Math Option pricing using Quasi Monte Carlo simulation

Size: px
Start display at page:

Download "Math Option pricing using Quasi Monte Carlo simulation"

Transcription

1 . Math Option pricing using Quasi Monte Carlo simulation Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics, Rutgers University This paper describes the implementation of a C++ program to calculate the value of a european style call option on an underlying asset, given input parameters for stock price (s=100), strike price (k=110),volatility (v=30%), interest rate (r=5%), maturity (T=1 year) using Quasi Monte Carlo simulation with low discrepancy Sobol sequences. We compare the results of Quasi Monti Carol method to that of the closed form solution, Monti Carlo with Park Miller and MC with antithetic sampling. The underlying stock price is assumed to follow geometric brownian motion. The program calculates the option prices using the Monte Carlo/Quasi MC method with 10,000 simulations and uses the solution to the Stochastic differential equation of the stock process [3]. I. INTRODUCTION In this assignment we are pricing a European style vanilla call option using low discrepancy Sobol sequences to generate Uniform (0,1) and then use the inverse cumulative distribution function to convert uniformly distributed variables to gaussian distribution. We use Monte Carlo simulation and the solution to the stochastic differential equation to calculate the option price at expiry and then discounting it. ds(t) = (rs(t)dt + σs(t)dw (t) (1) the solution to the above Stochastic Differential Equation is, S(T ) = S(0)e (r 1 2 σ2 )T +σw (T ) the payoff for the call option is, (2) (S(T ) k) + (3) We have modified Joshi s code from chapter 6 (RandomMain3.cpp), as was required for this assignment. II. CLOSED FORM BLACK-SCHOLES-MERTON Here, K is the strike price and S(T ) is the terminal stock price at the payoff date. The price of the underlying at terminal time,t, is given by [4] S(T ) = S(0)e (r a 1 2 σ2 )T +σw (T ) (4) A closed form solution for the price of a European Call and Put is given by [4] c(t, x) = xe at N(d + (T, x)) e rt KN(d (τ, x)) (5) and p(t, x) = e rt KN( d (T, x)) xe at N( d + (τ, x)). (6) Here, N is the Normal Cumulative Distribution density and the parameters, d + and d are given by d + = d + σ T = 1 [log σ xk (r T ) ] σ2 T.(7) The function bsm in the file Random- Main3.cpp describes the implementation of the above closed form Black Scholes Merton model. The output is as follows, III. Closed f orm option price = (8) MONTE CARLO WITH PARK-MILLER Park-Miller is one of the many random number generators thats are used to produce random samples for Monte Carlo simulation. It is on of the Linear Congruential Generators (LCG). It has a period of, (9) The general form of a LCG generator is, x = initial seed a = multiplier m = modulus c = shift x i+1 = (ax i + c) mod m 1 (10) u i+1 = x i+1 /m 1 (11) The following are the values for the variables m = , a = (12)

