Additional questions for chapter 3

Size: px
Start display at page:

Download "Additional questions for chapter 3"

Transcription

1 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 }) <. Let S n = S 0 + ξ ξ n. Show that M n = exp{θs n} φθ) n is a martingale with respect to σs 0,..., S n ). Apply the result to the special case IP ξ 1 = 1) = p, and IP ξ 1 = 1) = 1 p. Use subsequently measurability and independence IEM n+1 F n ) = IE [ exp{θξ n+1 + S n )}/ϕθ) n+1 F n ] = exp{θs n)} ϕθ) n+1 IE [exp{θξ n+1 } F n ] = exp{θs n)} IE [exp{θξ ϕθ) n+1 n+1 }] = exp{θs n)} = M ϕθ) n n. The second part is a straightforward application.

2 2. i) Let ξ 1, ξ 2,... be independent with IEξ i ) = 0 and IEξ i 2 ) = σi 2. Let S n = S 0 + ξ ξ n, where S 0 is a constant, and let v n = n i=1 σ2 i be the variance of S n. Show that M n = Sn 2 v n is a martingale. ii) Suppose we are testing the hypothesis that observations ξ 1, ξ 2,... are independent and have density function f but the truth is that ξ 1, ξ 2,... are independent and have density function g where {x : fx) > 0} = {x : gx) > 0}. Let fx)/gx) when gx) > 0 hx) = 0 when gx) = 0 Show that M n = hξ 1 ) hξ n ) is a martingale. i) Using the definition of M n, the independence of ξ i ) and the property taking out what is known of conditional expectation we get: IEM n M n 1 F n 1 ) = IES n 1 + ξ n ) 2 S 2 n 1 σ 2 n F n 1 ) = IE2S n 1 ξ n + ξ 2 n σ 2 n F n 1 ) = 2S n 1 )IEξ n F n 1 ) + IEξ 2 n F n 1 ) IEσ 2 n F n 1 ) = 0. Thus IEM n F n 1 ) = M n 1 showing that M n ) is a martingale. ii) This is a special case of a product martingale. Set ζ i = hξ i ) = fξ i )/gξ i ). Then fx) IEζ i ) = gx) gx)dx = fx)dx = 1 and the claim follows from the second example in 3.3 in the book.

3 3. Let X = {X n } n N0 be an integrable stochastic process which is adapted to the filtration {F n } n N0. Show that X has a decomposition X n = X 0 + M n + A n where {M n } n N0 is a martingale with M 0 = 0 and {A n } n N0 is a predictable process with A 0 = 0. Show that the decomposition is unique. Also show that {A n } n N0 is monotonously increasing iff X is a submartingale. Hint:E[X n X n 1 F n 1 ] = A n A n 1 ) First we define {A n } n N0 recursively by A 0 = 0 and the hint A n = A n 1 + E[X n X n 1 F n 1 ] Then A n is F n 1 measurable by induction and the measurability of conditional expectation. Thus, {A n } n N0 is predictable. Now define M n = X n X 0 A n. Then we see that {M n } n N0 is clearly integrable and adapted. We only have to show that it is a martingale. E[M n F n 1 ] = E[X n F n 1 ] X 0 A n = E[X n F n 1 ] X 0 A n 1 E[X n X n 1 F n 1 ] = X n 1 X 0 A n 1 = M n 1 It remains to show uniqueness. Assume that X has a second decomposition X n = X 0 + M n + A n. Then we get M n M n = A n A n. We see that M n M n is predictable. Thus M n M n = E[M n M n F n 1 ] = M n 1 M n 1 Therefore M 1 M 1 = M 0 M 0 = 0 and then M 1 = M 1. By induction we see that M n = M n. Then we immediately have A n = A n and the uniqueness has been shown. It remains to show that {A n } n N0 is monotonously incresing iff X is a submartingale. This follows immediately by the definition of A n.

