Modelling Returns: the CER and the CAPM

Size: px
Start display at page:

Download "Modelling Returns: the CER and the CAPM"

Transcription

1 Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20

2 Econometric Modelling of Financial Returns Financial data are mostly observational data: they are not generated by well-designed experiment to test hypothesis, they are given to the econometrician. These data can be used to construct non-causal predictive models and to evaluate treatment effects. The second exercise involves a deeper understanding of causation while the implementation of non-causal predictive modelling requires understanding conditional expectations. Favero () Modelling Returns: the CER and the CAPM 2 / 20

3 Non experimental data What do we do with non-experimental data? When you try and explain returns you do not control how the data are generated Think of estimating a CAPM model Favero () Modelling Returns: the CER and the CAPM 3 / 20

4 Non experimental data: CAPM r i t r m t ui,t u m,t r rf t r rf t = β 0,i + β 1,i r m t r rf t + u i,t = µ m + u m,t u i,t s n.i.d. 0, σ 2 i 0 σii 0 s n.i.d., 0 0 σ mm you have a time-series on excess returns of a given stock on the safe asset and on the market on the safe asset (you cannot control these data) you specify a linear model in which the excess returns on asset i are function of the excess returns on the market, and the excess returns on the market follow a CER. you introduce hypothesis on the error terms, to estimate parameters, to implement tests, and to use the model for simulation Favero () Modelling Returns: the CER and the CAPM 4 / 20

5 Econometric Modelling of Financial Returns Econometric models of financial returns specify the distribution of a vector of variables y t conditional upon other variables z t that are helpful in predicting them. The mapping between y t and z t is determined by some functional relation and some unknown parameters. All the relevant variables are stochastic and they are therefore characterized by a density function. Linear Econometric Models specify conditional means of the y t as linear functions of the z t. Favero () Modelling Returns: the CER and the CAPM 5 / 20

6 Econometric Modelling of Financial Returns the data a general multivariate model D (y t, z t, w t j Y t 1, Z t 1, W t 1, θ) D (y t, z t j Y t 1, Z t 1, β) decomposing a multivariate into conditional and marginal D (y t j z t, Y t 1, Z t 1, β 1 ) D (z t j Y t 1, Z t 1, β 2 ) a general linear univariate conditional model y t = β 0 z t + u 1t z t = β 2 z t 1 + u 2t Favero () Modelling Returns: the CER and the CAPM 6 / 20

7 Econometric Modelling of Financial Returns There are many ways in which the CAPM can go wrong: other factors beyond the market are relevant in determining excess returns on asset i the excess returns on the market do depend on excess returns on asset i the model is non-linear the residuals are non-normal and their variance-covariance matrix does not fit the assumptions made Favero () Modelling Returns: the CER and the CAPM 7 / 20

8 Reduction Process Conditional densities are best interpreted as the outcome of a reduction process that allows a simplified representation of reality. Of course such a simplified representation omits an enormous amount of information. The validity of the model adopted is crucially affected by the importance of the omitted information in determining the density of y t. Favero () Modelling Returns: the CER and the CAPM 8 / 20

9 Reduction Process To understand the reduction process partiton the set of all variables into three types of variables: x t = (w t, y t, z t ), w t identifies variables which are ignored in the specification of the econometric model. Exclusion is obtained by factorizing the joint density and integrating it with respect to w t.in formal terms, we have no information loss only if D (y t, z t j Y t 1, Z t 1, β) = D (y t, z t, w t j Y t 1, Z t 1, W t 1, θ). This is the statistical model considered by the econometrician, this is technically called i.e. the reduced form of the structure of interest. In general this reduced form is a more general model than the one estimated. It is constructed by parameterizing E (y t, z t j Y t 1, Z t 1, β) and by deriving a vector of innovations from the difference between the vector of observed variables and the vector of their means. Favero () Modelling Returns: the CER and the CAPM 9 / 20

10 The CAPM Reduced Form In the case of the CAPM the general specification of the reduced form is the following one: r i t r rf t r m t r rf t ui,t u m,t = µ i + β i u m,t + u i,t = µ m + u m,t 0 s n.i.d. 0 σii, σ im σ im σ mm Favero () Modelling Returns: the CER and the CAPM 10 / 20