2 2 Park Miller s uniform random number generator is implemented by Mark Joshi. We then pass these uniform values to inverse cumulative distribution to get normally distributed variables. We directly use it as-is. The only modification we do is that we turn off Antithetic sampling. The files ParkMiller.h and ParkMiller.cpp implements the function for the above formula as a class. The output for out call option is, MC vanilla call with P ark Miller = (13) IV. MONTE CARLO WITH PARK-MILLER WITH ANTITHETICS This method uses the same algorithm to generate samples. But the way we sample (number of samples independently taken) is different here. We take one sample using Park Miller and the use the negative of the same value as second sample. In this was we get the following equation S(t i+1 ) = S(t i )(1 + rτ + σ T Z i+1 ) (14) S(t i+1 ) = S(t i )(1 + rτ σ T Z i+1 ) (15) Using the above formula, we can reduce the variance of the samples.the result of Monte Carlo simulation on using the above variance reduction technique. The result of this method is, Ŷ AV = 1 + Y i n (Σni=1(Ỹi )) (16) 2 MC with P ark Miller and antithetics = (17) V. QUASI MONTE CARLO WITH SOBOL SEQUENCE A major drawback of Monte Carlo integration with pseudo-random numbers is given by the fact that the error term scales only as 1/ N.This is inherent to methods based on random numbers.this leads to the idea to choose the points deterministically such that to minimize the integration error.low-discrepancy sequence is a sequence with the property that for all values of N, its subsequence x1,..., xn has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the number of points in the sequence falling into an arbitrary set B is close to proportional to the measure of B, as would happen on average (but not for particular samples) in the case of a uniform distribution[5]. We now have the main theorem of quasi-monte Carlo integration: If f has bounded variation on [0, 1] d then for any x 1,..., x N [0, 1] d we have 1 N N n=1 f(x n ) dxf(x) V (f)d (x 1,..., x N ). (18) Sobol sequences [6] are obtained by first choosing a primitive polynomial over Z of degree g: P = x g + a 1 x g a g 1 x + 1, (19) where each a i is either 0 or 1. The coefficients a i are used in the recurrence relation v i = a 1 v i 1 a 2 v i 2... a g 1 v i g+1 v i g [v i g /2 (20) g ], where denotes the bitwise exclusive-or operation and each v i is a number which can be written as v i = m i /(2 i ) with 0 < m i < 2 i. Consequetive quasi-random numbers are then obtained from the relation x n+1 = x n v c, (21) where the index c is equal to the place of the rightmost zero-bit in the binary representation of n. For example n = 11 has the binary representation 1011 and the rightmost zero-bit is the third one. Therefore c = 3 in this case. For a primitive polynomial of degree g we also have to choose the first g values for the m i. The only restriction is that the m i are all odd and m i < 2 i. There is an alternative way of computing x n : x n = g 1 v 1 g 2 v 2... (22) where...g 3 g 2 g 1 is the Gray code representation of n. The basic property of the Gray code is that the representations for n and n + 1 differ in only one position. The Gray code representation can be obtained from the binary representation according to...g 3 g 2 g 1 =...b 3 b 2 b 1...b 4 b 3 b 2. (23) The above description of the sobol sequence generation was taken from [2].We have used Sobol sequence generator by S.Joe and R.Y.Kuo. We pass a file with the primitive polynomial and values of all the coefficient. This Sobol generator is capable of producing vary high dimensional sequences from 0 to 1. In our application we need only 1 dimensional sequence since we are evaluating a vanilla call option at expiry. We have implemented a function MCSobol in Sobol.cpp which uses sobol sequences to implement Quasi Monte Carlo simulation. The function sobolpoints returns an array with sobol sequences which are used for option price calculation. The price with this method is, QM C vanilla call with Sobol sequences = (24) As we can see that the option price using sobol sequences and quasi monti carlo method is the closest to the closed formed solution. VI. ANALYSIS OF THE RESULTS, ADDITIONAL QUESTIONS AND PLOTS The table on the next page show the results from all four methods described above. We notice that the results

