Different Monotonicity Definitions in stochastic modelling

Size: px
Start display at page:

Download "Different Monotonicity Definitions in stochastic modelling"

Transcription

1 Different Monotonicity Definitions in stochastic modelling Imène KADI Nihal PEKERGIN Jean-Marc VINCENT ASMTA 2009

2 Plan 1 Introduction 2 Models?? 3 Stochastic monotonicity 4 Realizable monotonicity 5 Relations between monotonicity concepts 6 Realizable monotonicity and Partial Orders 7 Conclusion

3 Introduction Concept of monotonicity Lower and Upper bounding Coupling of trajectories ( perfect Sampling) Reduce the complexity. Different notions of monotonicity Order on trajectories( Event monotonicity). Order on distribution (Stochastic monotonicity). Monotonicity concepts depends on the relation order considerd on the state space Partial order and total order

4 Main results Relations between monotonicity concepts in Total and Partial Orders Event System Transition Matrix Total order Realizable monotonicity Strassen Proof(valuetools2007) Stochastic Monotonicty Proof Partial order Realizable monotonicity Stochastic Monotonicty Counter Example

5 Markovian Discrete Event Systems(MDES) MDES are dynamic systems evolving asynchronously and interacting at irregular instants called event epochs. They are defined by: a state space X a set of events E a set of probability measures P transition function Φ P(e) P denotes the occurrence probability Event An event e is an application defined on X, that associates to each state x X a new state y X.

6 Markovian Discrete Event Systems(MDES) Transition function with events Let X i be the state of the system at the i th event occurrence time. The transition function Φ : X E X, X n+1 = Φ(X n, e n+1 ) Φ must to obey to the following property to generate P: p ij = P(φ(x i, E) = x j ) = P(E = e) e Φ(x i,e)=x j

7 Discrete Time Markov Chains (DTMC) DTMC {X 0, X 1,..., X n+1,...}: stochastic process observed at points {0, 1,..., n + 1}. It constitutes a DTMC if: n N and x i X : P(X n+1 = x n+1 X n = x n, X n 1 = x n 1,..., X 0 = x 0) = P(X n+1 = x n+1 X n = x n). The one-step transition probability p ij are given in a non-negative, stochastic transition matrix P: 0 P = P (1) = [p ij ] p 00 p 01 p p 10 p 11 p p 20 p 21 p C A

8 Discrete Time Markov Chains (DTMC) A probability transition matrix P, can be described by a transition function Transition function in a DTMC Φ : X U X, is a transition function for P where : U is a random variable taking values in an arbitrary probability space U, such that: x, y X X n+1 = Φ(X n, U n+1 ) : P(Φ(x, U) = y) = p xy

9 Stochastic ordering Stochastic ordering Stochastic ordering Let T and V be two discrete random variables and Γ an increasing set defined on X T st V x Γ P(T = x) x Γ P(V = x), Γ Definition (Increasing set) Any subset Γ of X is called an increasing set if x y and x Γ implies y Γ.

10 Stochastic ordering Stochastic ordering Example Let (X, ) be a partial ordered state space, X = {a, b, c, d}. a b d, and a c d, Increasing sets:γ 1 ={a,b,c,d}, Γ 2 ={b,c,d}, Γ 3 ={b,d}, Γ 4 ={c,d}, Γ 5 ={d}. V 1=(0.4,0.2,0.1,0.3) V 2=(0.2,0.1,0.3,0.4) On a : V 1 st V 2 For Γ 1={a,b,c,d}: For Γ 2={b,c,d}: For Γ 3={b,d}: For Γ 4={c,d}: For Γ 5={d} :

11 Stochastic ordering Stochastic monotonicity Stochastic monotonicity P a transition probability matrix of a time-homogeneous Markov chain {X n, n 0} taking values in X endowed with relation order. {X n, n 0} is st-monotone if and only if, (x, y) x y and increasing set Γ X z Γ p xz z Γ p yz