4 4. Assume that ξ n ) n N is a sequence of independent random variables with E[ξ n ] = 0 n and E[expξ n )] < n. Furthermore and F n = σξ 1,..., ξ n ) S 0 = 0 S n = ξ k. a) Show that S n is a martingale with respect to F n ) n 0. b) Show that P n = exps n ) is a submartingale with respect to F n ) n 0. c) Now assume ξ n N0, σ 2 n). Determine the Doob-decomposition of P n. a) We have E[ S n ] n E[ ξ k ] < and S n is F n -measurable by definition of F n. E[S n+1 F n ] = E = [ n+1 ] ξ k F n = ξ k + E[ξ n+1 ] = ξ k + E[ξ n+1 F n ] = ξ k = S n b) We define fx) = expx). As f is convex, by applying the conditional Jensen formula we get E[fS n+1 ) F n ] fe[s n+1 F n ]) = fs n ) In addition to this, P n is adapted, as S n is adapted and fx) = expx) is Borel-measurable. Apart from this, E[ P n ] = n E[expξ k )] <. Thus, P n = exps n ) is a submartingale with respect to F n ) n 0. c) The Doob-decomposition is A n = E[P k P k 1 F k 1 ] = P k 1 e 1 2 σ2 k 1). The martingale part M n of the decomposition is M n = P n A n P 0 = P n P k 1 e 1 2 σ2 k 1) 1 Then P n = M n + A n + P 0, where A n is predictable, M n is a martingale and P 0 a constant.

5 5. We assume that Ω, F, IF, IP ) is a standard filtered probability space with IF = F n ) n=0 a filtration. Let U = U n ) n=0 be an adapted sequence and consider the discrete stochastic exponential E n U) = n 1 + U k ), E 0 U) = 1, where U n = U n U n 1. Consider the difference equation X n = X n 1 U n, X 0 = 1. DE) i) Verify that E n U) is a solution of DE). ii) Assume E n U) 0. Show that E n U) is a martingale if U n ) is a martingale. iii) Let α n ) n=0 be a deterministic series of positive numbers and V = V n ) n=0 be an adapted sequence. Set Prove that A n = IE e α k V k 1 ) Fk 1. { } Z n = exp α k V k En 1 A), Z 0 = 1 is a martingale. Hint: You may use E n U) 1 = E n Y ), where Y n = U n U n ) 2 1+ U n ) ). i) Define X n := E n U). Then X n = E n U) E n 1 U) = n U n 1) 1 + U k ) = U n X n 1. ii) Let U n ) be a martingale. Adaptedness of E n U)) can be seen. Integrability of E n U)) is provided by assumption. Define X n := E n U). Then, according to i), X n ) solves DE). Thus, by DE) and the martingale-property of U n ) E X n F n 1 ) = EX n 1 U n F n 1 ) which shows that X n ) is a martingale. = X n 1 E U n F n 1 ) = X n 1 0 = 0, iii) Adaptedness of Z n ) follows from adaptedness of A n ), integrability of Z n ) is provided by assumption. Applying the hint to A n ) and simplifying yields E n A) 1 = n k. 1 + A k

6 With this result, we get { } Z n = exp α k V k E n A) 1 = e α n Vn = e αn Vn n 1 + A n n 1 + A n Now, with the definition of A n, we find 1 A n 1 + A n = Applying this gives Z n = Z n 1 e α n Vn = Z n 1 n 1 e α k Vk Z n 1. 1 Eexp{α n V n } F n 1 ). n 1 + A n e α n V n Eexp{α n V n } F n 1 ) 1 k 1 + A k ) 1 ) and thus E Z n F n 1 ) = ) e αn Vn Z n 1 E Eexp{α n V n } F n 1 ) F n 1 Z n 1 = Z n 1 Eexp{α n V n } F n 1 ) E ) e αn Vn F n 1 Zn 1 = 0, completing the proof that Z n ) is a martingale.,

