Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography

Size: px
Start display at page:

Download "Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography"

Transcription

1 Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Aku Seppänen Inverse Problems Group Department of Applied Physics University of Eastern Finland Kuopio, Finland Jyväskylä Summer School August 11-13, 2014

2 Electrical impedance tomography (EIT) In EIT electric currents I are applied to electrodes on the surface of the object and the resulting potentials V are measured using the same electrodes. The conductivity distribution σ = σ(x) is reconstructed based on the potential measurements. Diffusive tomography modality

3 Forward model for EIT (σ u) = 0, x Ω u + z l σ u = U l, x e l n σ u e l n ds = I l, l = 1, 2,..., L σ u n = 0, x Ω\ L l=1 e l

4 Forward model & inverse problem in EIT Finite element (FE) approximation of the complete electrode model V = U(σ) Additive noise model V obs = U(σ) + n

5 Examples of forward solutions See examples of EIT forward solutions in Appendix 1. (Don t print it out; huge number of pages & figs.) What do the last examples tell us about the ill-posedness of EIT? Any suggestions for the remedy?

6 MAP estimates In the case of Gaussian likelihood model and Gibbs type prior, the posterior density is of the form π(σ V ) π(v σ)π(σ) ( exp 1 2 (V U(σ))T Γ 1 n (V U(σ)) 1 ) 2 G(σ) And the MAP estimate can be written in the form σ MAP = arg min σ { L n (V U(σ)) 2 + G(σ)} (1) where L T n L n = Γ 1 n. Iterative solution (e.g. Gauss-Newton)

7 MAP estimates with Gaussian models In the case of Gaussian likelihood model and Gaussian prior, the posterior density is of the form ( π(σ V ) exp 1 2 (V U(σ))T Γ 1 n (V U(σ)) 1 ) 2 (σ η σ) T Γ 1 σ (σ η σ ) And the MAP estimate can be written in the form σ MAP = arg min σ { L n (V U(σ)) 2 + L σ (σ η σ ) 2 } (2) where L T n L n = Γ 1 n, L T σ L σ = Γ 1 σ. Iterative solution (e.g. Gauss-Newton)

8 Iteration step 1 Left: estimated conductivity distribution. Right: Measured vs. computed potentials.

9 Iteration step 2 Left: estimated conductivity distribution. Right: Measured vs. computed potentials.

10 Iteration step 3 Left: estimated conductivity distribution. Right: Measured vs. computed potentials.

11 Iteration step 4 Left: estimated conductivity distribution. Right: Measured vs. computed potentials.

12 Iteration step 5 Left: estimated conductivity distribution. Right: Measured vs. computed potentials.

13 Forward model MAP estimates Computational aspects Gaussian prior models MAP estimate Figure: Left: Photo of the true target; Right: estimated conductivity distribution. TV prior

14 Computational aspects Solution of the optimization problem in the MAP estimate typically Gauss-Newton-type iteration Line-search Non-negativity constraint: e.g. for Gaussian priors, P(σ < 0) 0. However, in reality the conductivity is non-negative. In MAP estimates, the non-negativity constraint can be handled by constrained optimization σ MAP = arg min σ 0 { L n(v U(σ)) 2 + L σ (σ η σ ) 2 } (3) Projected line-search (not a good choice...) Interior point method

15 Interior point method for the non-negativity constraint Idea: set a barrier function b(σ) which gives high penalty, when any element of the conductivity vector σ k 0. The MAP estimate with the interior point method σ MAP = arg min{ L n (V U(σ)) 2 + L σ (σ η σ ) 2 + b(σ)} σ Example: logarithmic barrier function b(σ) = µ N ln(σ k ) (4) k where µ is a weighting parameter. Usually µ is adaptively decreased during the iteration.