12 Realizable monotonicity Realizable monotonicity P a stochastic matrix defined on X. P is realizable monotone, if there exists a transition function, such that Φ preserves the order relation. u U : if x y then Φ(x, u) Φ(y, u) Event monotonicity The model is event monotone, if the transition function by events preserves the order ie. e E (x, y) X x y = Φ(x, e) Φ(y, e) A system is realizable monotone means that there exists a finite set of events E for which the system is event monotone

13 Realizable monotonicity and perfect sampling Monotonicity and perfect sampling Principe Produce exact sampling of stationary distribution (Π) of a DTMC. One trajectory per state. The algorithm stops when all trajectories meet the same state coupling The evolution of the trajectories will be confused. If the model is event monotone Run only trajectories from minimal and maximal states. All other trajectories are always between these trajectories. If there is coupling at time t so all the other trajectories have also coalesced. The tool PSI 2 was developed to implement this method of simulation (JM.Vincent).

14 Total order Relations between monotonicity concepts Total Order (X, E) : MDES P: Transition matrix Total order E :(X, E) Monotone Strassen P: Monotone

15 Total order Relations between monotonicity concepts Total Order (X, E) : MDES P: Transition matrix Total order E :(X, E) Monotone (X, E) Monotone Strassen Valuetools2007 P: Monotone P(E): Monotone

16 Partial Order Relation between monotonicty concepts (Partial Order) Partial Order (X, E) : MDES P: Transition matrix Total order E :(X, E) Monotone (X, E) Monotone Strassen Valuetools2007 P: Monotone P(E): Monotone Partial order (X, E) Monotone Proof P(E): Monotone

17 Partial Order Relation between monotonicty concepts (Partial Order) The reciprocal is not true (X, E) : MDES P: Transition matrix Total order E :(X, E) Monotone (X, E) Monotone Strassen Valuetools2007 P: Monotone P(E): Monotone Partial (X, E) Monotone Proof P(E): Monotone order?e : (X, E) Monotone and P(E) = P P: Monotone Counter Example

18 Partial Order Relation between monotonicty concepts (Partial Order) Counter Example X = {a, b, c, d}, a b d and a c d. P transition matrix in X P = 1/2 1/6 1/3 0 1/3 1/3 0 1/3 1/2 0 1/6 1/3 0 1/3 1/3 1/3 1/61/61/61/6 1/61/6 a a b c b a b d c a c d d b c d P is not realizable monotone. We have for u [3/6, 4/6] Φ(a, u) = b is incomparable with Φ(c, u) = c.

19 Partial Order Relation between monotonicty concepts (Partial Order) Proof b d and c d Transitions from states b, c, d to state d with probability 1/3 must be associated to the same interval u a b and a c : Transitions from a, c to a must be associated to the same interval, e u = 1/2. Transitions from a, b to a must be associated to the same interval, e u = 1/3. For states b, and c it remains only an interval of u e = 1/3 to assign. 1/3 1/6 1/6 1/3 a a a b c b a b b d c a a c d d b c d It is not possible to build a realizable monotone transition function for this matrix.

20 Partial Order Relation between monotonicty concepts (Partial Order) In partial orders Define conditions on the matrix P, that allows us to knew whether the corresponding system is realizable monotone.