3 3 of all the methods are fairly accurate but using Sobol sequences gave the most accurate result. The reason why we use inverse transform instead of Marsaglia-Bray-Box- Muller is because the latter uses sines and cosines to approximate the value for the normal variable. This is time consuming which reduces the efficiency of the algorithm. Also we generated 2-dimensional plots of 1024 pairs of samples from uniform distribution over a unit square using Park-Miller generator and sobol sequences. The plots can be found on the next pages. Look at the plot one can tell that the sobol points are more uniformly distributed over a unit square than the Park-Miller points. Below are the summary statistics for 1-dimension sobol and parkmiller numbers. N umerix option price = (31) Haug Excel option price = (32) We used many different random number generation methods to calculate the value of European Call options using the closed form solution, Monte Carlo and Quasi Monti Carlo with Sobol sequences.we benchmarked the obtained results with the Numerix option value calculator and Haug Excel VBA calculator and found our results to be in reasonably good agreement with the value given by Numerix and the closed form solutions. Uniform dist : Mean = S.dev = (25) Sobol : Mean = S.dev = (26) P ark Miller : Mean = S.dev = (27) We can clearly see that sobol sequences are much more closer to the true uniform distribution than the ones generated by Park-Miller. VII. FURTHER DISCUSSION AND ANALYSIS For testing and debugging purposes we also compared the output of our Sobol generator (Joe s and Kuo s) to that of a lower dimensional generator. In this case we used the MATLAB code provided by Brandimarte (Get- Sobol.m) and modified it to sample 1024 points. For comparison purposes we have plotted all three of them in 1-dimension below. We also provide the summary statistics for them. Brandimater Sobol : M ean = S.dev = 0.288(28) Joe s Sobol : Mean = S.dev = 0.288(29) P ark Miller : Mean = S.dev = 0.283(30) From the above summary statistics and the plot it is clear that our sobol generator has the same statistical properties as the sequence from a lower dimensional sobol generator. VIII. BENCHMARKING Numerix and the Excel spreadsheets by Haug does not provide the user the ability to produce Sobol sequences. Hence we have benchmarked our results using the closed form and monte carlo simulations in Numerix and Haug VBA sheets. Below are the option prices by both the methods. They are also presented in a tabular form with all the other 4 methods described above and implemented in C++.

4 4 FIG. 1: 2-D Sobol sequence, over a unit square. FIG. 2: 1-D Sobol sequence.

5 FIG. 4: Haug s Excel calculator 5 EuropeanCall Trade Input Deal Number Trade abc Book Book A Counterparty Bank X Y Z Trader Trader A Comment Comment here Deal Definition DealID EuropeanCall Buy (+1) Sell (-1) 1 Equity IBM Number of Options 1 Currency USD Business Center NewYork Strike 110 Equity Settlement Lag 2BD EndDate 6-Feb-2013 Pricing Model Model Selection CONSTVOL Quality 0 Valuation Date 2/6/12 Numerical Method Backward Lattice Valuation and Risk Pricer:EuroOpt EQ Greeks:EuroOpt.Vega 0.40 EQ Greeks:EuroOpt.Delta 0.50 EQ Greeks:EuroOpt.Rho 0.00 EQ Greeks:EuroOpt.Gamma 0.01 Hyperlinks Skip Risk Reports Deal Object Nx_D_EuropeanCall_Deal_Object EQ Greeks FALSE Data Nx_D_EuropeanCall_Data Events Nx_D_EuropeanCall_Events Indices Nx_D_EuropeanCall_Indices Prices Nx_D_EuropeanCall_Prices Reports Nx_D_EuropeanCall_Reports Script Nx_D_EuropeanCall_Script FIG. 3: Numerix calculator. 1.Generalized BSM The generalized Black-Scholes-Merton option pricing formula Implementation By Espen Gaarder Haug Copyright 2006 Time in : Years Long Call Asset price ( S ) Strike price ( X ) Time to maturity ( T ) Risk-free rate ( r ) 5.00% Continuous Cost of carry ( b ) 5.00% Continuous Volatility ( σ ) 30.00% Forward Price Option Value ON By Espen Gaarder Haug

6 6 TABLE I: European Call pricing using different uniform generators for S(0)=100 and K=110 Option Closed Form Park-Miller Park-Miller with Antithetics Sobol sequence Numerix Haug European Call TABLE II: Summary Stastistics for all three methods Stats Low-dimension Sobol Joe and Kuo ss obol Park-Miller uniforms Mean Standard Deviation