16 White noise prior A white noise prior is of the form σ N (η σ, γ 2 σi) (5) where η σ and γ 2 σ are the expectation and variance of σ. The prior density ( π(σ) exp 1 exp 2γ 2 σ ) (σ η σ ) T (σ η σ ) ( 1 ) 2γσ 2 (σ η σ ) 2 (6) (7)

17 White noise prior: How to select η σ and γ 2 σ? Gaussian random variable σ σ N (η σ, γ 2 σi) Define σ min = η σ 3γ σ and σ max = η σ + 3γ σ. Then, P(σ min < σ < σ max ) Practical way of selecting η σ and γσ: 2 The expectation of the conductivity η σ can often be assessed based on the knowledge of the physical properties of the target (prior information!) Further, you may also have an idea of "upper limit" of conductivity σ max (loosely speaking!) Then, a reasonable choice for the variance is γσ 2 = ( σ max η σ ) 2 3 Problems: White noise prior is usually not a good model in EIT the conductivity is usually spatially correlated.

18 Uninformative smoothness prior Standard (uninformative) smoothness prior (continuous σ) ( ) π(σ) exp α σ 2 dr Ω Finite dimensional approximation for σ; prior density can be written in the form π(σ) exp ( 12 ) α L σσ 2 = exp ( 12 α σt L TσL ) σ σ 2 Matrix L T σl σ is not invertible Γ σ does not exist. Problems: How to select α? How to control the degree of spatial smoothness?

19 Extensions of the uninformative smoothness prior (Uninformative) anisotropic smoothness prior is defined accordingly (continuos form) ( ) π(σ) exp α A(r) σ 2 dr Ω (8) where A(r) is tensor field. (Uninformative) structural priors can be constructed by selection of A(r) based on structural information (example: anatomical information provided by another imaging modality).

20 An informative smoothness prior Gaussian random variable σ N (η σ, Γ σ ) ( π(σ) exp 1 ) 2 (σ η σ) T Γ 1 σ (σ η σ ) Write the covariance matrix Γ σ as { Γ σ (i, j) = a exp x i x j 2 2 2b 2 } (9) (10) where x i R 2,3 is the spatial coordinate corresponding to a discrete conductivity value σ i (Lieberman, Willcox, Ghattas 2010). Other similar models exist.

21 An informative smoothness prior: How to select a and b? The variance of the conductivity at point x i is var(γ i ) = Γ σ (i, i) = a (11) Selection of the variance: See the white noise prior above. Define the correlation length l as the distance where the cross-covariance Γ σ (i, j) drops to 1% of var(γ i ). Then b = l 2 ln(100). (12)

22 An informative anisotropic smoothness prior Again, Gaussian random variable σ N (η σ, Γ σ ) ( π(σ) exp 1 ) 2 (σ η σ) T Γ 1 σ (σ η σ ) Write the covariance matrix Γ σ as Γ σ (i, j) = a exp 3 k=1 x(k) i 2bk 2 x (k) j 2 2 (13) (14) where x i R 3, x i = (x (1) i, x (2) i, x (3) i ) is the spatial coordinate corresponding to a discrete conductivity value σ i, and coefficients b k define the correlation lengths l k at the directions of the coordinate axes. Other directions by coordinate transformations.

23 Examples of informative smoothness priors For examples of informative smoothness priors, see Appendix 2. Samples corresponding to smoothness priors with different correlation lenghts.

24 A sample based Gaussian prior Assume that you have a set of samples of the conductivity distribution (based on e.g. other experiments or a flow simulation); denote the samples by σ (j), j = 1,..., K. Approximate σ as a Gaussian random variable σ N (η σ, Γ σ ) ( π(σ) exp 1 ) 2 (σ η σ) T Γ 1 σ (σ η σ ) (15) where η σ is chosen to be the sample mean 1 K K j=1 σ(j), and the sample covariance is used as the prior covariance matrix: Γ σ = 1 K 1 K (σ (i) η σ )(σ (i) η σ ) T (16) i=1