11 From the Statistical Model to the Conditional Model: the CAPM Statistical model r i t r rf t r m t r rf t ui,t u m,t = µ i + β i u m,t + u i,t = µ m + u m,t 0 s n.i.d. 0 σii, σ im σ im σ mm Estimated Equation E r i t j r rf t r m t r rf t, Y t 1, Z t 1, β i = α i + β i r m t r rf t if σ im = 0,then the estimated equation is a valid approximation to the statistical model for the estimation of β i Favero () Modelling Returns: the CER and the CAPM 11 / 20

12 Modelling returns Favero () Modelling Returns: the CER and the CAPM 12 / 20

13 Modelling returns The (naive) log random walk (LRW) hypothesis on the evolution of prices states that, prices evolve approximately according to the stochastic difference equation: ln P t = µ + ln P t + ɛ t where the innovations ɛ t are assumed to be uncorrelated across time (cov(ɛ t ; ɛ t 0) = 0 8t 6= t 0 ), with constant expected value 0 and constant variance σ 2. Consider what happens over a time span of, say, 2. ln P t = 2µ + ln P t 2 + ɛ t + ɛ t = ln P t 2 + u t having set u t = ɛ t + ɛ t. Favero () Modelling Returns: the CER and the CAPM 12 / 20

14 Modelling returns Consider now the case in which the time interval is of the length of 1-period. If we take prices as inclusive of dividends we can write the following model for log-returns r t,t+1 = µ + σɛ t ɛ t = i.i.d.(0, 1) E(r t,t+n ) = E( Var(r t,t+n ) = Var( n i=1 n i=1 r t+i,t+i 1 ) = r t+i,t+i 1 ) = n i=1 n i=1 E(r t+i,t+i 1 ) = nµ Var(r t+i,t+i 1 ) = nσ 2 Favero () Modelling Returns: the CER and the CAPM 13 / 20

15 Monte-Carlo simulation given some estimates of the unknown parameters in the model (µ σ in our case). an assumption is made on the distribution of ɛ t. The an artificial sample for ɛ t of the length matching that of the available can be computer simulated. The simulated residuals are then mapped into simulated returns via µ, σ. This exercise can be replicated N times (and therefore a Monte-Carlo simulation generates a matrix of computer simulated returns whose dimension are defined by the sample size T and by the number of replications N). The distribution of model predicted returns can be then constructed and one can ask the question if the observed data can be considered as one draw from this distribution. Favero () Modelling Returns: the CER and the CAPM 14 / 20

16 do exactly like in Monte-Carlo but rather than using a theoretical distribution for ɛ t use their empirical distribution and resample from it with reimmission. Favero () Modelling Returns: the CER and the CAPM 15 / 20

17 Simulation can be used for several tasks, provide statistical evidence of the capability of the model to replicate the data derive the distribution of returns to implement VaR assess statistical properties of estimators Favero () Modelling Returns: the CER and the CAPM 16 / 20

18 Stocks for the long-run The fact that, under the LRW, the expected value grows linearly with the length of the time period while the standard deviation (square root of the variance) grows with the square root of the number of observations, has created a lot of discussion We have three flavors of the stocks for the long run argument. The first and the second are a priori arguments depending on the log random walk hypothesis or something equivalent to it, the third is an a posteriori argument based on historical data. Favero () Modelling Returns: the CER and the CAPM 17 / 20

19 Stocks for the long-run Assume that single period (log) returns have (positive) expected value µ and variance σ 2. Moreover, assume for simplicity that the investor requires a Sharpe ratio of say S out of his-her investment. Under the above hypotheses, plus the log random walk hypothesis, the Sharpe ratio over n time periods is given by S = nµ p nσ = p n µ σ so that, if n is large enough, any required value can be reached. Favero () Modelling Returns: the CER and the CAPM 18 / 20