7 [1] wwwthep.physik.uni-mainz.de/ stefanw/download/lecture [2] M.S. Joshi, C++ design Patterns and Derivative Pricing, (Wiley 2008). [3] S.E. Shreve, Stochastic Calculus for Finance II Continuous Time Models, (Springer, 2004). [4] Wikipedia page for low discrepancy sequence [5] I M Sobol, USSR comp. Math 7

Math Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods

Math Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods . Math 623 - Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department

More information

Math Computational Finance Option pricing using Brownian bridge and Stratified samlping

Math Computational Finance Option pricing using Brownian bridge and Stratified samlping . Math 623 - Computational Finance Option pricing using Brownian bridge and Stratified samlping Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,

More information

Math Computational Finance Barrier option pricing using Finite Difference Methods (FDM)

Math Computational Finance Barrier option pricing using Finite Difference Methods (FDM) . Math 623 - Computational Finance Barrier option pricing using Finite Difference Methods (FDM) Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information

On the Scrambled Sobol sequences Lecture Notes in Computer Science 3516, , Springer 2005

On the Scrambled Sobol sequences Lecture Notes in Computer Science 3516, , Springer 2005 On the Scrambled Sobol sequences Lecture Notes in Computer Science 3516, 775-782, Springer 2005 On the Scrambled Soboĺ Sequence Hongmei Chi 1, Peter Beerli 2, Deidre W. Evans 1, and Micheal Mascagni 2

More information

Assignment - Exotic options

Assignment - Exotic options Computational Finance, Fall 2014 1 (6) Institutionen för informationsteknologi Besöksadress: MIC, Polacksbacken Lägerhyddvägen 2 Postadress: Box 337 751 05 Uppsala Telefon: 018 471 0000 (växel) Telefax:

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

MONTE CARLO EXTENSIONS

MONTE CARLO EXTENSIONS MONTE CARLO EXTENSIONS School of Mathematics 2013 OUTLINE 1 REVIEW OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO 3 SUMMARY MONTE CARLO SO FAR... Simple to program

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Monte Carlo Methods in Finance Peter Jackel JOHN WILEY & SONS, LTD Preface Acknowledgements Mathematical Notation xi xiii xv 1 Introduction 1 2 The Mathematics Behind Monte Carlo Methods 5 2.1 A Few Basic

More information

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA Rajesh Bordawekar and Daniel Beece IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation

More information

Market Volatility and Risk Proxies

Market Volatility and Risk Proxies Market Volatility and Risk Proxies... an introduction to the concepts 019 Gary R. Evans. This slide set by Gary R. Evans is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

10. Monte Carlo Methods

10. Monte Carlo Methods 10. Monte Carlo Methods 1. Introduction. Monte Carlo simulation is an important tool in computational finance. It may be used to evaluate portfolio management rules, to price options, to simulate hedging

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Spring 2010 Computer Exercise 2 Simulation This lab deals with

More information

Financial Risk Forecasting Chapter 7 Simulation methods for VaR for options and bonds

Financial Risk Forecasting Chapter 7 Simulation methods for VaR for options and bonds Financial Risk Forecasting Chapter 7 Simulation methods for VaR for options and bonds Jon Danielsson 2017 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com

More information

History of Monte Carlo Method

History of Monte Carlo Method Monte Carlo Methods History of Monte Carlo Method Errors in Estimation and Two Important Questions for Monte Carlo Controlling Error A simple Monte Carlo simulation to approximate the value of pi could

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Market interest-rate models

Market interest-rate models Market interest-rate models Marco Marchioro www.marchioro.org November 24 th, 2012 Market interest-rate models 1 Lecture Summary No-arbitrage models Detailed example: Hull-White Monte Carlo simulations

More information

Handbook of Financial Risk Management

Handbook of Financial Risk Management Handbook of Financial Risk Management Simulations and Case Studies N.H. Chan H.Y. Wong The Chinese University of Hong Kong WILEY Contents Preface xi 1 An Introduction to Excel VBA 1 1.1 How to Start Excel

