Week 1 Quantitative Analysis of Financial Markets Distributions B


 Arlene Collins
 2 years ago
 Views:
Transcription
1 Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting Christopher Ting : : : LKCSB 5036 October 16, 2017 Christopher Ting QF 603 October 16, /14
2 Table of Contents 1 Introduction 2 Central Limit Theorem 3 Mixture Distributions 4 Takeaways Christopher Ting QF 603 October 16, /14
3 Introduction It is important to distinguish between discrete distribution versus continuous distribution. Probability distributions can be divided into two broad categories: parametric distributions, which is described by a mathematical function nonparametric distributions, which are not described by a mathematical formula A major advantage of dealing with nonparametric distributions is that assumptions required are minimum. Data speak for themselves. Christopher Ting QF 603 October 16, /14
4 Learning Outcomes of QA03 Chapter 4. Michael Miller, Mathematics and Statistics for Financial Risk Management, 2nd Edition (Hoboken, NJ: John Wiley & Sons, 2013). Apply the Central Limit Theorem in simulations. Describe the properties of independent and identically distributed (i.i.d.) random variables. Describe a mixture distribution and explain the creation and characteristics of mixture distributions. Christopher Ting QF 603 October 16, /14
5 IID E Statistically identical random variables (same probability distributions) E statistically independent random variables E Independent and identically distributed (i.i.d.) is an ideal condition. E If you add two i.i.d. normal distributions together you get a normal distribution. But this is a special case. Most other distribution do not obtain the same distribution. Christopher Ting QF 603 October 16, /14
6 Central Limit Theorem E Consider n i.i.d. random variables, X 1, X 2,..., X n, each with mean µ and standard deviation σ, and we define S n as the sum of those n variables, then, lim n S n N ( nµ, nσ 2). E When n, ( ) Sn n n µ d N(0, σ 2 ). E The central limit theorem is often utilized to justify the approximation that financial random variables follow a normal distribution. Christopher Ting QF 603 October 16, /14
7 What is Monte Carlo Simulation? E A Monte Carlo simulation consists of a number of trials. For each trial we feed random inputs into a system of equations. By collecting the outputs from the system of equations for a large number of trials, we can estimate the statistical properties of the output variables. E Example: Pricing an Asian option on an underlying stock with price S t and the strike price is X. ( ) 1 T V = max S t X, 0. T t=1 Christopher Ting QF 603 October 16, /14
8 Algorithm of Monte Carlo Simulation E Suppose the log returns are i.i.d. random variables with (annualized) mean 10% and standard deviation 20%. E The input to the Monte Carlo simulation would be normal variables with the presupposed mean and standard deviation. Compute the daily mean by dividing the mean by 365. Compute the daily standard deviation by dividing it by 365 E For each trial, we generate 200 random daily log returns, use the returns to calculate a series of random prices, calculate the average of the price series, and use the average to calculate the value of the option. E Repeat this process again and again, using a different realization of the random returns each time, and each time calculating a new value for the option. Christopher Ting QF 603 October 16, /14
9 IID E How do we create uncorrelated normally distributed random numbers to start with? E Answer: By adding together a large number of i.i.d. uniform distributions and then multiplying and adding the correct constants, a good approximation to any normal variable can be formed. E A classic approach is to simply add 12 standard uniform variables U i together, and subtract 6: X = 12 i=1 U i 6. Christopher Ting QF 603 October 16, /14
10 Mixture Distribution r Imagine a stock whose log returns follow a normal distribution with low volatility 90% of the time, and a normal distribution with high volatility 10% of the time. r The combined density function is written as f(x) = w L f L (x) w H f H (x), where w L = 0.90 is the probability of the return coming from the lowvolatility distribution, f L (x), and w H = 0.10 is the probability of the return coming from the highvolatility distribution f H (x). r The distribution that results from a weighted average distribution of density functions is known as a mixture distribution. Christopher Ting QF 603 October 16, /14
11 Mixture Distribution (cont d) r The mixture distribution approach is semiparametric: the component distributions are parametric, but the weights are based on empirical data, which is nonparametric. r Mixture distributions can be extremely useful in risk management. Securities whose return distributions are skewed or have excess kurtosis are often considered riskier than those with normal distributions, since extreme events can occur more frequently. r Mixture distributions provide a ready method for modeling these attributes. Christopher Ting QF 603 October 16, /14
12 Skewed Mixture Distribution Christopher Ting QF 603 October 16, /14
13 Bimodal Mixture Distribution Christopher Ting QF 603 October 16, /14
14 Summary All the parametric probability distributions, whether discrete or continuous, are useful models for risk management and quantitative analysis of investment or trading. Central Limit Theorem: The arithmetic mean of a sufficiently large number of iterates of independent random variables, will be approximately normally distributed, regardless of their underlying distribution. An application of central limit theorem is in Monte Carlo simulation. Mixing two mixtures is to take p% of the time from one distribution and (1 p)% of the time from another distribution. Christopher Ting QF 603 October 16, /14
Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals
Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :
More informationWeek 1 Quantitative Analysis of Financial Markets Probabilities
Week 1 Quantitative Analysis of Financial Markets Probabilities Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October
More informationWeek 1 Quantitative Analysis of Financial Markets Basic Statistics A
Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October
More informationWeek 7 Quantitative Analysis of Financial Markets Simulation Methods
Week 7 Quantitative Analysis of Financial Markets Simulation Methods Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November
More informationPosterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties
Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the logodds γ = log ( θ 1 θ), where
More informationMarket Risk Analysis Volume I
Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii
More informationIntroduction DickeyFuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book.