25 Total variation prior A couple of different versions of TV prior exists. The following one has certain advantages. Total variation prior (continuous form, 2D case) ( ) ( ) σ π(σ) exp α σ 2 dr = exp α Ω Ω x + σ y dr Finite dimensional approximation π(σ) exp ( α Promotes sparsity of σ. M l=1 ) (L x σ) 2 l + (L yσ) 2 l

26 Total variation prior Hence where Gibbs type prior A(σ) = π(σ) exp ( αa(σ)) M l=1 The posterior density is of the form (L x σ) 2 l + (L yσ) 2 l π(σ V ) π(v σ)π(σ) ( exp 1 ) 2 (V U(σ))T Γ 1 n (V U(σ)) A(σ)

27 Total variation prior MAP estimate σ MAP = arg min{ 1 σ 2 L n(v U(σ)) 2 + A(σ)} Solution: e.g. Gauss-Newton Note: A(σ) is not differentiable. Hence, approximation: A(σ) = M l=1 where β is a small constant. (L x σ) 2 l + (L yσ) 2 l + β

28 An example

29 Sensing skin application

30 Sensing skin application

Reduced Basis Methods for MREIT

Reduced Basis Methods for MREIT Reduced Basis Methods for MREIT Dominik Garmatter garmatter@math.uni-frankfurt.de Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany Joint work with Bastian Harrach

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 2, Mikhail Zaslavsky 2 University of Michigan, Ann

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 3, Mikhail Zaslavsky 3 University of Michigan, Ann

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Magnet Resonance Electrical Impedance Tomography (MREIT): convergence of the Harmonic B z Algorithm

Magnet Resonance Electrical Impedance Tomography (MREIT): convergence of the Harmonic B z Algorithm Magnet Resonance Electrical Impedance Tomography (MREIT): convergence of the Harmonic B z Algorithm Dominik Garmatter garmatter@math.uni-frankfurt.de Group for Numerics of PDEs, Goethe University Frankfurt,

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Lecture 1 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia.

Lecture 1 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia. Principles and Lecture 1 of 4-part series Spring School on Risk, Insurance and Finance European University at St. Petersburg, Russia 2-4 April 2012 s University of Connecticut, USA page 1 s Outline 1 2

More information

Multi-period Portfolio Choice and Bayesian Dynamic Models

Multi-period Portfolio Choice and Bayesian Dynamic Models Multi-period Portfolio Choice and Bayesian Dynamic Models Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Extended Model: Posterior Distributions

Extended Model: Posterior Distributions APPENDIX A Extended Model: Posterior Distributions A. Homoskedastic errors Consider the basic contingent claim model b extended by the vector of observables x : log C i = β log b σ, x i + β x i + i, i

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Consider

More information

Testing Out-of-Sample Portfolio Performance

Testing Out-of-Sample Portfolio Performance Testing Out-of-Sample Portfolio Performance Ekaterina Kazak 1 Winfried Pohlmeier 2 1 University of Konstanz, GSDS 2 University of Konstanz, CoFE, RCEA Econometric Research in Finance Workshop 2017 SGH

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Overnight Index Rate: Model, calibration and simulation

Overnight Index Rate: Model, calibration and simulation Research Article Overnight Index Rate: Model, calibration and simulation Olga Yashkir and Yuri Yashkir Cogent Economics & Finance (2014), 2: 936955 Page 1 of 11 Research Article Overnight Index Rate: Model,

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Stochastic Volatility (SV) Models

Stochastic Volatility (SV) Models 1 Motivations Stochastic Volatility (SV) Models Jun Yu Some stylised facts about financial asset return distributions: 1. Distribution is leptokurtic 2. Volatility clustering 3. Volatility responds to

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Regularizing Bayesian Predictive Regressions. Guanhao Feng

Regularizing Bayesian Predictive Regressions. Guanhao Feng Regularizing Bayesian Predictive Regressions Guanhao Feng Booth School of Business, University of Chicago R/Finance 2017 (Joint work with Nicholas Polson) What do we study? A Bayesian predictive regression

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

FINA 695 Assignment 1 Simon Foucher

FINA 695 Assignment 1 Simon Foucher Answer the following questions. Show your work. Due in the class on March 29. (postponed 1 week) You are expected to do the assignment on your own. Please do not take help from others. 1. (a) The current

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Choice Probabilities. Logit Choice Probabilities Derivation. Choice Probabilities. Basic Econometrics in Transportation.