More information

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Kin Hung (Felix) Kan 1 Greg Frank 3 Victor Mozgin 3 Mark Reesor 2 1 Department of Applied

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

The Pennsylvania State University. The Graduate School. Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO

The Pennsylvania State University. The Graduate School. Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO The Pennsylvania State University The Graduate School Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO SIMULATION METHOD A Thesis in Industrial Engineering and Operations

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an Imprint of Elsevier

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an Imprint of Elsevier Computational Finance Using C and C# Derivatives and Valuation SECOND EDITION George Levy ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Quasi-Monte Carlo for Finance

Quasi-Monte Carlo for Finance Quasi-Monte Carlo for Finance Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria NCTS, Taipei, November 2016 Peter Kritzer

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Brooks, Introductory Econometrics for Finance, 3rd Edition

Brooks, Introductory Econometrics for Finance, 3rd Edition P1.T2. Quantitative Analysis Brooks, Introductory Econometrics for Finance, 3rd Edition Bionic Turtle FRM Study Notes Sample By David Harper, CFA FRM CIPM and Deepa Raju www.bionicturtle.com Chris Brooks,

More information

Implementing Models in Quantitative Finance: Methods and Cases

Implementing Models in Quantitative Finance: Methods and Cases Gianluca Fusai Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases vl Springer Contents Introduction xv Parti Methods 1 Static Monte Carlo 3 1.1 Motivation and Issues 3 1.1.1

More information

Option Pricing Using Bayesian Neural Networks

Option Pricing Using Bayesian Neural Networks Option Pricing Using Bayesian Neural Networks Michael Maio Pires, Tshilidzi Marwala School of Electrical and Information Engineering, University of the Witwatersrand, 2050, South Africa m.pires@ee.wits.ac.za,

More information

EFFICIENCY IMPROVEMENT BY LATTICE RULES FOR PRICING ASIAN OPTIONS. Christiane Lemieux Pierre L Ecuyer

EFFICIENCY IMPROVEMENT BY LATTICE RULES FOR PRICING ASIAN OPTIONS. Christiane Lemieux Pierre L Ecuyer Proceedings of the 1998 Winter Simulation Conference D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds. EFFICIENCY IMPROVEMENT BY LATTICE RULES FOR PRICING ASIAN OPTIONS Christiane Lemieux

More information

Pricing Asian Options

Pricing Asian Options Pricing Asian Options Maplesoft, a division of Waterloo Maple Inc., 24 Introduction his worksheet demonstrates the use of Maple for computing the price of an Asian option, a derivative security that has

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Monte Carlo Methods in Structuring and Derivatives Pricing

Monte Carlo Methods in Structuring and Derivatives Pricing Monte Carlo Methods in Structuring and Derivatives Pricing Prof. Manuela Pedio (guest) 20263 Advanced Tools for Risk Management and Pricing Spring 2017 Outline and objectives The basic Monte Carlo algorithm

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 2 Random number generation January 18, 2018

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

The accuracy of the escrowed dividend model on the value of European options on a stock paying discrete dividend

The accuracy of the escrowed dividend model on the value of European options on a stock paying discrete dividend A Work Project, presented as part of the requirements for the Award of a Master Degree in Finance from the NOVA - School of Business and Economics. Directed Research The accuracy of the escrowed dividend

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model

Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model asymptotic approximation formula for the vanilla European call option price. A class of multi-factor volatility models has been introduced

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples.