7 6. Let σ and τ be two stopping times with respect to the filtration F n ) n=0. Show that F σ τ = F σ F τ. Also show that the events belong to F σ F τ. {τ < σ}, {σ < τ}, {τ σ}, {σ τ}, {σ = τ} From Proposition in the book we know that as σ τ σ and also σ τ τ we have F σ τ F σ and F σ τ F τ. Thus F σ τ F σ F τ. For the other direction assume A F σ F τ. Therefore and We have A {σ n} F n A {τ n} F n n n. A {σ τ n} = A {σ n} {τ n}) = A {σ n} A {τ n}) F n n. From this it follows that A F σ τ. We now have to verify that the mentioned sets are in F σ τ. First show {τ σ} F σ : {τ σ} {σ n} = Analogously we get {τ σ} F τ by: {τ σ} {τ n} = n {σ = k} {τ k} F n. k=0 n {τ = k} {σ > k} F n. The result for {σ τ} follows by reversing the roles of σ and τ. We also have: n {τ = σ} {σ n} = {σ = k} {τ = k} F n. k=0 k=0 Thus, we have {σ = τ} F σ. By reversing the role of σ and τ, we get the result. The result for the last two sets follows by taking complements.

8

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

MTH The theory of martingales in discrete time Summary

MTH The theory of martingales in discrete time Summary MTH 5220 - The theory of martingales in discrete time Summary This document is in three sections, with the first dealing with the basic theory of discrete-time martingales, the second giving a number of

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

Advanced Probability and Applications (Part II)

Advanced Probability and Applications (Part II) Advanced Probability and Applications (Part II) Olivier Lévêque, IC LTHI, EPFL (with special thanks to Simon Guilloud for the figures) July 31, 018 Contents 1 Conditional expectation Week 9 1.1 Conditioning

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

1 Rare event simulation and importance sampling

1 Rare event simulation and importance sampling Copyright c 2007 by Karl Sigman 1 Rare event simulation and importance sampling Suppose we wish to use Monte Carlo simulation to estimate a probability p = P (A) when the event A is rare (e.g., when p

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

MORE REALISTIC FOR STOCKS, FOR EXAMPLE

MORE REALISTIC FOR STOCKS, FOR EXAMPLE MARTINGALES BASED ON IID: ADDITIVE MG Y 1,..., Y t,... : IID EY = 0 X t = Y 1 +... + Y t is MG MULTIPLICATIVE MG Y 1,..., Y t,... : IID EY = 1 X t = Y 1... Y t : X t+1 = X t Y t+1 E(X t+1 F t ) = E(X t

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

PAPER 211 ADVANCED FINANCIAL MODELS

PAPER 211 ADVANCED FINANCIAL MODELS MATHEMATICAL TRIPOS Part III Friday, 27 May, 2016 1:30 pm to 4:30 pm PAPER 211 ADVANCED FINANCIAL MODELS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

LECTURE 4: BID AND ASK HEDGING

LECTURE 4: BID AND ASK HEDGING LECTURE 4: BID AND ASK HEDGING 1. Introduction One of the consequences of incompleteness is that the price of derivatives is no longer unique. Various strategies for dealing with this exist, but a useful

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Derivatives Pricing and Stochastic Calculus

Derivatives Pricing and Stochastic Calculus Derivatives Pricing and Stochastic Calculus Romuald Elie LAMA, CNRS UMR 85 Université Paris-Est Marne-La-Vallée elie @ ensae.fr Idris Kharroubi CEREMADE, CNRS UMR 7534, Université Paris Dauphine kharroubi

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH

INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH HAMPUS ENGSNER, MATHIAS LINDHOLM, AND FILIP LINDSKOG Abstract. We present an approach to market-consistent multi-period valuation

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

B. Online Appendix. where ɛ may be arbitrarily chosen to satisfy 0 < ɛ < s 1 and s 1 is defined in (B1). This can be rewritten as

B. Online Appendix. where ɛ may be arbitrarily chosen to satisfy 0 < ɛ < s 1 and s 1 is defined in (B1). This can be rewritten as B Online Appendix B1 Constructing examples with nonmonotonic adoption policies Assume c > 0 and the utility function u(w) is increasing and approaches as w approaches 0 Suppose we have a prior distribution

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

Random Time Change with Some Applications. Amy Peterson

Random Time Change with Some Applications. Amy Peterson Random Time Change with Some Applications by Amy Peterson A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science

More information

1 Math 797 FM. Homework I. Due Oct. 1, 2013

1 Math 797 FM. Homework I. Due Oct. 1, 2013 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Math 797 FM. Homework I.

