Monte Carlo Based Reliability Analysis

Size: px
Start display at page:

Download "Monte Carlo Based Reliability Analysis"

Transcription

1 Monte Carlo Based Reliability Analysis Martin Schwarz 15 May 2014 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

2 Plan of Presentation Description of the problem Monte Carlo Simulation Sensitivity based Importance Sampling Subset Simulation Comparison Prospects Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

3 Reliability Probability of failure: Use a random R n valued random variable X for describing the parameters of an input-output model of an engineering structure. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

4 Reliability Probability of failure: Use a random R n valued random variable X for describing the parameters of an input-output model of an engineering structure. P f := P(X F ), F := {x R n : x is a parameter combination leading to failure} Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

5 Reliability Probability of failure: Use a random R n valued random variable X for describing the parameters of an input-output model of an engineering structure. P f := P(X F ), F := {x R n : x is a parameter combination leading to failure} We define F by a function Φ(x): x F Φ(x) > 1 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

6 The Small Launcher Model FE-model of the Ariane 5 frontskirt. 35 input parameters: Loads, E-moduli, yield stresses etc. Considered as uniformly distributed with spread ±15% around nominal value. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

7 The Small Launcher Model Φ(x) := max n PEEQ(x) > 0.07 SP(x) > 180 MPa EV (x) < Martin Schwarz PEEQ(x) SP(x) , 180, EV (x) o plastification of metallic part rupture of composite part buckling Monte Carlo Based Reliability Analysis 15 May / 19

8 Monte Carlo Simulation Theorem The probability of failure can be estimated by P MC f P f = P(X F ) P MC f := 1 N N 1 F (X ). i=1 is an unbiased estimator and V(P MC f ) = P f (1 P f ) N Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

9 Monte Carlo Simulation Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

10 Monte Carlo Simulation Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

11 Monte Carlo Simulation 1 Monte Carlo Simulation with samplesize 5000 N t = 5000 Pf SS = 1.16% Bootstrap CoV κ BS = 13.03% Bayesian CoV κ BA = 12.94% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

12 Monte Carlo Simulation 1 Monte Carlo Simulation with samplesize 5000 N t = 5000 Pf SS = 1.16% Bootstrap CoV κ BS = 13.03% Bayesian CoV κ BA = 12.94% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

13 Monte Carlo Simulation 1 Monte Carlo Simulation with samplesize 5000 N t = 5000 Pf SS = 1.16% Bootstrap CoV κ BS = 13.03% Bayesian CoV κ BA = 12.94% 2 Monte Carlo Simulation with samplesize 1500 N t = 1500 Pf SS = 0.93% Bootstrap CoV κ BS = 26.7% Bayesian CoV κ BA = 25.7% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

14 Monte Carlo Simulation 1 Monte Carlo Simulation with samplesize 5000 N t = 5000 Pf SS = 1.16% Bootstrap CoV κ BS = 13.03% Bayesian CoV κ BA = 12.94% 2 Monte Carlo Simulation with samplesize 1500 N t = 1500 Pf SS = 0.93% Bootstrap CoV κ BS = 26.7% Bayesian CoV κ BA = 25.7% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

15 Importance Sampling Use the following idea: 1 F f dx = 1 F f g g dx Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

16 Importance Sampling Use the following idea: 1 F f dx = 1 F f g g dx Theorem P f can be estimated by g-iid random variables (Y 1,..., Y N ). P f P IS f := 1 N N i=1 1 F (Y i ) f (Y i) g(y i ), where P IS f is unbiased and V(Pf IS f 2 F g ) = dx P2 f N. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

17 Importance Sampling How to find a good g? Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

18 Importance Sampling How to find a good g? Idea: use correlation coefficient between parameters and output, use a function that pushes the realizations towards the critical area. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

19 Importance Sampling How to find a good g? Idea: use correlation coefficient between parameters and output, use a function that pushes the realizations towards the critical area. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

20 Importance Sampling h(x, θ) Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

21 Importance Sampling First approach: Use (rank) correlation coefficients from reference solution (Monte Carlo with N = 5000). Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