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples. for for January 25, 2016 1 / 26 Outline for 1 2 3 4 2 / 26 Put Option for A put option is the right to sell an asset at an established price at a certain time. The established price is the strike price,

More information

Week 1 Quantitative Analysis of Financial Markets Distributions B

Week 1 Quantitative Analysis of Financial Markets Distributions B Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Math 623 (IOE 623), Winter 2008: Final exam

Math 623 (IOE 623), Winter 2008: Final exam Math 623 (IOE 623), Winter 2008: Final exam Name: Student ID: This is a closed book exam. You may bring up to ten one sided A4 pages of notes to the exam. You may also use a calculator but not its memory

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

CS 774 Project: Fall 2009 Version: November 27, 2009

CS 774 Project: Fall 2009 Version: November 27, 2009 CS 774 Project: Fall 2009 Version: November 27, 2009 Instructors: Peter Forsyth, paforsyt@uwaterloo.ca Office Hours: Tues: 4:00-5:00; Thurs: 11:00-12:00 Lectures:MWF 3:30-4:20 MC2036 Office: DC3631 CS

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Barrier Option. 2 of 33 3/13/2014

Barrier Option. 2 of 33 3/13/2014 FPGA-based Reconfigurable Computing for Pricing Multi-Asset Barrier Options RAHUL SRIDHARAN, GEORGE COOKE, KENNETH HILL, HERMAN LAM, ALAN GEORGE, SAAHPC '12, PROCEEDINGS OF THE 2012 SYMPOSIUM ON APPLICATION

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

CFE: Level 1 Exam Sample Questions

CFE: Level 1 Exam Sample Questions CFE: Level 1 Exam Sample Questions he following are the sample questions that are illustrative of the questions that may be asked in a CFE Level 1 examination. hese questions are only for illustration.

More information

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1 Asian Option Pricing: Monte Carlo Control Variate A discrete arithmetic Asian call option has the payoff ( 1 N N + 1 i=0 S T i N K ) + A discrete geometric Asian call option has the payoff [ N i=0 S T

More information

MSc in Financial Engineering

MSc in Financial Engineering Department of Economics, Mathematics and Statistics MSc in Financial Engineering On Numerical Methods for the Pricing of Commodity Spread Options Damien Deville September 11, 2009 Supervisor: Dr. Steve

More information

by Kian Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University

by Kian Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University by Kian Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University Presentation at Hitotsubashi University, August 8, 2009 There are 14 compulsory semester courses out

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Applied Mathematical Sciences, Vol. 6, 2012, no. 112, 5597-5602 Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Nasir Rehman Department of Mathematics and Statistics

More information

ASC Topic 718 Accounting Valuation Report. Company ABC, Inc.

ASC Topic 718 Accounting Valuation Report. Company ABC, Inc. ASC Topic 718 Accounting Valuation Report Company ABC, Inc. Monte-Carlo Simulation Valuation of Several Proposed Relative Total Shareholder Return TSR Component Rank Grants And Index Outperform Grants

More information

Risk-Neutral Valuation

Risk-Neutral Valuation N.H. Bingham and Rüdiger Kiesel Risk-Neutral Valuation Pricing and Hedging of Financial Derivatives W) Springer Contents 1. Derivative Background 1 1.1 Financial Markets and Instruments 2 1.1.1 Derivative

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

Quasi-Monte Carlo for finance applications

Quasi-Monte Carlo for finance applications ANZIAM J. 50 (CTAC2008) pp.c308 C323, 2008 C308 Quasi-Monte Carlo for finance applications M. B. Giles 1 F. Y. Kuo 2 I. H. Sloan 3 B. J. Waterhouse 4 (Received 14 August 2008; revised 24 October 2008)

More information

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by Financial Modeling with Crystal Ball and Excel, Second Edition By John Charnes Copyright 2012 by John Charnes APPENDIX C Variance Reduction Techniques As we saw in Chapter 12, one of the many uses of Monte

More information

Cash Accumulation Strategy based on Optimal Replication of Random Claims with Ordinary Integrals

Cash Accumulation Strategy based on Optimal Replication of Random Claims with Ordinary Integrals arxiv:1711.1756v1 [q-fin.mf] 6 Nov 217 Cash Accumulation Strategy based on Optimal Replication of Random Claims with Ordinary Integrals Renko Siebols This paper presents a numerical model to solve the