Simulation Methods Chapter 13 of Chris Brook s Book Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 April 26, 2017 Christopher
More informationCentral Limit Theorem (cont d) 7/28/2006
Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is
More informationFour Major Asset Classes
Four Major Asset Classes Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 August 26, 2016 Christopher Ting QF 101 Week
More informationMuch of what appears here comes from ideas presented in the book:
Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many
More informationIEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.
IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See
More informationSection The Sampling Distribution of a Sample Mean
Section 5.2  The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light
More informationStrategies for Improving the Efficiency of MonteCarlo Methods
Strategies for Improving the Efficiency of MonteCarlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The MonteCarlo method is a useful
More informationForeign Exchange Risk Management at Merck: Background. Decision Models
Decision Models: Lecture 11 2 Decision Models Foreign Exchange Risk Management at Merck: Background Merck & Company is a producer and distributor of pharmaceutical products worldwide. Lecture 11 Using
More informationReview: Population, sample, and sampling distributions
Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange
More informationBasic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 4: May 2, Abstract
Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 4: May 2, 2013 Abstract Introduct the normal distribution. Introduce basic notions of uncertainty, probability, events,
More informationTwo hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER
Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.
More informationFigure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted
Figure 1: Math 223 Lecture Notes 4/1/04 Section 4.10 The normal distribution Recall that a continuous random variable X with probability distribution function f(x) = 1 µ)2 (x e 2σ 2πσ is said to have a
More informationFour Major Asset Classes
Four Major Asset Classes Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 August 27, 2017 Christopher Ting QF 101 August
More informationMEASURING PORTFOLIO RISKS USING CONDITIONAL COPULAARGARCH MODEL
MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULAARGARCH MODEL Isariya Suttakulpiboon MSc in Risk Management and Insurance Georgia State University, 30303 Atlanta, Georgia Email: suttakul.i@gmail.com,
More informationMarket Risk Analysis Volume IV. ValueatRisk Models
Market Risk Analysis Volume IV ValueatRisk Models Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume IV xiii xvi xxi xxv xxix IV.l Value
More informationOptimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing
Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. ChuanJu Wang Department of Computer Science University of Taipei Joint work with Prof. MingYang Kao March 28, 2014
More informationMath Computational Finance Option pricing using Brownian bridge and Stratified samlping
. Math 623  Computational Finance Option pricing using Brownian bridge and Stratified samlping Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,
More informationGENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy
GENERATION OF STANDARD NORMAL RANDOM NUMBERS Naveen Kumar Boiroju and M. Krishna Reddy Department of Statistics, Osmania University, Hyderabad 500 007, INDIA Email: nanibyrozu@gmail.com, reddymk54@gmail.com
More informationKARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI
88 P a g e B S ( B B A ) S y l l a b u s KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI Course Title : STATISTICS Course Number : BA(BS) 532 Credit Hours : 03 Course 1. Statistical
More informationDiscrete Probability Distribution
1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has
More informationELEMENTS OF MONTE CARLO SIMULATION
APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the
More informationNEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours
NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question
More informationCalculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the
VaR Pro and Contra Pro: Easy to calculate and to understand. It is a common language of communication within the organizations as well as outside (e.g. regulators, auditors, shareholders). It is not really
More informationChapter 7: Point Estimation and Sampling Distributions
Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned
More informationSimulation. Decision Models
Lecture 9 Decision Models Decision Models: Lecture 9 2 Simulation What is Monte Carlo simulation? A model that mimics the behavior of a (stochastic) system Mathematically described the system using a set
More information5.3 Statistics and Their Distributions
Chapter 5 Joint Probability Distributions and Random Samples Instructor: Lingsong Zhang 1 Statistics and Their Distributions 5.3 Statistics and Their Distributions Statistics and Their Distributions Consider
More informationFinancial Econometrics (FinMetrics04) Timeseries Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR
Financial Econometrics (FinMetrics04) Timeseries Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR Nelson Mark University of Notre Dame Fall 2017 September 11, 2017 Introduction
More informationMATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am  12:00 noon, April 18, Student Name (print):
MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am  12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question
More informationChapter 7: Random Variables
Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value
More informationBayesian Normal Stuff
Bayesian Normal Stuff  Setup of the basic model of a normally distributed random variable with unknown mean and variance (a twoparameter model).  Discuss philosophies of prior selection  Implementation
More informationSolutions of Equations in One Variable. Secant & Regula Falsi Methods
Solutions of Equations in One Variable Secant & Regula Falsi Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University
More informationSTATISTICS and PROBABILITY
Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering
More informationDepartment of Mathematics. Mathematics of Financial Derivatives
Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2
More informationMATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm  5:00pm, April 11, Student Name (print): Student Signature: Student ID:
MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm  5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1
More informationProbability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions
April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter
More informationModelling Returns: the CER and the CAPM
Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20 Econometric Modelling of Financial Returns Financial data are mostly observational data: they
More informationChapter 14 : Statistical Inference 1. Note : Here the 4th and 5th editions of the text have different chapters, but the material is the same.
Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4th and 5th editions of the text have different chapters, but the material is the same. Data x
More informationComparison of Estimation For Conditional Value at Risk
1 University of Piraeus Department of Banking and Financial Management Postgraduate Program in Banking and Financial Management Comparison of Estimation For Conditional Value at Risk Georgantza Georgia
More informationChapter 7. Sampling Distributions and the Central Limit Theorem
Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial
More informationThe TwoSample Independent Sample t Test
Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 The General Formula The Equaln Formula 4 5 6 Independence Normality Homogeneity of Variances 7 NonNormality Unequal
More informationSome Characteristics of Data
Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key
More informationLinda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach
P1.T4. Valuation & Risk Models Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach Bionic Turtle FRM Study Notes Reading 26 By
More informationPoint Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage
6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic
More informationSampling Distribution
MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition
More informationUQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.
UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.
More information1.1 Interest rates Time value of money
Lecture 1 Pre Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on
More informationUnit 5: Sampling Distributions of Statistics
Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5  Stat 571  Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate
More informationUnit 5: Sampling Distributions of Statistics
Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5  Stat 571  Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate
More informationReview for Quiz #2 Revised: October 31, 2015
ECONUB 233 Dave Backus @ NYU Review for Quiz #2 Revised: October 31, 2015 I ll focus again on the big picture to give you a sense of what we ve done and how it fits together. For each topic/result/concept,
More informationComputational Finance. Computational Finance p. 1
Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of nonstandard options improving accuracy
More informationAnalysis of truncated data with application to the operational risk estimation
Analysis of truncated data with application to the operational risk estimation Petr Volf 1 Abstract. Researchers interested in the estimation of operational risk often face problems arising from the structure
More informationROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices
ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices Bachelier Finance Society Meeting Toronto 2010 Henley Business School at Reading Contact Author : d.ledermann@icmacentre.ac.uk Alexander
More informationYoungrok Lee and Jaesung Lee
orean J. Math. 3 015, No. 1, pp. 81 91 http://dx.doi.org/10.11568/kjm.015.3.1.81 LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES Youngrok Lee and Jaesung Lee Abstract. This paper
More informationChapter 5. Sampling Distributions
Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,
More informationAverages and Variability. Aplia (week 3 Measures of Central Tendency) Measures of central tendency (averages)
Chapter 4 Averages and Variability Aplia (week 3 Measures of Central Tendency) Chapter 5 (omit 5.2, 5.6, 5.8, 5.9) Aplia (week 4 Measures of Variability) Measures of central tendency (averages) Measures
More informationIntroduction to Statistical Data Analysis II
Introduction to Statistical Data Analysis II JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics:  Descriptive Statistics  Inferential Statistics Preface What is Inferential Statistics? Preface
More informationContents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)
Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..
More informationEdgeworth Binomial Trees
Mark Rubinstein Paul Stephens Professor of Applied Investment Analysis University of California, Berkeley a version published in the Journal of Derivatives (Spring 1998) Abstract This paper develops a
More informationMath Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods
. Math 623  Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department
More informationChapter 2 Uncertainty Analysis and Sampling Techniques
Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying
More informationIntroduction to Sequential Monte Carlo Methods
Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set
More informationOULU BUSINESS SCHOOL. Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION
OULU BUSINESS SCHOOL Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION Master s Thesis Finance March 2014 UNIVERSITY OF OULU Oulu Business School ABSTRACT
More information1 Geometric Brownian motion
Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is
More informationFEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede,
FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede, mb8@ecs.soton.ac.uk The normal distribution The normal distribution is the classic "bell curve". We've seen that
More informationPoint Estimation. Some General Concepts of Point Estimation. Example. Estimator quality
Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based
More informationNumerical Simulation of Stochastic Differential Equations: Lecture 1, Part 1. Overview of Lecture 1, Part 1: Background Mater.