22 Importance Sampling First approach: Use (rank) correlation coefficients from reference solution (Monte Carlo with N = 5000). Promising results: N = 780 P IS f = 0.84% Bootstrap CoV κ = 19% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

23 Importance Sampling Second approach: Estimate correlation with 99 realizations and do Importance Sampling with these coefficients. N = 780 P IS f = 1.24% Bootstrap CoV κ = 25% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

24 Importance Sampling Second approach: Estimate correlation with 99 realizations and do Importance Sampling with these coefficients. N = 780 P IS f = 1.24% Bootstrap CoV κ = 25% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

25 Subset Simulation Let α 0 α 1... α m = 1. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

26 Subset Simulation Let α 0 α 1... α m = 1. Then P f = P(X F ) = Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

27 Subset Simulation Let α 0 α 1... α m = 1. Then m P f = P(X F ) = P(Φ(X ) > α 0 ) P(Φ(X ) > α k Φ(X ) > α k 1 ) k=1 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

28 Subset Simulation Let α 0 α 1... α m = 1. Then P f = P(X F ) = P(Φ(X ) > α 0 ) }{{} :=P 0 m P(Φ(X ) > α k Φ(X ) > α k 1 ) }{{} :=P k k=1 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

29 Subset Simulation Let α 0 α 1... α m = 1. Then P f = P(X F ) = P(Φ(X ) > α 0 ) }{{} :=P 0 m P(Φ(X ) > α k Φ(X ) > α k 1 ) }{{} :=P k k=1 Estimate P 0 by Monte Carlo Simulation. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

30 Subset Simulation Let α 0 α 1... α m = 1. Then P f = P(X F ) = P(Φ(X ) > α 0 ) }{{} :=P 0 m P(Φ(X ) > α k Φ(X ) > α k 1 ) }{{} :=P k k=1 Estimate P 0 by Monte Carlo Simulation. Estimate P k by Markov Chain Monte Carlo. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

31 Subset Simulation Let α 0 α 1... α m = 1. Then P f = P(X F ) = P(Φ(X ) > α 0 ) }{{} :=P 0 m P(Φ(X ) > α k Φ(X ) > α k 1 ) }{{} :=P k k=1 Estimate P 0 by Monte Carlo Simulation. Estimate P k by Markov Chain Monte Carlo. We choose α k such that P k 0.2. Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

32 Subset Simulation Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

33 Subset Simulation Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

34 Subset Simulation Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

35 Subset Simulation Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

36 Subset Simulation Theorem The estimator P k is unbiased and the CoV κ k is of order O(N 1 2 ). Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

37 Subset Simulation Theorem The estimator P k is unbiased and the CoV κ k is of order O(N 1 2 ). Theorem The estimator Pf SS O(N 1 2 ). is consistent and the CoV κ is of order Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

38 Subset Simulation 1 Subset Simulation with 900 realisations per level and 35 parameters N t = 2340 P SS f = 1.30% Bootstrap CoV κ BS = 13.1% Bayesian CoV κ BA = 10.6% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

39 Subset Simulation 1 Subset Simulation with 900 realisations per level and 35 parameters N t = 2340 P SS f = 1.30% Bootstrap CoV κ BS = 13.1% Bayesian CoV κ BA = 10.6% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

40 Subset Simulation 1 Subset Simulation with 900 realisations per level and 35 parameters N t = 2340 P SS f = 1.30% Bootstrap CoV κ BS = 13.1% Bayesian CoV κ BA = 10.6% 2 Subset Simulation with 300 realisations per level and 35 parameters N t = 780 P SS f = 1.55% Bootstrap CoV κ BS = 25.0% Bayesian CoV κ BA = 17.7% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

41 Subset Simulation 1 Subset Simulation with 900 realisations per level and 35 parameters N t = 2340 P SS f = 1.30% Bootstrap CoV κ BS = 13.1% Bayesian CoV κ BA = 10.6% 2 Subset Simulation with 300 realisations per level and 35 parameters N t = 780 P SS f = 1.55% Bootstrap CoV κ BS = 25.0% Bayesian CoV κ BA = 17.7% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