20 Stocks for the long-run Another way of phrasing the same argument, when we add the hypothesis of normality on returns, is that, there any given probability α and any given required return C there is always an horizon for which the probability for n period return less than C is less than α. Pr (R p < C) = α. R Pr (R p p nµ < C) = α () Pr p < C nµ p = α nσ nσ () Φ C µ! p = α, σ p C = nµ + Φ 1 (α) p nσ But nµ + Φ 1 (α) p nσ, for p n > 1 2 Φ 1 (α) µ σ is an increasing function in n so that for any α and any chosen value C, there exists a n such that from that n onward, the probability for an n period return less than C is less than α. Favero () Modelling Returns: the CER and the CAPM 19 / 20

21 Stocks for the long-run Note, however, that the value of n for which this lower bound crosses a given C level is the solution of nµ + Φ 1 (α) p nσ C In particular, for C = 0 the solution is p n Φ 1 (α) σ µ Consider now the case of a stock with σ/µ ratio for one year is of the order of 6. Even allowing for a large α,say 0.25, so that Φ 1 (α) is near minus one, the required n shall be in the range of 36 which is only slightly shorter than the average working life. As a matter of fact, based on the analysis of historical prices and risk adjusted returns, stocks have been almost always a good long run investment. Favero () Modelling Returns: the CER and the CAPM 20 / 20

The Econometrics of Financial Returns

The Econometrics of Financial Returns The Econometrics of Financial Returns Carlo Favero December 2017 Favero () The Econometrics of Financial Returns December 2017 1 / 55 The Econometrics of Financial Returns Predicting the distribution of

More information

Chapter 2: Financial Returns

Chapter 2: Financial Returns Chapter 2: Financial Returns August 25, 2016 1. Returns Consider an asset that does not pay any intermediate cash income (a zero-coupon bons, such as a Treasury Bill, or a share in a company that pays

More information

Portfolio Risk Management and Linear Factor Models

Portfolio Risk Management and Linear Factor Models Chapter 9 Portfolio Risk Management and Linear Factor Models 9.1 Portfolio Risk Measures There are many quantities introduced over the years to measure the level of risk that a portfolio carries, and each

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth Lecture Note 9 of Bus 41914, Spring 2017. Multivariate Volatility Models ChicagoBooth Reference: Chapter 7 of the textbook Estimation: use the MTS package with commands: EWMAvol, marchtest, BEKK11, dccpre,

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Gary Schurman MB, CFA August, 2012 The Capital Asset Pricing Model CAPM is used to estimate the required rate of return

More information

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book.

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book. Simulation Methods Chapter 13 of Chris Brook s Book Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 April 26, 2017 Christopher

More information

The Constant Expected Return Model

The Constant Expected Return Model Chapter 1 The Constant Expected Return Model Date: February 5, 2015 The first model of asset returns we consider is the very simple constant expected return (CER) model. This model is motivated by the

More information

Lecture 2: Stochastic Discount Factor

Lecture 2: Stochastic Discount Factor Lecture 2: Stochastic Discount Factor Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Stochastic Discount Factor (SDF) A stochastic discount factor is a stochastic process {M t,t+s } such that

More information

Alternative VaR Models

Alternative VaR Models Alternative VaR Models Neil Roeth, Senior Risk Developer, TFG Financial Systems. 15 th July 2015 Abstract We describe a variety of VaR models in terms of their key attributes and differences, e.g., parametric

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Risk Management and Time Series

Risk Management and Time Series IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Risk Management and Time Series Time series models are often employed in risk management applications. They can be used to estimate

More information

Week 7 Quantitative Analysis of Financial Markets Simulation Methods

Week 7 Quantitative Analysis of Financial Markets Simulation Methods Week 7 Quantitative Analysis of Financial Markets Simulation Methods Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Portfolio theory and risk management Homework set 2

Portfolio theory and risk management Homework set 2 Portfolio theory and risk management Homework set Filip Lindskog General information The homework set gives at most 3 points which are added to your result on the exam. You may work individually or in

More information

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School)

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) SDMR Finance (2) Olivier Brandouy University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) Outline 1 Formal Approach to QAM : concepts and notations 2 3 Portfolio risk and return

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Lecture 1: The Econometrics of Financial Returns

Lecture 1: The Econometrics of Financial Returns Lecture 1: The Econometrics of Financial Returns Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2016 Overview General goals of the course and definition of risk(s) Predicting asset returns:

More information

Lecture 5 Theory of Finance 1

Lecture 5 Theory of Finance 1 Lecture 5 Theory of Finance 1 Simon Hubbert s.hubbert@bbk.ac.uk January 24, 2007 1 Introduction In the previous lecture we derived the famous Capital Asset Pricing Model (CAPM) for expected asset returns,

More information

Modelling of Long-Term Risk

Modelling of Long-Term Risk Modelling of Long-Term Risk Roger Kaufmann Swiss Life roger.kaufmann@swisslife.ch 15th International AFIR Colloquium 6-9 September 2005, Zurich c 2005 (R. Kaufmann, Swiss Life) Contents A. Basel II B.

More information

Optimal Window Selection for Forecasting in The Presence of Recent Structural Breaks

Optimal Window Selection for Forecasting in The Presence of Recent Structural Breaks Optimal Window Selection for Forecasting in The Presence of Recent Structural Breaks Yongli Wang University of Leicester Econometric Research in Finance Workshop on 15 September 2017 SGH Warsaw School

More information

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices Bachelier Finance Society Meeting Toronto 2010 Henley Business School at Reading Contact Author : d.ledermann@icmacentre.ac.uk Alexander

More information

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example, consider

More information

An analysis of momentum and contrarian strategies using an optimal orthogonal portfolio approach

An analysis of momentum and contrarian strategies using an optimal orthogonal portfolio approach An analysis of momentum and contrarian strategies using an optimal orthogonal portfolio approach Hossein Asgharian and Björn Hansson Department of Economics, Lund University Box 7082 S-22007 Lund, Sweden

More information

Overseas unspanned factors and domestic bond returns

Overseas unspanned factors and domestic bond returns Overseas unspanned factors and domestic bond returns Andrew Meldrum Bank of England Marek Raczko Bank of England 9 October 2015 Peter Spencer University of York PRELIMINARY AND INCOMPLETE Abstract Using

More information

Volume 29, Issue 2. Measuring the external risk in the United Kingdom. Estela Sáenz University of Zaragoza

Volume 29, Issue 2. Measuring the external risk in the United Kingdom. Estela Sáenz University of Zaragoza Volume 9, Issue Measuring the external risk in the United Kingdom Estela Sáenz University of Zaragoza María Dolores Gadea University of Zaragoza Marcela Sabaté University of Zaragoza Abstract This paper

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Stochastic Models. Statistics. Walt Pohl. February 28, Department of Business Administration

Stochastic Models. Statistics. Walt Pohl. February 28, Department of Business Administration Stochastic Models Statistics Walt Pohl Universität Zürich Department of Business Administration February 28, 2013 The Value of Statistics Business people tend to underestimate the value of statistics.

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 59

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 59 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 59 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 6. Volatility Models and (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 10/02/2012 Outline 1 Volatility

More information

Interest Rate Curves Calibration with Monte-Carlo Simulatio

Interest Rate Curves Calibration with Monte-Carlo Simulatio Interest Rate Curves Calibration with Monte-Carlo Simulation 24 june 2008 Participants A. Baena (UCM) Y. Borhani (Univ. of Oxford) E. Leoncini (Univ. of Florence) R. Minguez (UCM) J.M. Nkhaso (UCM) A.

More information

Applied Macro Finance

Applied Macro Finance Master in Money and Finance Goethe University Frankfurt Week 8: From factor models to asset pricing Fall 2012/2013 Please note the disclaimer on the last page Announcements Solution to exercise 1 of problem

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Overseas unspanned factors and domestic bond returns

Overseas unspanned factors and domestic bond returns Overseas unspanned factors and domestic bond returns Andrew Meldrum Bank of England Marek Raczko Bank of England 19 November 215 Peter Spencer University of York Abstract Using data on government bonds

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Bloomberg. Portfolio Value-at-Risk. Sridhar Gollamudi & Bryan Weber. September 22, Version 1.0