21 Case of equivalence in partial Order Relation between monotonicty concepts (Partial Order) Theorem When the state space is partially ordered in a tree, if the system is stochastic monotone, then there exists a finite set of events e 1, e 2,..., e n, for which the system is event-monotone. a 0 a 1 c 00 a n c m0 c 0n c 0 n 1 c c 1 h c 10 1 n c 1 n c m n 1 c mn Define an algorithm that construct the monotone transition function Φ

22 Algorithm Relation between monotonicty concepts (Partial Order) A = {a 1 a 2...a n}: States comparable with all others. We consider two branches: C 1 = {c 10 c 11..., c 1n}. C 2 = {c 20 c 21..., c 2n}. c 10 c 11 a 0 a 1 a n c 20 c 21 c 1n c 2n For each branch C i we find events which trigger transition to a state of C i. Then we find events which trigger transition to a state of A. U0 U1 U2 U2 U2 A A A C1 A C2 C1 A A C1 A C2 C2 A C1 C2

23 Realizable monotonicity in Partial Orders (X, E) : MDES P: Transition matrix Total order E :(X, E) Monotone (X, E) Monotone Strassen Valuetools2007 P: Monotone P(E): Monotone Partial (X, E) Monotone Proof P(E): Monotone order?e : (X, E) Monotone and P(E) = P P: Monotone Counter Example Equivalence in Tree

24 Realizable monotonicity and Partial Orders Another way to reduce the complexicity = reduce the number of maximal and minimal states. If the system is monotone according to a partial order, can we find a total order for which the system is monotone??. Not possible with all partial orders.

25 Realizable monotonicity and Partial Orders Counter example X = {a, b, c, d}, a b c and a b d. P transition matrix in X P = Two possible orders: a b c d 1/2 1/3 0 1/6 1/3 1/3 1/6 1/6 0 1/2 1/6 1/3 0 1/2 1/3 1/6 1/61/61/61/6 1/6 1/6 a a b d b a b c d c b c d d d b c d 1/61/61/61/6 1/6 1/6 a a b d b a b c d c b c d d b c d a b d c 1/61/61/61/6 1/6 1/6 a a b d b a b d c d b d c c c b d c

26 Monotonicity in partial and total order (X, E) : MDES P: Transition matrix Total order E :(X, E) Monotone (X, E) Monotone Strassen Valuetools2007 P: Monotone P(E): Monotone Partial (X, E) Monotone Proof P(E): Monotone order?e : (X, E) Monotone and P(E) = P P: Monotone Counter Example Equivalence in Tree

27 Total Order: Stochastic monotonicity Realizable monotonicity Partial Order: Realizable monotonicity Stochastic monotonicity Stochastic monotonicity Realizable monotonicity Monotonicity with order Monotonicity with order Perspectives In the partial order : Find another conditions to move from the stochastic monotonicity to the realizable monotonicity implements

Modeling and Estimation of

Modeling and Estimation of Modeling and of Financial and Actuarial Mathematics Christian Doppler Laboratory for Portfolio Risk Management Vienna University of Technology PRisMa 2008 29.09.2008 Outline 1 2 3 4 5 Credit ratings describe

More information

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006 On the convergence of Q-learning Elif Özge Özdamar elif.ozdamar@helsinki.fi T-61.6020 Reinforcement Learning - Theory and Applications February 14, 2006 the covergence of stochastic iterative algorithms

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

Markov Chains (Part 2)

Markov Chains (Part 2) Markov Chains (Part 2) More Examples and Chapman-Kolmogorov Equations Markov Chains - 1 A Stock Price Stochastic Process Consider a stock whose price either goes up or down every day. Let X t be a random

More information

Stochastic Manufacturing & Service Systems. Discrete-time Markov Chain

Stochastic Manufacturing & Service Systems. Discrete-time Markov Chain ISYE 33 B, Fall Week #7, September 9-October 3, Introduction Stochastic Manufacturing & Service Systems Xinchang Wang H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Macroeconomics and finance

Macroeconomics and finance Macroeconomics and finance 1 1. Temporary equilibrium and the price level [Lectures 11 and 12] 2. Overlapping generations and learning [Lectures 13 and 14] 2.1 The overlapping generations model 2.2 Expectations

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Stochastic Optimal Control

Stochastic Optimal Control Stochastic Optimal Control Lecturer: Eilyan Bitar, Cornell ECE Scribe: Kevin Kircher, Cornell MAE These notes summarize some of the material from ECE 5555 (Stochastic Systems) at Cornell in the fall of