42 Subset Simulation 1 Subset Simulation with 900 realisations per level and 35 parameters N t = 2340 P SS f = 1.30% Bootstrap CoV κ BS = 13.1% Bayesian CoV κ BA = 10.6% 2 Subset Simulation with 300 realisations per level and 35 parameters N t = 780 P SS f = 1.55% Bootstrap CoV κ BS = 25.0% Bayesian CoV κ BA = 17.7% 3 Subset Simulation with 300 realisations per level and 10 most sensitive parameters N t = 780 P SS f = 1.20% Bootstrap CoV κ BS = 21.3% Bayesian CoV κ BA = 18.4% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

43 Subset Simulation 3 Subset Simulation with 300 realisations per level and 10 most sensitive parameters N t = 780 P SS f = 1.20% Bootstrap CoV κ BS = 21.3% Bayesian CoV κ BA = 18.4% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

44 Comparison MC IS SS AS Sample Size Estimated P f 0.93% 1.24% 1.55% 0.83% Bootstrap symmetric 95%-confidence interval [0.47%, 1.47%] [0.70%, 1.91%] [1.04%, 2.17%] [0.25%, 2.04%] Bootstrap CoV 26.7% 25.0% 25.0% 53.19% Bayesian symmetric 95%-credibility interval [0.56%, 1.56%] [1.12%, 2.25%] [0.35%, 2.77%] Bayesian CoV 25.7% 17.7% 50.8% Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

45 Prospects Winglet: 4.7 million DOFs Composite failure by Yamada-Sun criterion (Main Joint) Metallic failure by yielding and rupture criterion (Main Joint) Currently running on HPC-system MACH 3 parallel evaluations, 17 min P f 10 6 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

46 Thank you for your attention Martin Schwarz Monte Carlo Based Reliability Analysis 15 May / 19

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

3. Monte Carlo Simulation

3. Monte Carlo Simulation 3. Monte Carlo Simulation 3.7 Variance Reduction Techniques Math443 W08, HM Zhu Variance Reduction Procedures (Chap 4.5., 4.5.3, Brandimarte) Usually, a very large value of M is needed to estimate V with

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Reinforcement Learning. Monte Carlo and Temporal Difference Learning

Reinforcement Learning. Monte Carlo and Temporal Difference Learning Reinforcement Learning Monte Carlo and Temporal Difference Learning Manfred Huber 2014 1 Monte Carlo Methods Dynamic Programming Requires complete knowledge of the MDP Spends equal time on each part of

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

The Values of Information and Solution in Stochastic Programming

The Values of Information and Solution in Stochastic Programming The Values of Information and Solution in Stochastic Programming John R. Birge The University of Chicago Booth School of Business JRBirge ICSP, Bergamo, July 2013 1 Themes The values of information and

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

Investment strategies and risk management for participating life insurance contracts

Investment strategies and risk management for participating life insurance contracts 1/20 Investment strategies and risk for participating life insurance contracts and Steven Haberman Cass Business School AFIR Colloquium Munich, September 2009 2/20 & Motivation Motivation New supervisory

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

The Monte Carlo Method in High Performance Computing

The Monte Carlo Method in High Performance Computing The Monte Carlo Method in High Performance Computing Dieter W. Heermann Monte Carlo Methods 2015 Dieter W. Heermann (Monte Carlo Methods)The Monte Carlo Method in High Performance Computing 2015 1 / 1

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February

More information

A Markov Chain Monte Carlo Approach to Estimate the Risks of Extremely Large Insurance Claims

A Markov Chain Monte Carlo Approach to Estimate the Risks of Extremely Large Insurance Claims International Journal of Business and Economics, 007, Vol. 6, No. 3, 5-36 A Markov Chain Monte Carlo Approach to Estimate the Risks of Extremely Large Insurance Claims Wan-Kai Pang * Department of Applied

More information

Bootstrap Inference for Multiple Imputation Under Uncongeniality

Bootstrap Inference for Multiple Imputation Under Uncongeniality Bootstrap Inference for Multiple Imputation Under Uncongeniality Jonathan Bartlett www.thestatsgeek.com www.missingdata.org.uk Department of Mathematical Sciences University of Bath, UK Joint Statistical