Bloomberg. Portfolio Value-at-Risk. Sridhar Gollamudi & Bryan Weber. September 22, Version 1.0 Portfolio Value-at-Risk Sridhar Gollamudi & Bryan Weber September 22, 2011 Version 1.0 Table of Contents 1 Portfolio Value-at-Risk 2 2 Fundamental Factor Models 3 3 Valuation methodology 5 3.1 Linear factor

More information

The Fundamental Review of the Trading Book: from VaR to ES

The Fundamental Review of the Trading Book: from VaR to ES The Fundamental Review of the Trading Book: from VaR to ES Chiara Benazzoli Simon Rabanser Francesco Cordoni Marcus Cordi Gennaro Cibelli University of Verona Ph. D. Modelling Week Finance Group (UniVr)

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (30 pts) Answer briefly the following questions. 1. Suppose that

More information

Section B: Risk Measures. Value-at-Risk, Jorion

Section B: Risk Measures. Value-at-Risk, Jorion Section B: Risk Measures Value-at-Risk, Jorion One thing to always keep in mind when reading this text is that it is focused on the banking industry. It mainly focuses on market and credit risk. It also

More information

STK 3505/4505: Summary of the course

STK 3505/4505: Summary of the course November 22, 2016 CH 2: Getting started the Monte Carlo Way How to use Monte Carlo methods for estimating quantities ψ related to the distribution of X, based on the simulations X1,..., X m: mean: X =

More information

Modelling the Sharpe ratio for investment strategies

Modelling the Sharpe ratio for investment strategies Modelling the Sharpe ratio for investment strategies Group 6 Sako Arts 0776148 Rik Coenders 0777004 Stefan Luijten 0783116 Ivo van Heck 0775551 Rik Hagelaars 0789883 Stephan van Driel 0858182 Ellen Cardinaels

More information

List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements

List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements Table of List of figures List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements page xii xv xvii xix xxi xxv 1 Introduction 1 1.1 What is econometrics? 2 1.2 Is

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

Week 1 Quantitative Analysis of Financial Markets Distributions B

Week 1 Quantitative Analysis of Financial Markets Distributions B Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Application of MCMC Algorithm in Interest Rate Modeling

Application of MCMC Algorithm in Interest Rate Modeling Application of MCMC Algorithm in Interest Rate Modeling Xiaoxia Feng and Dejun Xie Abstract Interest rate modeling is a challenging but important problem in financial econometrics. This work is concerned

More information

Pricing of minimum interest guarantees: Is the arbitrage free price fair?

Pricing of minimum interest guarantees: Is the arbitrage free price fair? Pricing of minimum interest guarantees: Is the arbitrage free price fair? Pål Lillevold and Dag Svege 17. 10. 2002 Pricing of minimum interest guarantees: Is the arbitrage free price fair? 1 1 Outline

More information

A comment on Christoffersen, Jacobs and Ornthanalai (2012), Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options

A comment on Christoffersen, Jacobs and Ornthanalai (2012), Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options A comment on Christoffersen, Jacobs and Ornthanalai (2012), Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options Garland Durham 1 John Geweke 2 Pulak Ghosh 3 February 25,

More information

Introductory Econometrics for Finance

Introductory Econometrics for Finance Introductory Econometrics for Finance SECOND EDITION Chris Brooks The ICMA Centre, University of Reading CAMBRIDGE UNIVERSITY PRESS List of figures List of tables List of boxes List of screenshots Preface

More information

Quantitative Methods for Economics, Finance and Management (A86050 F86050)

Quantitative Methods for Economics, Finance and Management (A86050 F86050) Quantitative Methods for Economics, Finance and Management (A86050 F86050) Matteo Manera matteo.manera@unimib.it Marzio Galeotti marzio.galeotti@unimi.it 1 This material is taken and adapted from Guy Judge

More information

Black-Litterman Model

Black-Litterman Model Institute of Financial and Actuarial Mathematics at Vienna University of Technology Seminar paper Black-Litterman Model by: Tetyana Polovenko Supervisor: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold

More information

Statistical Methods in Financial Risk Management

Statistical Methods in Financial Risk Management Statistical Methods in Financial Risk Management Lecture 1: Mapping Risks to Risk Factors Alexander J. McNeil Maxwell Institute of Mathematical Sciences Heriot-Watt University Edinburgh 2nd Workshop on