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

Long run equilibria in an asymmetric oligopoly

Long run equilibria in an asymmetric oligopoly Economic Theory 14, 705 715 (1999) Long run equilibria in an asymmetric oligopoly Yasuhito Tanaka Faculty of Law, Chuo University, 742-1, Higashinakano, Hachioji, Tokyo, 192-03, JAPAN (e-mail: yasuhito@tamacc.chuo-u.ac.jp)

More information

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Spring 2009 Main question: How much are patents worth? Answering this question is important, because it helps

More information

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions Optimality and Approximation Finite MDP: {S, A, R, p, γ}

More information

Chain conditions, layered partial orders and weak compactness

Chain conditions, layered partial orders and weak compactness Chain conditions, layered partial orders and weak compactness Philipp Moritz Lücke Joint work with Sean D. Cox (VCU Richmond) Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn http://www.math.uni-bonn.de/people/pluecke/

More information

Monte Carlo Based Reliability Analysis

Monte Carlo Based Reliability Analysis Monte Carlo Based Reliability Analysis Martin Schwarz 15 May 2014 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May 2014 1 / 19 Plan of Presentation Description of the problem Monte Carlo Simulation

More information

A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS. Burhaneddin İZGİ

A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS. Burhaneddin İZGİ A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS Burhaneddin İZGİ Department of Mathematics, Istanbul Technical University, Istanbul, Turkey

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012 IEOR 306: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 6, 202 Four problems, each with multiple parts. Maximum score 00 (+3 bonus) = 3. You need to show

More information

Game Theory for Wireless Engineers Chapter 3, 4

Game Theory for Wireless Engineers Chapter 3, 4 Game Theory for Wireless Engineers Chapter 3, 4 Zhongliang Liang ECE@Mcmaster Univ October 8, 2009 Outline Chapter 3 - Strategic Form Games - 3.1 Definition of A Strategic Form Game - 3.2 Dominated Strategies

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Outline Sequential Decision Processes Markov chains Highlight Markov property Discounted rewards Value iteration Markov

More information

Characterizing large cardinals in terms of layered partial orders

Characterizing large cardinals in terms of layered partial orders Characterizing large cardinals in terms of layered partial orders Philipp Moritz Lücke Joint work with Sean D. Cox (VCU Richmond) Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn

More information

Central limit theorems

Central limit theorems Chapter 6 Central limit theorems 6.1 Overview Recall that a random variable Z is said to have a standard normal distribution, denoted by N(0, 1), if it has a continuous distribution with density φ(z) =

More information

Information Aggregation in Dynamic Markets with Strategic Traders. Michael Ostrovsky

Information Aggregation in Dynamic Markets with Strategic Traders. Michael Ostrovsky Information Aggregation in Dynamic Markets with Strategic Traders Michael Ostrovsky Setup n risk-neutral players, i = 1,..., n Finite set of states of the world Ω Random variable ( security ) X : Ω R Each

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

An optimal policy for joint dynamic price and lead-time quotation

An optimal policy for joint dynamic price and lead-time quotation Lingnan University From the SelectedWorks of Prof. LIU Liming November, 2011 An optimal policy for joint dynamic price and lead-time quotation Jiejian FENG Liming LIU, Lingnan University, Hong Kong Xianming

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Recovering portfolio default intensities implied by CDO quotes. Rama CONT & Andreea MINCA. March 1, Premia 14

Recovering portfolio default intensities implied by CDO quotes. Rama CONT & Andreea MINCA. March 1, Premia 14 Recovering portfolio default intensities implied by CDO quotes Rama CONT & Andreea MINCA March 1, 2012 1 Introduction Premia 14 Top-down" models for portfolio credit derivatives have been introduced as