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration Lecture 14: Examples of Martingales and Azuma s Inequality A Short Summary of Bounds I Chernoff (First Bound). Let X be a random variable over {0, 1} such that P [X = 1] = p and P [X = 0] = 1 p. n P X

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

MARTINGALES AND LOCAL MARTINGALES

MARTINGALES AND LOCAL MARTINGALES MARINGALES AND LOCAL MARINGALES If S t is a (discounted) securtity, the discounted P/L V t = need not be a martingale. t θ u ds u Can V t be a valid P/L? When? Winter 25 1 Per A. Mykland ARBIRAGE WIH SOCHASIC

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Order book resilience, price manipulations, and the positive portfolio problem

Order book resilience, price manipulations, and the positive portfolio problem Order book resilience, price manipulations, and the positive portfolio problem Alexander Schied Mannheim University PRisMa Workshop Vienna, September 28, 2009 Joint work with Aurélien Alfonsi and Alla

More information

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures Lecture 3 Fundamental Theorems of Asset Pricing 3.1 Arbitrage and risk neutral probability measures Several important concepts were illustrated in the example in Lecture 2: arbitrage; risk neutral probability

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

AMERICAN OPTIONS REVIEW OF STOPPING TIMES. Important example: the first passage time for continuous process X:

AMERICAN OPTIONS REVIEW OF STOPPING TIMES. Important example: the first passage time for continuous process X: AMERICAN OPTIONS REVIEW OF STOPPING TIMES τ is stopping time if {τ t} F t for all t Important example: the first passage time for continuous process X: τ m = min{t 0 : X(t) = m} (τ m = if X(t) never takes

More information

Monotone, Convex and Extrema

Monotone, Convex and Extrema Monotone Functions Function f is called monotonically increasing, if Chapter 8 Monotone, Convex and Extrema x x 2 f (x ) f (x 2 ) It is called strictly monotonically increasing, if f (x 2) f (x ) x < x

More information

Changes of the filtration and the default event risk premium

Changes of the filtration and the default event risk premium Changes of the filtration and the default event risk premium Department of Banking and Finance University of Zurich April 22 2013 Math Finance Colloquium USC Change of the probability measure Change of

More information

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives Lecture 9 Forward Risk Adjusted Probability Measures and Fixed-income Derivatives 9.1 Forward risk adjusted probability measures This section is a preparation for valuation of fixed-income derivatives.

More information

Lecture 2: The Simple Story of 2-SAT

Lecture 2: The Simple Story of 2-SAT 0510-7410: Topics in Algorithms - Random Satisfiability March 04, 2014 Lecture 2: The Simple Story of 2-SAT Lecturer: Benny Applebaum Scribe(s): Mor Baruch 1 Lecture Outline In this talk we will show that

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio Arbitrage of the first kind and filtration enlargements in semimartingale financial models Beatrice Acciaio the London School of Economics and Political Science (based on a joint work with C. Fontana and

More information

arxiv: v1 [q-fin.rm] 14 Jul 2016

arxiv: v1 [q-fin.rm] 14 Jul 2016 INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH HAMPUS ENGSNER, MATHIAS LINDHOLM, FILIP LINDSKOG arxiv:167.41v1 [q-fin.rm 14 Jul 216 Abstract. We present an approach to market-consistent

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

- Introduction to Mathematical Finance -

- Introduction to Mathematical Finance - - Introduction to Mathematical Finance - Lecture Notes by Ulrich Horst The objective of this course is to give an introduction to the probabilistic techniques required to understand the most widely used

More information

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives Lecture 9 Forward Risk Adjusted Probability Measures and Fixed-income Derivatives 9.1 Forward risk adjusted probability measures This section is a preparation for valuation of fixed-income derivatives.