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

978 J.-J. LAFFONT, H. OSSARD, AND Q. WONG

978 J.-J. LAFFONT, H. OSSARD, AND Q. WONG 978 J.-J. LAFFONT, H. OSSARD, AND Q. WONG As a matter of fact, the proof of the later statement does not follow from standard argument because QL,,(6) is not continuous in I. However, because - QL,,(6)

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Proxy Function Fitting: Some Implementation Topics

Proxy Function Fitting: Some Implementation Topics OCTOBER 2013 ENTERPRISE RISK SOLUTIONS RESEARCH OCTOBER 2013 Proxy Function Fitting: Some Implementation Topics Gavin Conn FFA Moody's Analytics Research Contact Us Americas +1.212.553.1658 clientservices@moodys.com

More information

Common Misconceptions about "Beta" Hedging, Estimation and Horizon Effects 1

Common Misconceptions about Beta Hedging, Estimation and Horizon Effects 1 QuantNugget3 Common Misconceptions about "Beta" Hedging, Estimation and Horizon Effects 1 Attilio Meucci 2 attilio_meucci@symmys.com this version: eptember 27 2010 last version available at: http://ssrn.com/abstract=1619923

More information

You can also read about the CAPM in any undergraduate (or graduate) finance text. ample, Bodie, Kane, and Marcus Investments.

You can also read about the CAPM in any undergraduate (or graduate) finance text. ample, Bodie, Kane, and Marcus Investments. ECONOMICS 7344, Spring 2003 Bent E. Sørensen March 6, 2012 An introduction to the CAPM model. We will first sketch the efficient frontier and how to derive the Capital Market Line and we will then derive

More information

Long-Term Risk Management

Long-Term Risk Management Long-Term Risk Management Roger Kaufmann Swiss Life General Guisan-Quai 40 Postfach, 8022 Zürich Switzerland roger.kaufmann@swisslife.ch April 28, 2005 Abstract. In this paper financial risks for long

More information

Financial Times Series. Lecture 6

Financial Times Series. Lecture 6 Financial Times Series Lecture 6 Extensions of the GARCH There are numerous extensions of the GARCH Among the more well known are EGARCH (Nelson 1991) and GJR (Glosten et al 1993) Both models allow for

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

1. Statistical problems - a) Distribution is known. b) Distribution is unknown.

1. Statistical problems - a) Distribution is known. b) Distribution is unknown. Probability February 5, 2013 Debdeep Pati Estimation 1. Statistical problems - a) Distribution is known. b) Distribution is unknown. 2. When Distribution is known, then we can have either i) Parameters

More information

Internet Appendix for Asymmetry in Stock Comovements: An Entropy Approach

Internet Appendix for Asymmetry in Stock Comovements: An Entropy Approach Internet Appendix for Asymmetry in Stock Comovements: An Entropy Approach Lei Jiang Tsinghua University Ke Wu Renmin University of China Guofu Zhou Washington University in St. Louis August 2017 Jiang,

More information

Using Halton Sequences. in Random Parameters Logit Models

Using Halton Sequences. in Random Parameters Logit Models Journal of Statistical and Econometric Methods, vol.5, no.1, 2016, 59-86 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2016 Using Halton Sequences in Random Parameters Logit Models Tong Zeng

More information

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions Economics 430 Chris Georges Handout on Rational Expectations: Part I Review of Statistics: Notation and Definitions Consider two random variables X and Y defined over m distinct possible events. Event

More information

Modeling Uncertainty in Financial Markets

Modeling Uncertainty in Financial Markets Modeling Uncertainty in Financial Markets Peter Ritchken 1 Modeling Uncertainty in Financial Markets In this module we review the basic stochastic model used to represent uncertainty in the equity markets.

