More information

Consistency of option prices under bid-ask spreads

Consistency of option prices under bid-ask spreads Consistency of option prices under bid-ask spreads Stefan Gerhold TU Wien Joint work with I. Cetin Gülüm MFO, Feb 2017 (TU Wien) MFO, Feb 2017 1 / 32 Introduction The consistency problem Overview Consistency

More information

Allocation of Risk Capital via Intra-Firm Trading

Allocation of Risk Capital via Intra-Firm Trading Allocation of Risk Capital via Intra-Firm Trading Sean Hilden Department of Mathematical Sciences Carnegie Mellon University December 5, 2005 References 1. Artzner, Delbaen, Eber, Heath: Coherent Measures

More information

RISK MINIMIZING PORTFOLIO OPTIMIZATION AND HEDGING WITH CONDITIONAL VALUE-AT-RISK

RISK MINIMIZING PORTFOLIO OPTIMIZATION AND HEDGING WITH CONDITIONAL VALUE-AT-RISK RISK MINIMIZING PORTFOLIO OPTIMIZATION AND HEDGING WITH CONDITIONAL VALUE-AT-RISK by Jing Li A dissertation submitted to the faculty of the University of North Carolina at Charlotte in partial fulfillment

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

FINANCIAL OPTIMIZATION

FINANCIAL OPTIMIZATION FINANCIAL OPTIMIZATION Lecture 2: Linear Programming Philip H. Dybvig Washington University Saint Louis, Missouri Copyright c Philip H. Dybvig 2008 Choose x to minimize c x subject to ( i E)a i x = b i,

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2015

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2015 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2015 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months.

To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months. A one period model To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months.. The model setup We will start simple with a one period

More information

56:171 Operations Research Midterm Examination Solutions PART ONE

56:171 Operations Research Midterm Examination Solutions PART ONE 56:171 Operations Research Midterm Examination Solutions Fall 1997 Answer both questions of Part One, and 4 (out of 5) problems from Part Two. Possible Part One: 1. True/False 15 2. Sensitivity analysis

More information

Worst-Case Value-at-Risk of Derivative Portfolios

Worst-Case Value-at-Risk of Derivative Portfolios Worst-Case Value-at-Risk of Derivative Portfolios Steve Zymler Berç Rustem Daniel Kuhn Department of Computing Imperial College London Thalesians Seminar Series, November 2009 Risk Management is a Hot

More information

Scenario Generation and Sampling Methods

Scenario Generation and Sampling Methods Scenario Generation and Sampling Methods Güzin Bayraksan Tito Homem-de-Mello SVAN 2016 IMPA May 9th, 2016 Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 1 / 30

More information

The Assignment Problem

The Assignment Problem The Assignment Problem E.A Dinic, M.A Kronrod Moscow State University Soviet Math.Dokl. 1969 January 30, 2012 1 Introduction Motivation Problem Definition 2 Motivation Problem Definition Outline 1 Introduction

More information

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS Jan Werner University of Minnesota SPRING 2019 1 I.1 Equilibrium Prices in Security Markets Assume throughout this section that utility functions

More information

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1 IE 495 Lecture 11 The LShaped Method Prof. Jeff Linderoth February 19, 2003 February 19, 2003 Stochastic Programming Lecture 11 Slide 1 Before We Begin HW#2 $300 $0 http://www.unizh.ch/ior/pages/deutsch/mitglieder/kall/bib/ka-wal-94.pdf

More information

Chapter 6: Risky Securities and Utility Theory

Chapter 6: Risky Securities and Utility Theory Chapter 6: Risky Securities and Utility Theory Topics 1. Principle of Expected Return 2. St. Petersburg Paradox 3. Utility Theory 4. Principle of Expected Utility 5. The Certainty Equivalent 6. Utility

More information