More information

Diploma in Business Administration Part 2. Quantitative Methods. Examiner s Suggested Answers

Diploma in Business Administration Part 2. Quantitative Methods. Examiner s Suggested Answers Cumulative frequency Diploma in Business Administration Part Quantitative Methods Examiner s Suggested Answers Question 1 Cumulative Frequency Curve 1 9 8 7 6 5 4 3 1 5 1 15 5 3 35 4 45 Weeks 1 (b) x f

More information

10. Monte Carlo Methods

10. Monte Carlo Methods 10. Monte Carlo Methods 1. Introduction. Monte Carlo simulation is an important tool in computational finance. It may be used to evaluate portfolio management rules, to price options, to simulate hedging

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

An Introduction to Bayesian Inference and MCMC Methods for Capture-Recapture

An Introduction to Bayesian Inference and MCMC Methods for Capture-Recapture An Introduction to Bayesian Inference and MCMC Methods for Capture-Recapture Trinity River Restoration Program Workshop on Outmigration: Population Estimation October 6 8, 2009 An Introduction to Bayesian

More information

WC-5 Just How Credible Is That Employer? Exploring GLMs and Multilevel Modeling for NCCI s Excess Loss Factor Methodology

WC-5 Just How Credible Is That Employer? Exploring GLMs and Multilevel Modeling for NCCI s Excess Loss Factor Methodology Antitrust Notice The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

On Performance of Confidence Interval Estimate of Mean for Skewed Populations: Evidence from Examples and Simulations

On Performance of Confidence Interval Estimate of Mean for Skewed Populations: Evidence from Examples and Simulations On Performance of Confidence Interval Estimate of Mean for Skewed Populations: Evidence from Examples and Simulations Khairul Islam 1 * and Tanweer J Shapla 2 1,2 Department of Mathematics and Statistics

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Risk Measures Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Reference: Chapter 8

More information

Statistical Computing (36-350)

Statistical Computing (36-350) Statistical Computing (36-350) Lecture 16: Simulation III: Monte Carlo Cosma Shalizi 21 October 2013 Agenda Monte Carlo Monte Carlo approximation of integrals and expectations The rejection method and

More information

Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification

Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification Elisabeth Ullmann Lehrstuhl für Numerische Mathematik (M2) TU München Elisabeth Ullmann (TU München) Efficient Monte Carlo for UQ 1

More information

Extracting Information from the Markets: A Bayesian Approach

Extracting Information from the Markets: A Bayesian Approach Extracting Information from the Markets: A Bayesian Approach Daniel Waggoner The Federal Reserve Bank of Atlanta Florida State University, February 29, 2008 Disclaimer: The views expressed are the author

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 3 Importance sampling January 27, 2015 M. Wiktorsson

More information

Different Monotonicity Definitions in stochastic modelling

Different Monotonicity Definitions in stochastic modelling Different Monotonicity Definitions in stochastic modelling Imène KADI Nihal PEKERGIN Jean-Marc VINCENT ASMTA 2009 Plan 1 Introduction 2 Models?? 3 Stochastic monotonicity 4 Realizable monotonicity 5 Relations

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Ch4. Variance Reduction Techniques

Ch4. Variance Reduction Techniques Ch4. Zhang Jin-Ting Department of Statistics and Applied Probability July 17, 2012 Ch4. Outline Ch4. This chapter aims to improve the Monte Carlo Integration estimator via reducing its variance using some

More information

Econ 300: Quantitative Methods in Economics. 11th Class 10/19/09

Econ 300: Quantitative Methods in Economics. 11th Class 10/19/09 Econ 300: Quantitative Methods in Economics 11th Class 10/19/09 Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write. --H.G. Wells discuss test [do

More information

Lecture 4: Model-Free Prediction

Lecture 4: Model-Free Prediction Lecture 4: Model-Free Prediction David Silver Outline 1 Introduction 2 Monte-Carlo Learning 3 Temporal-Difference Learning 4 TD(λ) Introduction Model-Free Reinforcement Learning Last lecture: Planning