More information

ARCH Models and Financial Applications

ARCH Models and Financial Applications Christian Gourieroux ARCH Models and Financial Applications With 26 Figures Springer Contents 1 Introduction 1 1.1 The Development of ARCH Models 1 1.2 Book Content 4 2 Linear and Nonlinear Processes 5

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

NBER WORKING PAPER SERIES A REHABILITATION OF STOCHASTIC DISCOUNT FACTOR METHODOLOGY. John H. Cochrane

NBER WORKING PAPER SERIES A REHABILITATION OF STOCHASTIC DISCOUNT FACTOR METHODOLOGY. John H. Cochrane NBER WORKING PAPER SERIES A REHABILIAION OF SOCHASIC DISCOUN FACOR MEHODOLOGY John H. Cochrane Working Paper 8533 http://www.nber.org/papers/w8533 NAIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased.

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased. 1 Evaluating estimators Suppose you observe data X 1,..., X n that are iid observations with distribution F θ indexed by some parameter θ. When trying to estimate θ, one may be interested in determining

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Testing Out-of-Sample Portfolio Performance

Testing Out-of-Sample Portfolio Performance Testing Out-of-Sample Portfolio Performance Ekaterina Kazak 1 Winfried Pohlmeier 2 1 University of Konstanz, GSDS 2 University of Konstanz, CoFE, RCEA Econometric Research in Finance Workshop 2017 SGH

More information

Introduction to Computational Finance and Financial Econometrics Introduction to Portfolio Theory

Introduction to Computational Finance and Financial Econometrics Introduction to Portfolio Theory You can t see this text! Introduction to Computational Finance and Financial Econometrics Introduction to Portfolio Theory Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Introduction to Portfolio Theory

More information

Web Appendix. Are the effects of monetary policy shocks big or small? Olivier Coibion

Web Appendix. Are the effects of monetary policy shocks big or small? Olivier Coibion Web Appendix Are the effects of monetary policy shocks big or small? Olivier Coibion Appendix 1: Description of the Model-Averaging Procedure This section describes the model-averaging procedure used in

More information

Are Stocks Really Less Volatile in the Long Run?

Are Stocks Really Less Volatile in the Long Run? Introduction, JF 2009 (forth) Presented by: Esben Hedegaard NYUStern October 5, 2009 Outline Introduction 1 Introduction Measures of Variance Some Numbers 2 Numerical Illustration Estimation 3 Predictive

More information

Regret-based Selection

Regret-based Selection Regret-based Selection David Puelz (UT Austin) Carlos M. Carvalho (UT Austin) P. Richard Hahn (Chicago Booth) May 27, 2017 Two problems 1. Asset pricing: What are the fundamental dimensions (risk factors)

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Financial Econometrics Notes. Kevin Sheppard University of Oxford

Financial Econometrics Notes. Kevin Sheppard University of Oxford Financial Econometrics Notes Kevin Sheppard University of Oxford Monday 15 th January, 2018 2 This version: 22:52, Monday 15 th January, 2018 2018 Kevin Sheppard ii Contents 1 Probability, Random Variables

More information

Discussion The Changing Relationship Between Commodity Prices and Prices of Other Assets with Global Market Integration by Barbara Rossi

Discussion The Changing Relationship Between Commodity Prices and Prices of Other Assets with Global Market Integration by Barbara Rossi Discussion The Changing Relationship Between Commodity Prices and Prices of Other Assets with Global Market Integration by Barbara Rossi Domenico Giannone Université libre de Bruxelles, ECARES and CEPR

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Risk Neutral Valuation, the Black-

Risk Neutral Valuation, the Black- Risk Neutral Valuation, the Black- Scholes Model and Monte Carlo Stephen M Schaefer London Business School Credit Risk Elective Summer 01 C = SN( d )-PV( X ) N( ) N he Black-Scholes formula 1 d (.) : cumulative

More information

Slides for Risk Management

Slides for Risk Management Slides for Risk Management Introduction to the modeling of assets Groll Seminar für Finanzökonometrie Prof. Mittnik, PhD Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik,

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

The Capital Asset Pricing Model as a corollary of the Black Scholes model

The Capital Asset Pricing Model as a corollary of the Black Scholes model he Capital Asset Pricing Model as a corollary of the Black Scholes model Vladimir Vovk he Game-heoretic Probability and Finance Project Working Paper #39 September 6, 011 Project web site: http://www.probabilityandfinance.com

More information