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

Quasi-Monte Carlo for Finance Applications

Quasi-Monte Carlo for Finance Applications Quasi-Monte Carlo for Finance Applications M.B. Giles F.Y. Kuo I.H. Sloan B.J. Waterhouse October 2008 Abstract Monte Carlo methods are used extensively in computational finance to estimate the price of

More information

Notes. Cases on Static Optimization. Chapter 6 Algorithms Comparison: The Swing Case

Notes. Cases on Static Optimization. Chapter 6 Algorithms Comparison: The Swing Case Notes Chapter 2 Optimization Methods 1. Stationary points are those points where the partial derivatives of are zero. Chapter 3 Cases on Static Optimization 1. For the interested reader, we used a multivariate

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

M.S. in Quantitative Finance & Risk Analytics (QFRA) Fall 2017 & Spring 2018

M.S. in Quantitative Finance & Risk Analytics (QFRA) Fall 2017 & Spring 2018 M.S. in Quantitative Finance & Risk Analytics (QFRA) Fall 2017 & Spring 2018 2 - Required Professional Development &Career Workshops MGMT 7770 Prof. Development Workshop 1/Career Workshops (Fall) Wed.

More information

Rapid computation of prices and deltas of nth to default swaps in the Li Model

Rapid computation of prices and deltas of nth to default swaps in the Li Model Rapid computation of prices and deltas of nth to default swaps in the Li Model Mark Joshi, Dherminder Kainth QUARC RBS Group Risk Management Summary Basic description of an nth to default swap Introduction

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 3 Importance sampling January 27, 2015 M. Wiktorsson

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS

AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 397 406 http://dx.doi.org/10.4134/ckms.2013.28.2.397 AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS Kyoung-Sook Moon and Hongjoong Kim Abstract. We

More information

ANALYSIS OF THE BINOMIAL METHOD

ANALYSIS OF THE BINOMIAL METHOD ANALYSIS OF THE BINOMIAL METHOD School of Mathematics 2013 OUTLINE 1 CONVERGENCE AND ERRORS OUTLINE 1 CONVERGENCE AND ERRORS 2 EXOTIC OPTIONS American Options Computational Effort OUTLINE 1 CONVERGENCE

More information

Computational Finance Binomial Trees Analysis

Computational Finance Binomial Trees Analysis Computational Finance Binomial Trees Analysis School of Mathematics 2018 Review - Binomial Trees Developed a multistep binomial lattice which will approximate the value of a European option Extended the

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN PROBABILITY With Applications and R ROBERT P. DOBROW Department of Mathematics Carleton College Northfield, MN Wiley CONTENTS Preface Acknowledgments Introduction xi xiv xv 1 First Principles 1 1.1 Random

More information

Accelerated Option Pricing Multiple Scenarios

Accelerated Option Pricing Multiple Scenarios Accelerated Option Pricing in Multiple Scenarios 04.07.2008 Stefan Dirnstorfer (stefan@thetaris.com) Andreas J. Grau (grau@thetaris.com) 1 Abstract This paper covers a massive acceleration of Monte-Carlo

More information

Institute of Actuaries of India. Subject. ST6 Finance and Investment B. For 2018 Examinationspecialist Technical B. Syllabus

Institute of Actuaries of India. Subject. ST6 Finance and Investment B. For 2018 Examinationspecialist Technical B. Syllabus Institute of Actuaries of India Subject ST6 Finance and Investment B For 2018 Examinationspecialist Technical B Syllabus Aim The aim of the second finance and investment technical subject is to instil

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

An Analysis of a Dynamic Application of Black-Scholes in Option Trading

An Analysis of a Dynamic Application of Black-Scholes in Option Trading An Analysis of a Dynamic Application of Black-Scholes in Option Trading Aileen Wang Thomas Jefferson High School for Science and Technology Alexandria, Virginia April 9, 2010 Abstract For decades people

More information