Choice Probabilities. Logit Choice Probabilities Derivation. Choice Probabilities. Basic Econometrics in Transportation. 1/31 Choice Probabilities Basic Econometrics in Transportation Logit Models Amir Samimi Civil Engineering Department Sharif University of Technology Primary Source: Discrete Choice Methods with Simulation

More information

CSC 411: Lecture 08: Generative Models for Classification

CSC 411: Lecture 08: Generative Models for Classification CSC 411: Lecture 08: Generative Models for Classification Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 08-Generative Models 1 / 23 Today Classification

More information

Smart Beta: Managing Diversification of Minimum Variance Portfolios

Smart Beta: Managing Diversification of Minimum Variance Portfolios Smart Beta: Managing Diversification of Minimum Variance Portfolios Jean-Charles Richard and Thierry Roncalli Lyxor Asset Management 1, France University of Évry, France Risk Based and Factor Investing

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

The Term Structure of Expected Inflation Rates

The Term Structure of Expected Inflation Rates The Term Structure of Expected Inflation Rates by HANS-JüRG BüTTLER Swiss National Bank and University of Zurich Switzerland 0 Introduction 1 Preliminaries 2 Term Structure of Nominal Interest Rates 3

More information

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay The EGARCH model Asymmetry in responses to + & returns: g(ɛ t ) = θɛ t + γ[ ɛ t E( ɛ t )], with E[g(ɛ t )] = 0. To see asymmetry

More information

Bayesian Linear Model: Gory Details

Bayesian Linear Model: Gory Details Bayesian Linear Model: Gory Details Pubh7440 Notes By Sudipto Banerjee Let y y i ] n i be an n vector of independent observations on a dependent variable (or response) from n experimental units. Associated

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

Interest Rate Curves Calibration with Monte-Carlo Simulatio

Interest Rate Curves Calibration with Monte-Carlo Simulatio Interest Rate Curves Calibration with Monte-Carlo Simulation 24 june 2008 Participants A. Baena (UCM) Y. Borhani (Univ. of Oxford) E. Leoncini (Univ. of Florence) R. Minguez (UCM) J.M. Nkhaso (UCM) A.

More information

Summary Sampling Techniques

Summary Sampling Techniques Summary Sampling Techniques MS&E 348 Prof. Gerd Infanger 2005/2006 Using Monte Carlo sampling for solving the problem Monte Carlo sampling works very well for estimating multiple integrals or multiple

More information

Weight Smoothing with Laplace Prior and Its Application in GLM Model

Weight Smoothing with Laplace Prior and Its Application in GLM Model Weight Smoothing with Laplace Prior and Its Application in GLM Model Xi Xia 1 Michael Elliott 1,2 1 Department of Biostatistics, 2 Survey Methodology Program, University of Michigan National Cancer Institute

More information

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth Lecture Note 9 of Bus 41914, Spring 2017. Multivariate Volatility Models ChicagoBooth Reference: Chapter 7 of the textbook Estimation: use the MTS package with commands: EWMAvol, marchtest, BEKK11, dccpre,

More information

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011 ECON 60B Problem Set Suggested Solutions Fall 0 September 7, 0 Optimal Consumption with A Linear Utility Function (Optional) Similar to the example in Lecture 3, the household lives for two periods and

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

A Stochastic Reserving Today (Beyond Bootstrap)