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Modelling electricity futures by ambit fields

Modelling electricity futures by ambit fields Modelling electricity futures by ambit fields Almut E. D. Veraart Imperial College London Joint work with Ole E. Barndorff-Nielsen (Aarhus University), Fred Espen Benth (University of Oslo) Workshop on

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

The Probabilistic Method - Probabilistic Techniques. Lecture 7: Martingales

The Probabilistic Method - Probabilistic Techniques. Lecture 7: Martingales The Probabilistic Method - Probabilistic Techniques Lecture 7: Martingales Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2015-2016 Sotiris Nikoletseas, Associate

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

Girsanov s Theorem. Bernardo D Auria web: July 5, 2017 ICMAT / UC3M

Girsanov s Theorem. Bernardo D Auria   web:   July 5, 2017 ICMAT / UC3M Girsanov s Theorem Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M Girsanov s Theorem Decomposition of P-Martingales as Q-semi-martingales Theorem

More information

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut Financial Mathematics Spring 22 Richard F. Bass Department of Mathematics University of Connecticut These notes are c 22 by Richard Bass. They may be used for personal use or class use, but not for commercial

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

Mathematical Finance in discrete time

Mathematical Finance in discrete time Lecture Notes for Mathematical Finance in discrete time University of Vienna, Faculty of Mathematics, Fall 2015/16 Christa Cuchiero University of Vienna christa.cuchiero@univie.ac.at Draft Version June

More information

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate ECSE 304-305B Assignment 5 Solutions Fall 2008 Question 5.1 A positive scalar random variable X with a density is such that EX = µ

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 17

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 17 MS&E 32 Spring 2-3 Stochastic Systems June, 203 Prof. Peter W. Glynn Page of 7 Section 0: Martingales Contents 0. Martingales in Discrete Time............................... 0.2 Optional Sampling for Discrete-Time

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Performance of Stochastic Programming Solutions

Performance of Stochastic Programming Solutions Performance of Stochastic Programming Solutions Operations Research Anthony Papavasiliou 1 / 30 Performance of Stochastic Programming Solutions 1 The Expected Value of Perfect Information 2 The Value of

More information

Building Infinite Processes from Regular Conditional Probability Distributions

Building Infinite Processes from Regular Conditional Probability Distributions Chapter 3 Building Infinite Processes from Regular Conditional Probability Distributions Section 3.1 introduces the notion of a probability kernel, which is a useful way of systematizing and extending

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

Optional semimartingale decomposition and no arbitrage condition in enlarged ltration

Optional semimartingale decomposition and no arbitrage condition in enlarged ltration Optional semimartingale decomposition and no arbitrage condition in enlarged ltration Anna Aksamit Laboratoire d'analyse & Probabilités, Université d'evry Onzième Colloque Jeunes Probabilistes et Statisticiens

More information

PDE Approach to Credit Derivatives

PDE Approach to Credit Derivatives PDE Approach to Credit Derivatives Marek Rutkowski School of Mathematics and Statistics University of New South Wales Joint work with T. Bielecki, M. Jeanblanc and K. Yousiph Seminar 26 September, 2007

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Sidney I. Resnick. A Probability Path. Birkhauser Boston Basel Berlin

Sidney I. Resnick. A Probability Path. Birkhauser Boston Basel Berlin Sidney I. Resnick A Probability Path Birkhauser Boston Basel Berlin Preface xi 1 Sets and Events 1 1.1 Introduction 1 1.2 Basic Set Theory 2 1.2.1 Indicator functions 5 1.3 Limits of Sets 6 1.4 Monotone

More information

Model-independent bounds for Asian options

Model-independent bounds for Asian options Model-independent bounds for Asian options A dynamic programming approach Alexander M. G. Cox 1 Sigrid Källblad 2 1 University of Bath 2 CMAP, École Polytechnique University of Michigan, 2nd December,

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

The ruin probabilities of a multidimensional perturbed risk model

The ruin probabilities of a multidimensional perturbed risk model MATHEMATICAL COMMUNICATIONS 231 Math. Commun. 18(2013, 231 239 The ruin probabilities of a multidimensional perturbed risk model Tatjana Slijepčević-Manger 1, 1 Faculty of Civil Engineering, University

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information