More information

MM and ML for a sample of n = 30 from Gamma(3,2) ===============================================

MM and ML for a sample of n = 30 from Gamma(3,2) =============================================== and for a sample of n = 30 from Gamma(3,2) =============================================== Generate the sample with shape parameter α = 3 and scale parameter λ = 2 > x=rgamma(30,3,2) > x [1] 0.7390502

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 1 Introduction January 16, 2018 M. Wiktorsson

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 2 Random number generation January 18, 2018

More information

Lecture 7: Computation of Greeks

Lecture 7: Computation of Greeks Lecture 7: Computation of Greeks Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris Outline 1 The log-likelihood approach Motivation The pathwise method requires some restrictive regularity assumptions

More information

Calculating Implied Volatility

Calculating Implied Volatility Statistical Laboratory University of Cambridge University of Cambridge Mathematics and Big Data Showcase 20 April 2016 How much is an option worth? A call option is the right, but not the obligation, to

More information

Web Appendix. Are the effects of monetary policy shocks big or small? Olivier Coibion

Web Appendix. Are the effects of monetary policy shocks big or small? Olivier Coibion Web Appendix Are the effects of monetary policy shocks big or small? Olivier Coibion Appendix 1: Description of the Model-Averaging Procedure This section describes the model-averaging procedure used in

More information

Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error

Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error South Texas Project Risk- Informed GSI- 191 Evaluation Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error Document: STP- RIGSI191- ARAI.03 Revision: 1 Date: September

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

STRESS-STRENGTH RELIABILITY ESTIMATION

STRESS-STRENGTH RELIABILITY ESTIMATION CHAPTER 5 STRESS-STRENGTH RELIABILITY ESTIMATION 5. Introduction There are appliances (every physical component possess an inherent strength) which survive due to their strength. These appliances receive

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Credit Exposure Measurement Fixed Income & FX Derivatives

Credit Exposure Measurement Fixed Income & FX Derivatives 1 Credit Exposure Measurement Fixed Income & FX Derivatives Dr Philip Symes 1. Introduction 2 Fixed Income Derivatives Exposure Simulation. This methodology may be used for fixed income and FX derivatives.

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

Chapter 6. Importance sampling. 6.1 The basics

Chapter 6. Importance sampling. 6.1 The basics Chapter 6 Importance sampling 6.1 The basics To movtivate our discussion consider the following situation. We want to use Monte Carlo to compute µ E[X]. There is an event E such that P(E) is small but

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Use of the Risk Driver Method in Monte Carlo Simulation of a Project Schedule

Use of the Risk Driver Method in Monte Carlo Simulation of a Project Schedule Use of the Risk Driver Method in Monte Carlo Simulation of a Project Schedule Presented to the 2013 ICEAA Professional Development & Training Workshop June 18-21, 2013 David T. Hulett, Ph.D. Hulett & Associates,

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Results for option pricing

Results for option pricing Results for option pricing [o,v,b]=optimal(rand(1,100000 Estimators = 0.4619 0.4617 0.4618 0.4613 0.4619 o = 0.46151 % best linear combination (true value=0.46150 v = 1.1183e-005 %variance per uniform

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Unobserved Heterogeneity Revisited

Unobserved Heterogeneity Revisited Unobserved Heterogeneity Revisited Robert A. Miller Dynamic Discrete Choice March 2018 Miller (Dynamic Discrete Choice) cemmap 7 March 2018 1 / 24 Distributional Assumptions about the Unobserved Variables

More information

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration.