A Stochastic Reserving Today (Beyond Bootstrap) A Stochastic Reserving Today (Beyond Bootstrap) Presented by Roger M. Hayne, PhD., FCAS, MAAA Casualty Loss Reserve Seminar 6-7 September 2012 Denver, CO CAS Antitrust Notice The Casualty Actuarial Society

More information

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Dependence Structure and Extreme Comovements in International Equity and Bond Markets Dependence Structure and Extreme Comovements in International Equity and Bond Markets René Garcia Edhec Business School, Université de Montréal, CIRANO and CIREQ Georges Tsafack Suffolk University Measuring

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

Conditional Heteroscedasticity

Conditional Heteroscedasticity 1 Conditional Heteroscedasticity May 30, 2010 Junhui Qian 1 Introduction ARMA(p,q) models dictate that the conditional mean of a time series depends on past observations of the time series and the past

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Modelling the Sharpe ratio for investment strategies

Modelling the Sharpe ratio for investment strategies Modelling the Sharpe ratio for investment strategies Group 6 Sako Arts 0776148 Rik Coenders 0777004 Stefan Luijten 0783116 Ivo van Heck 0775551 Rik Hagelaars 0789883 Stephan van Driel 0858182 Ellen Cardinaels

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

Discussion Paper No. DP 07/05

Discussion Paper No. DP 07/05 SCHOOL OF ACCOUNTING, FINANCE AND MANAGEMENT Essex Finance Centre A Stochastic Variance Factor Model for Large Datasets and an Application to S&P data A. Cipollini University of Essex G. Kapetanios Queen

More information

Fast narrow bounds on the value of Asian options

Fast narrow bounds on the value of Asian options Fast narrow bounds on the value of Asian options G. W. P. Thompson Centre for Financial Research, Judge Institute of Management, University of Cambridge Abstract We consider the problem of finding bounds

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

ECE 295: Lecture 03 Estimation and Confidence Interval

ECE 295: Lecture 03 Estimation and Confidence Interval ECE 295: Lecture 03 Estimation and Confidence Interval Spring 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 23 Theme of this Lecture What is Estimation? You

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Lars Tyge Nielsen INSEAD Maria Vassalou 1 Columbia University This Version: January 2000 1 Corresponding

More information

Parameter estimation in SDE:s

Parameter estimation in SDE:s Lund University Faculty of Engineering Statistics in Finance Centre for Mathematical Sciences, Mathematical Statistics HT 2011 Parameter estimation in SDE:s This computer exercise concerns some estimation

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Budget Setting Strategies for the Company s Divisions

Budget Setting Strategies for the Company s Divisions Budget Setting Strategies for the Company s Divisions Menachem Berg Ruud Brekelmans Anja De Waegenaere November 14, 1997 Abstract The paper deals with the issue of budget setting to the divisions of a

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Conjugate Bayesian Models for Massive Spatial Data

Conjugate Bayesian Models for Massive Spatial Data Conjugate Bayesian Models for Massive Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

INVERSE REWARD DESIGN

INVERSE REWARD DESIGN INVERSE REWARD DESIGN Dylan Hadfield-Menell, Smith Milli, Pieter Abbeel, Stuart Russell, Anca Dragan University of California, Berkeley Slides by Anthony Chen Inverse Reinforcement Learning (Review) Inverse

More information

Modelling long term interest rates for pension funds

Modelling long term interest rates for pension funds Modelling long term interest rates for pension funds Michel Vellekoop Netspar and the University of Amsterdam Actuarial and Risk Measures Workshop on Pension Plans and Related Topics University of Piraeus,

More information

The Information Content of the Yield Curve

The Information Content of the Yield Curve The Information Content of the Yield Curve by HANS-JüRG BüTTLER Swiss National Bank and University of Zurich Switzerland 0 Introduction 1 Basic Relationships 2 The CIR Model 3 Estimation: Pooled Time-series