More information

Dynamic Admission and Service Rate Control of a Queue

Dynamic Admission and Service Rate Control of a Queue Dynamic Admission and Service Rate Control of a Queue Kranthi Mitra Adusumilli and John J. Hasenbein 1 Graduate Program in Operations Research and Industrial Engineering Department of Mechanical Engineering

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532L Lecture 10 Stochastic Games and Bayesian Games CPSC 532L Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games Stochastic Games

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Regret Minimization against Strategic Buyers

Regret Minimization against Strategic Buyers Regret Minimization against Strategic Buyers Mehryar Mohri Courant Institute & Google Research Andrés Muñoz Medina Google Research Motivation Online advertisement: revenue of modern search engine and

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Contagion models with interacting default intensity processes

Contagion models with interacting default intensity processes Contagion models with interacting default intensity processes Yue Kuen KWOK Hong Kong University of Science and Technology This is a joint work with Kwai Sun Leung. 1 Empirical facts Default of one firm

More information

BSc (Hons) Software Engineering BSc (Hons) Computer Science with Network Security

BSc (Hons) Software Engineering BSc (Hons) Computer Science with Network Security BSc (Hons) Software Engineering BSc (Hons) Computer Science with Network Security Cohorts BCNS/ 06 / Full Time & BSE/ 06 / Full Time Resit Examinations for 2008-2009 / Semester 1 Examinations for 2008-2009

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

Orthogonality to the value group is the same as generic stability in C-minimal expansions of ACVF

Orthogonality to the value group is the same as generic stability in C-minimal expansions of ACVF Orthogonality to the value group is the same as generic stability in C-minimal expansions of ACVF Will Johnson February 18, 2014 1 Introduction Let T be some C-minimal expansion of ACVF. Let U be the monster

More information

Game Theory: Normal Form Games

Game Theory: Normal Form Games Game Theory: Normal Form Games Michael Levet June 23, 2016 1 Introduction Game Theory is a mathematical field that studies how rational agents make decisions in both competitive and cooperative situations.

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Credit Risk Models with Filtered Market Information

Credit Risk Models with Filtered Market Information Credit Risk Models with Filtered Market Information Rüdiger Frey Universität Leipzig Bressanone, July 2007 ruediger.frey@math.uni-leipzig.de www.math.uni-leipzig.de/~frey joint with Abdel Gabih and Thorsten

More information

Portfolio Optimization Under Fixed Transaction Costs

Portfolio Optimization Under Fixed Transaction Costs Portfolio Optimization Under Fixed Transaction Costs Gennady Shaikhet supervised by Dr. Gady Zohar The model Market with two securities: b(t) - bond without interest rate p(t) - stock, an Ito process db(t)

More information

Markov Decision Processes. CS 486/686: Introduction to Artificial Intelligence

Markov Decision Processes. CS 486/686: Introduction to Artificial Intelligence Markov Decision Processes CS 486/686: Introduction to Artificial Intelligence 1 Outline Markov Chains Discounted Rewards Markov Decision Processes (MDP) - Value Iteration - Policy Iteration 2 Markov Chains

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

Homework 1 posted, due Friday, September 30, 2 PM. Independence of random variables: We say that a collection of random variables

Homework 1 posted, due Friday, September 30, 2 PM. Independence of random variables: We say that a collection of random variables Generating Functions Tuesday, September 20, 2011 2:00 PM Homework 1 posted, due Friday, September 30, 2 PM. Independence of random variables: We say that a collection of random variables Is independent

More information

6.262: Discrete Stochastic Processes 3/2/11. Lecture 9: Markov rewards and dynamic prog.