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration. Overview 1 Random numbers Transformation method Rejection method 2 Monte Carlo integration Monte Carlo vs ordinary methods 3 Summary Transformation method Suppose X has probability distribution p X (x),

More information

UPDATED IAA EDUCATION SYLLABUS

UPDATED IAA EDUCATION SYLLABUS II. UPDATED IAA EDUCATION SYLLABUS A. Supporting Learning Areas 1. STATISTICS Aim: To enable students to apply core statistical techniques to actuarial applications in insurance, pensions and emerging

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

F19: Introduction to Monte Carlo simulations. Ebrahim Shayesteh

F19: Introduction to Monte Carlo simulations. Ebrahim Shayesteh F19: Introduction to Monte Carlo simulations Ebrahim Shayesteh Introduction and repetition Agenda Monte Carlo methods: Background, Introduction, Motivation Example 1: Buffon s needle Simple Sampling Example

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

SIMULATION OF ELECTRICITY MARKETS

SIMULATION OF ELECTRICITY MARKETS SIMULATION OF ELECTRICITY MARKETS MONTE CARLO METHODS Lectures 15-18 in EG2050 System Planning Mikael Amelin 1 COURSE OBJECTIVES To pass the course, the students should show that they are able to - apply

More information

STA 532: Theory of Statistical Inference

STA 532: Theory of Statistical Inference STA 532: Theory of Statistical Inference Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 2 Estimating CDFs and Statistical Functionals Empirical CDFs Let {X i : i n}

More information

Institute of Actuaries of India Subject CT6 Statistical Methods

Institute of Actuaries of India Subject CT6 Statistical Methods Institute of Actuaries of India Subject CT6 Statistical Methods For 2014 Examinations Aim The aim of the Statistical Methods subject is to provide a further grounding in mathematical and statistical techniques

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Financial Engineering and Structured Products

Financial Engineering and Structured Products 550.448 Financial Engineering and Structured Products Week of March 31, 014 Structured Securitization Liability-Side Cash Flow Analysis & Structured ransactions Assignment Reading (this week, March 31

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN SOLUTIONS Subject CM1A Actuarial Mathematics Institute and Faculty of Actuaries 1 ( 91 ( 91 365 1 0.08 1 i = + 365 ( 91 365 0.980055 = 1+ i 1+

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 1 Hacettepe University Department of Actuarial Sciences 06800, TURKEY 2 Middle

More information

Portfolio Risk Management and Linear Factor Models

Portfolio Risk Management and Linear Factor Models Chapter 9 Portfolio Risk Management and Linear Factor Models 9.1 Portfolio Risk Measures There are many quantities introduced over the years to measure the level of risk that a portfolio carries, and each

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Random Tree Method. Monte Carlo Methods in Financial Engineering

Random Tree Method. Monte Carlo Methods in Financial Engineering Random Tree Method Monte Carlo Methods in Financial Engineering What is it for? solve full optimal stopping problem & estimate value of the American option simulate paths of underlying Markov chain produces

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples.

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples. for for January 25, 2016 1 / 26 Outline for 1 2 3 4 2 / 26 Put Option for A put option is the right to sell an asset at an established price at a certain time. The established price is the strike price,

More information

Reverse Sensitivity Testing: What does it take to break the model? Silvana Pesenti

Reverse Sensitivity Testing: What does it take to break the model? Silvana Pesenti Reverse Sensitivity Testing: What does it take to break the model? Silvana Pesenti Silvana.Pesenti@cass.city.ac.uk joint work with Pietro Millossovich and Andreas Tsanakas Insurance Data Science Conference,

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach

Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach P1.T4. Valuation & Risk Models Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach Bionic Turtle FRM Study Notes Reading 26 By

More information

A New Spread Estimator

A New Spread Estimator Title Page with ALL Author Contact Information Noname manuscript No. (will be inserted by the editor) A New Spread Estimator Michael Bleaney Zhiyong Li Abstract A new estimator of bid-ask spreads is presented.