More information

Web-based Supplementary Materials for. A space-time conditional intensity model. for invasive meningococcal disease occurence

Web-based Supplementary Materials for. A space-time conditional intensity model. for invasive meningococcal disease occurence Web-based Supplementary Materials for A space-time conditional intensity model for invasive meningococcal disease occurence by Sebastian Meyer 1,2, Johannes Elias 3, and Michael Höhle 4,2 1 Department

More information

Bayesian Finance. Christa Cuchiero, Irene Klein, Josef Teichmann. Obergurgl 2017

Bayesian Finance. Christa Cuchiero, Irene Klein, Josef Teichmann. Obergurgl 2017 Bayesian Finance Christa Cuchiero, Irene Klein, Josef Teichmann Obergurgl 2017 C. Cuchiero, I. Klein, and J. Teichmann Bayesian Finance Obergurgl 2017 1 / 23 1 Calibrating a Bayesian model: a first trial

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Down-Up Metropolis-Hastings Algorithm for Multimodality

Down-Up Metropolis-Hastings Algorithm for Multimodality Down-Up Metropolis-Hastings Algorithm for Multimodality Hyungsuk Tak Stat310 24 Nov 2015 Joint work with Xiao-Li Meng and David A. van Dyk Outline Motivation & idea Down-Up Metropolis-Hastings (DUMH) algorithm

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Application of MCMC Algorithm in Interest Rate Modeling

Application of MCMC Algorithm in Interest Rate Modeling Application of MCMC Algorithm in Interest Rate Modeling Xiaoxia Feng and Dejun Xie Abstract Interest rate modeling is a challenging but important problem in financial econometrics. This work is concerned

More information

Strategies for High Frequency FX Trading

Strategies for High Frequency FX Trading Strategies for High Frequency FX Trading - The choice of bucket size Malin Lunsjö and Malin Riddarström Department of Mathematical Statistics Faculty of Engineering at Lund University June 2017 Abstract

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Importance sampling and Monte Carlo-based calibration for time-changed Lévy processes

Importance sampling and Monte Carlo-based calibration for time-changed Lévy processes Importance sampling and Monte Carlo-based calibration for time-changed Lévy processes Stefan Kassberger Thomas Liebmann BFS 2010 1 Motivation 2 Time-changed Lévy-models and Esscher transforms 3 Applications

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

Construction and behavior of Multinomial Markov random field models

Construction and behavior of Multinomial Markov random field models Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2010 Construction and behavior of Multinomial Markov random field models Kim Mueller Iowa State University Follow

More information

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Presented at OSL workshop, Les Houches, France. Joint work with Prateek Jain, Sham M. Kakade, Rahul Kidambi and Aaron Sidford Linear

More information

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance WITH SKETCH ANSWERS BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance SCHOOL OF ECONOMICS,

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

An Implementation of Markov Regime Switching GARCH Models in Matlab

An Implementation of Markov Regime Switching GARCH Models in Matlab An Implementation of Markov Regime Switching GARCH Models in Matlab Thomas Chuffart Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS Abstract MSGtool is a MATLAB toolbox which

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Amath 546/Econ 589 Univariate GARCH Models

Amath 546/Econ 589 Univariate GARCH Models Amath 546/Econ 589 Univariate GARCH Models Eric Zivot April 24, 2013 Lecture Outline Conditional vs. Unconditional Risk Measures Empirical regularities of asset returns Engle s ARCH model Testing for ARCH

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY

ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY Kai Detlefsen Wolfgang K. Härdle Rouslan A. Moro, Deutsches Institut für Wirtschaftsforschung (DIW) Center for Applied Statistics

More information

Convex-Cardinality Problems

Convex-Cardinality Problems l 1 -norm Methods for Convex-Cardinality Problems problems involving cardinality the l 1 -norm heuristic convex relaxation and convex envelope interpretations examples recent results Prof. S. Boyd, EE364b,

More information