6.262: Discrete Stochastic Processes 3/2/11. Lecture 9: Markov rewards and dynamic prog. 6.262: Discrete Stochastic Processes 3/2/11 Lecture 9: Marov rewards and dynamic prog. Outline: Review plus of eigenvalues and eigenvectors Rewards for Marov chains Expected first-passage-times Aggregate

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani All single-node marginals If we need the full set of marginals, repeating

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 All single-node marginals If we need the

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

17 MAKING COMPLEX DECISIONS

17 MAKING COMPLEX DECISIONS 267 17 MAKING COMPLEX DECISIONS The agent s utility now depends on a sequence of decisions In the following 4 3grid environment the agent makes a decision to move (U, R, D, L) at each time step When the

More information

Blackwell Optimality in Markov Decision Processes with Partial Observation

Blackwell Optimality in Markov Decision Processes with Partial Observation Blackwell Optimality in Markov Decision Processes with Partial Observation Dinah Rosenberg and Eilon Solan and Nicolas Vieille April 6, 2000 Abstract We prove the existence of Blackwell ε-optimal strategies

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Gittins Index: Discounted, Bayesian (hence Markov arms). Reduces to stopping problem for each arm. Interpretation as (scaled)

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532l Lecture 10 Stochastic Games and Bayesian Games CPSC 532l Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games 4 Analyzing Bayesian

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

I. Time Series and Stochastic Processes

I. Time Series and Stochastic Processes I. Time Series and Stochastic Processes Purpose of this Module Introduce time series analysis as a method for understanding real-world dynamic phenomena Define different types of time series Explain the

More information

A simple wealth model

A simple wealth model Quantitative Macroeconomics Raül Santaeulàlia-Llopis, MOVE-UAB and Barcelona GSE Homework 5, due Thu Nov 1 I A simple wealth model Consider the sequential problem of a household that maximizes over streams

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Markov Decision Processes II

Markov Decision Processes II Markov Decision Processes II Daisuke Oyama Topics in Economic Theory December 17, 2014 Review Finite state space S, finite action space A. The value of a policy σ A S : v σ = β t Q t σr σ, t=0 which satisfies

More information

ECON 815. Uncertainty and Asset Prices

ECON 815. Uncertainty and Asset Prices ECON 815 Uncertainty and Asset Prices Winter 2015 Queen s University ECON 815 1 Adding Uncertainty Endowments are now stochastic. endowment in period 1 is known at y t two states s {1, 2} in period 2 with

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs. SS223B-Empirical IO

Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs. SS223B-Empirical IO Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs SS223B-Empirical IO Motivation There have been substantial recent developments in the empirical literature on

More information

Algorithmic Trading under the Effects of Volume Order Imbalance

Algorithmic Trading under the Effects of Volume Order Imbalance Algorithmic Trading under the Effects of Volume Order Imbalance 7 th General Advanced Mathematical Methods in Finance and Swissquote Conference 2015 Lausanne, Switzerland Ryan Donnelly ryan.donnelly@epfl.ch

More information

Simulating Continuous Time Rating Transitions

Simulating Continuous Time Rating Transitions Bus 864 1 Simulating Continuous Time Rating Transitions Robert A. Jones 17 March 2003 This note describes how to simulate state changes in continuous time Markov chains. An important application to credit

More information

***PRELIMINARY*** The Analytics of Investment,, andcashflow

***PRELIMINARY*** The Analytics of Investment,, andcashflow MACROECON & INT'L FINANCE WORKSHOP presented by Andy Abel FRIDAY, Oct. 2, 202 3:30 pm 5:00 pm, Room: JKP-202 ***PRELIMINARY*** The Analytics of Investment,, andcashflow Andrew B. Abel Wharton School of

More information

Dynamic Contract Trading in Spectrum Markets

Dynamic Contract Trading in Spectrum Markets 1 Dynamic Contract Trading in Spectrum Markets G. Kasbekar, S. Sarkar, K. Kar, P. Muthusamy, A. Gupta Abstract We address the question of optimal trading of bandwidth (service) contracts in wireless spectrum