More information

Preprint: Will be published in Perm Winter School Financial Econometrics and Empirical Market Microstructure, Springer

Preprint: Will be published in Perm Winter School Financial Econometrics and Empirical Market Microstructure, Springer STRESS-TESTING MODEL FOR CORPORATE BORROWER PORTFOLIOS. Preprint: Will be published in Perm Winter School Financial Econometrics and Empirical Market Microstructure, Springer Seleznev Vladimir Denis Surzhko,

More information

ก ก ก ก ก ก ก. ก (Food Safety Risk Assessment Workshop) 1 : Fundamental ( ก ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\

ก ก ก ก ก ก ก. ก (Food Safety Risk Assessment Workshop) 1 : Fundamental ( ก ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\ ก ก ก ก (Food Safety Risk Assessment Workshop) ก ก ก ก ก ก ก ก 5 1 : Fundamental ( ก 29-30.. 53 ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\ 1 4 2553 4 5 : Quantitative Risk Modeling Microbial

More information

Blind Portfolio Auctions via Intermediaries

Blind Portfolio Auctions via Intermediaries Blind Portfolio Auctions via Intermediaries Michael Padilla Stanford University (joint work with Benjamin Van Roy) April 12, 2011 Computer Forum 2011 Michael Padilla (Stanford University) Blind Portfolio

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

The Multinomial Logit Model Revisited: A Semiparametric Approach in Discrete Choice Analysis

The Multinomial Logit Model Revisited: A Semiparametric Approach in Discrete Choice Analysis The Multinomial Logit Model Revisited: A Semiparametric Approach in Discrete Choice Analysis Dr. Baibing Li, Loughborough University Wednesday, 02 February 2011-16:00 Location: Room 610, Skempton (Civil

More information

Value at Risk Ch.12. PAK Study Manual

Value at Risk Ch.12. PAK Study Manual Value at Risk Ch.12 Related Learning Objectives 3a) Apply and construct risk metrics to quantify major types of risk exposure such as market risk, credit risk, liquidity risk, regulatory risk etc., and

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

Problem Set: Contract Theory

Problem Set: Contract Theory Problem Set: Contract Theory Problem 1 A risk-neutral principal P hires an agent A, who chooses an effort a 0, which results in gross profit x = a + ε for P, where ε is uniformly distributed on [0, 1].

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Further Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Outline

More information

A simple model to account for diversification in credit risk. Application to a bank s portfolio model.

A simple model to account for diversification in credit risk. Application to a bank s portfolio model. A simple model to account for diversification in credit ris. Application to a ban s portfolio model. Juan Antonio de Juan Herrero Metodologías de Riesgo Corporativo. BBVA VI Jornada de Riesgos Financieros

More information

SEQUENTIAL DECISION PROBLEM WITH PARTIAL MAINTENANCE ON A PARTIALLY OBSERVABLE MARKOV PROCESS. Toru Nakai. Received February 22, 2010

SEQUENTIAL DECISION PROBLEM WITH PARTIAL MAINTENANCE ON A PARTIALLY OBSERVABLE MARKOV PROCESS. Toru Nakai. Received February 22, 2010 Scientiae Mathematicae Japonicae Online, e-21, 283 292 283 SEQUENTIAL DECISION PROBLEM WITH PARTIAL MAINTENANCE ON A PARTIALLY OBSERVABLE MARKOV PROCESS Toru Nakai Received February 22, 21 Abstract. In

More information

Risk Management and Time Series

Risk Management and Time Series IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Risk Management and Time Series Time series models are often employed in risk management applications. They can be used to estimate

More information

12 The Bootstrap and why it works

12 The Bootstrap and why it works 12 he Bootstrap and why it works For a review of many applications of bootstrap see Efron and ibshirani (1994). For the theory behind the bootstrap see the books by Hall (1992), van der Waart (2000), Lahiri

More information

European option pricing under parameter uncertainty

European option pricing under parameter uncertainty European option pricing under parameter uncertainty Martin Jönsson (joint work with Samuel Cohen) University of Oxford Workshop on BSDEs, SPDEs and their Applications July 4, 2017 Introduction 2/29 Introduction

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Resource Allocation within Firms and Financial Market Dislocation: Evidence from Diversified Conglomerates

Resource Allocation within Firms and Financial Market Dislocation: Evidence from Diversified Conglomerates Resource Allocation within Firms and Financial Market Dislocation: Evidence from Diversified Conglomerates Gregor Matvos and Amit Seru (RFS, 2014) Corporate Finance - PhD Course 2017 Stefan Greppmair,

More information