Numerical Simulation of Stochastic Differential Equations: Lecture, Part Des Higham Department of Mathematics University of Strathclyde Course Aim: Give an accessible intro. to SDEs and their numerical
More informationAsian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1
Asian Option Pricing: Monte Carlo Control Variate A discrete arithmetic Asian call option has the payoff ( 1 N N + 1 i=0 S T i N K ) + A discrete geometric Asian call option has the payoff [ N i=0 S T
More informationCalibration of Interest Rates
WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 9788073782245 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,
More informationContinuous random variables
Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),
More informationAnother Look at Normal Approximations in Cryptanalysis
Another Look at Normal Approximations in Cryptanalysis Palash Sarkar (Based on joint work with Subhabrata Samajder) Indian Statistical Institute palash@isical.ac.in INDOCRYPT 2015 IISc Bengaluru 8 th December
More informationLecture 5: Sampling Distributions
Lecture 5: Sampling Distributions Taeyong Park Washington University in St. Louis February 15, 2017 Park (Wash U.) U25 PS323 Intro to Quantitative Methods February 15, 2017 1 / 23 Today... Review of normal
More informationChapter 9: Sampling Distributions
Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with
More informationIEOR E4602: Quantitative Risk Management
IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com
More informationCHAPTER 5 STOCHASTIC SCHEDULING
CHPTER STOCHSTIC SCHEDULING In some situations, estimating activity duration becomes a difficult task due to ambiguity inherited in and the risks associated with some work. In such cases, the duration
More informationChapter 7. Sampling Distributions and the Central Limit Theorem
Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial
More informationThe Binomial Lattice Model for Stocks: Introduction to Option Pricing
1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model
More informationValuation of Asian Option. Qi An Jingjing Guo
Valuation of Asian Option Qi An Jingjing Guo CONTENT Asian option Pricing Monte Carlo simulation Conclusion ASIAN OPTION Definition of Asian option always emphasizes the gist that the payoff depends on
More informationMidterm Exam III Review
Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways
More informationLecture 3: Probability Distributions (cont d)
EAS31116/B9036: Statistics in Earth & Atmospheric Sciences Lecture 3: Probability Distributions (cont d) Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition
More informationTheory and practice of option pricing
Theory and practice of option pricing Juliusz Jabłecki Department of Quantitative Finance Faculty of Economic Sciences University of Warsaw jjablecki@wne.uw.edu.pl and Head of Monetary Policy Analysis
More informationThe Binomial Lattice Model for Stocks: Introduction to Option Pricing
1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model
More informationCentral Limit Theorem, Joint Distributions Spring 2018
Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.14 32 1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full
More informationRichardson Extrapolation Techniques for the Pricing of Americanstyle Options
Richardson Extrapolation Techniques for the Pricing of Americanstyle Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of Americanstyle Options In this paper we reexamine
More informationNumerical Descriptions of Data
Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =
More informationMidterm Exam. b. What are the continuously compounded returns for the two stocks?
University of Washington Fall 004 Department of Economics Eric Zivot Economics 483 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of notes (doublesided). Answer
More informationSimulation Lecture Notes and the Gentle Lentil Case
Simulation Lecture Notes and the Gentle Lentil Case General Overview of the Case What is the decision problem presented in the case? What are the issues Sanjay must consider in deciding among the alternative
More information1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and
CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial
More informationFinancial Models with Levy Processes and Volatility Clustering
Financial Models with Levy Processes and Volatility Clustering SVETLOZAR T. RACHEV # YOUNG SHIN ICIM MICHELE LEONARDO BIANCHI* FRANK J. FABOZZI WILEY John Wiley & Sons, Inc. Contents Preface About the
More informationAppendix A Financial Calculations
Derivatives Demystified: A StepbyStep Guide to Forwards, Futures, Swaps and Options, Second Edition By Andrew M. Chisholm 010 John Wiley & Sons, Ltd. Appendix A Financial Calculations TIME VALUE OF MONEY
More informationEE266 Homework 5 Solutions
EE, Spring 151 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The
More informationIEOR E4703: MonteCarlo Simulation
IEOR E4703: MonteCarlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University
More informationFinancial Risk Forecasting Chapter 9 Extreme Value Theory
Financial Risk Forecasting Chapter 9 Extreme Value Theory Jon Danielsson 2017 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com Published by Wiley 2011
More informationEVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS. Rick Katz
1 EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu
More informationA Scenario Based Method for Cost Risk Analysis
A Scenario Based Method for Cost Risk Analysis Paul R. Garvey The MITRE Corporation MP 05B000003, September 005 Abstract This paper presents an approach for performing an analysis of a program s cost risk.
More information