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week 2-3 1 / 24 Outline

More information

SOLVING ROBUST SUPPLY CHAIN PROBLEMS

SOLVING ROBUST SUPPLY CHAIN PROBLEMS SOLVING ROBUST SUPPLY CHAIN PROBLEMS Daniel Bienstock Nuri Sercan Özbay Columbia University, New York November 13, 2005 Project with Lucent Technologies Optimize the inventory buffer levels in a complicated

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE Rollout algorithms Cost improvement property Discrete deterministic problems Approximations of rollout algorithms Discretization of continuous time

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

Capturing Risk Interdependencies: The CONVOI Method

Capturing Risk Interdependencies: The CONVOI Method Capturing Risk Interdependencies: The CONVOI Method Blake Boswell Mike Manchisi Eric Druker 1 Table Of Contents Introduction The CONVOI Process Case Study Consistency Verification Conditional Odds Integration

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Chapter 6: Mixed Strategies and Mixed Strategy Nash Equilibrium

More information

Call Admission Control for Preemptive and Partially Blocking Service Integration Schemes in ATM Networks

Call Admission Control for Preemptive and Partially Blocking Service Integration Schemes in ATM Networks Call Admission Control for Preemptive and Partially Blocking Service Integration Schemes in ATM Networks Ernst Nordström Department of Computer Systems, Information Technology, Uppsala University, Box

More information

An Application of Ramsey Theorem to Stopping Games

An Application of Ramsey Theorem to Stopping Games An Application of Ramsey Theorem to Stopping Games Eran Shmaya, Eilon Solan and Nicolas Vieille July 24, 2001 Abstract We prove that every two-player non zero-sum deterministic stopping game with uniformly

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

19 Decision Making. Expected Monetary Value Expected Opportunity Loss Return-to-Risk Ratio Decision Making with Sample Information

19 Decision Making. Expected Monetary Value Expected Opportunity Loss Return-to-Risk Ratio Decision Making with Sample Information 19 Decision Making USING STATISTICS @ The Reliable Fund 19.1 Payoff Tables and Decision Trees 19.2 Criteria for Decision Making Maximax Payoff Maximin Payoff Expected Monetary Value Expected Opportunity

More information

Optimal Control of Batch Service Queues with Finite Service Capacity and General Holding Costs

Optimal Control of Batch Service Queues with Finite Service Capacity and General Holding Costs Queueing Colloquium, CWI, Amsterdam, February 24, 1999 Optimal Control of Batch Service Queues with Finite Service Capacity and General Holding Costs Samuli Aalto EURANDOM Eindhoven 24-2-99 cwi.ppt 1 Background

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

arxiv: v1 [math.pr] 6 Apr 2015

arxiv: v1 [math.pr] 6 Apr 2015 Analysis of the Optimal Resource Allocation for a Tandem Queueing System arxiv:1504.01248v1 [math.pr] 6 Apr 2015 Liu Zaiming, Chen Gang, Wu Jinbiao School of Mathematics and Statistics, Central South University,

More information

Particle methods and the pricing of American options

Particle methods and the pricing of American options Particle methods and the pricing of American options Peng HU Oxford-Man Institute April 29, 2013 Joint works with P. Del Moral, N. Oudjane & B. Rémillard P. HU (OMI) University of Oxford 1 / 46 Outline

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals A. Eichhorn and W. Römisch Humboldt-University Berlin, Department of Mathematics, Germany http://www.math.hu-berlin.de/~romisch

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b Chris Edmond hcpedmond@unimelb.edu.aui Aiyagari s model Arguably the most popular example of a simple incomplete markets model is due to Rao Aiyagari (1994,

More information

Randomization and Simplification. Ehud Kalai 1 and Eilon Solan 2,3. Abstract

Randomization and Simplification. Ehud Kalai 1 and Eilon Solan 2,3. Abstract andomization and Simplification y Ehud Kalai 1 and Eilon Solan 2,3 bstract andomization may add beneficial flexibility to the construction of optimal simple decision rules in dynamic environments. decision

More information