Dealing with forecast uncertainty in inventory models

Size: px
Start display at page:

Download "Dealing with forecast uncertainty in inventory models"

Transcription

1 Dealing with forecast uncertainty in inventory models 19th IIF workshop on Supply Chain Forecasting for Operations Lancaster University Dennis Prak Supervisor: Prof. R.H. Teunter June 29, 2016 Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

2 Introduction Separation of forecasting and decision making Cost function Model of future demand Distribution and parameters Inventory models contain demand parameters In practice, parameters unknown Textbooks: forecasting separated from decision making Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

3 Introduction Current practice vs. optimal approach Fundamental assumption is violated: substituted estimates are not equal to the true parameters. Current practice: non-optimal Choose demand distribution and estimate parameters Substitute into cost function Optimize as if parameters are known Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

4 Introduction Current practice vs. optimal approach Fundamental assumption is violated: substituted estimates are not equal to the true parameters. Current practice: non-optimal Choose demand distribution and estimate parameters Substitute into cost function Optimize as if parameters are known Optimal approach Choose demand distribution and estimate parameters Model the estimation error Take expectation of cost function w.r.t. this error Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

5 Introduction The effect of misestimating Future forecast errors are correlated Mean-stationary demand D t = µ + error (i.i.d.) µ = 10, ˆµ = 8 Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

6 Introduction Literature Quotes The relationship between the forecast error during the lead time and that during the forecast interval depends in a complicated fashion on the specific underlying demand model, the forecast updating procedure and the values of the smoothing constant used. (E.A. Silver, D.F. Pyke, R. Peterson, 1998) We should never see forecasting as an isolated task, carried out for its own sake. (P. Goodwin, 2009) The interactions between forecasting and stock control are not yet fully understood. (M.M. Ali, J.E. Boylan, and A.A. Syntetos, 2012) Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

7 Introduction Research questions How can we construct a general approach to incorporating estimation uncertainty in any inventory decision model? What are the benefits of the improved approach compared to the naïve approach? Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

8 Approach and model General approach Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

9 Approach and model General approach How to incorporate estimation uncertainty? (universally applicable) TC(S; θ): Cost function to be minimized S: order policy (frequently: order-up-to level) θ: parameter vector of demand distribution ˆθ: point estimate of θ κ θ : θ ˆθ TC depends on θ, which is unknown We observe ˆθ (based on chosen consistent estimator) We should model κ θ Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

10 Approach and model General approach How to model the estimation error? Normal approximation (main approach) Parameter estimators have an asymptotic variance AVar(ˆθ) Asymptotically, κ θ θ ˆθ MVN(0, AVar(ˆθ)) Estimate AVar(ˆθ) and denote the estimated pdf of κ θ by f κθ Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

11 Approach and model General approach How to model the estimation error? Normal approximation (main approach) Parameter estimators have an asymptotic variance AVar(ˆθ) Asymptotically, κ θ θ ˆθ MVN(0, AVar(ˆθ)) Estimate AVar(ˆθ) and denote the estimated pdf of κ θ by f κθ Pro: Readily available, easily applicable, invariant to the demand distribution Con: Only valid asymptotically Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

12 Approach and model General approach After having decided on f κθ, take the expectation of the cost function w.r.t. κ θ. New objective function: ] TC(S; ˆθ) = E κθ [TC(S; ˆθ + κ θ ) =... TC(S; ˆθ + κ θ )f κθ ( κ θ )dκ θ1... dκ θk. Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

13 Approach and model General approach After having decided on f κθ, take the expectation of the cost function w.r.t. κ θ. New objective function: ] TC(S; ˆθ) = E κθ [TC(S; ˆθ + κ θ ) Example: θ = f κθ = ( ) µ. σ... is the joint distribution of κ µ and κ σ Two-dimensional integral, w.r.t κ µ and κ σ TC(S; ˆθ + κ θ )f κθ ( κ θ )dκ θ1... dκ θk. Compare with the naïve approach: TC(S; ˆθ) Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

14 Approach and model General approach So, for any inventory model: Choose estimation method Choose error modeling approach Take expectation of cost function w.r.t. errors Minimize w.r.t. S Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

15 Approach and model Model choice Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

16 Approach and model Model choice Mean-stationary Normal demand Fundamentals h > 0 holding costs p/u p/t p > h shortage costs p/u p/t L = 1, 2,..., order lead time n = 1, 2,..., historical demands S order-up-to level Order of events 1. Demand occurs 2. Outstanding orders arrive 3. New orders can be placed (free) Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

17 Approach and model Model choice Mean-stationary Normal demand Fundamentals h > 0 holding costs p/u p/t p > h shortage costs p/u p/t L = 1, 2,..., order lead time n = 1, 2,..., historical demands S order-up-to level Order of events 1. Demand occurs 2. Outstanding orders arrive 3. New orders can be placed (free) IL(t): Inventory on hand at time t, after demand, before order arrival C(t) = h(il(t)) + + p(il(t)) Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

18 Approach and model Model choice C(t) = h(il(t)) + + p(il(t)) Order placed at n arrives at the end of n + L Next possible order arrives at the end of n + L + 1 So, order-up-to level at n affects costs at n + L + 1 Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

19 Approach and model Model choice C(t) = h(il(t)) + + p(il(t)) Order placed at n arrives at the end of n + L Next possible order arrives at the end of n + L + 1 So, order-up-to level at n affects costs at n + L + 1 IL(n + L + 1) = S D [n+1,n+l+1] Assumption: optimal S can always be achieved model decomposable Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

20 Approach and model Model choice TC(S, n) = he(s D [n+1,n+l+1] ) + + pe(s D [n+1,n+l+1] ) Cost function: TC(S, n) Model of future demand: D [n+1,n+l+1] Distribution: Normal, i.i.d. Parameters Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

21 Approach and model Optimizing under uncertainty of parameters Example: Mean-stationary demand, µ and σ unknown Estimate µ and σ by Maximum Likelihood/OLS Leads to intuïtive estimators: sample mean and standard deviation Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

22 Approach and model Optimizing under uncertainty of parameters Example: Mean-stationary demand, µ and σ unknown Estimate µ and σ by Maximum Likelihood/OLS Leads to intuïtive estimators: sample mean and standard deviation ˆµ and ˆσ are asympt. uncorrelated and Var(ˆµ) = ˆσ2 n and Var(ˆσ) = ˆσ2 2n Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

23 Approach and model Optimizing under uncertainty of parameters Example: Mean-stationary demand, µ and σ unknown Estimate µ and σ by Maximum Likelihood/OLS Leads to intuïtive estimators: sample mean and standard deviation ˆµ and ˆσ are asympt. uncorrelated and Var(ˆµ) = ˆσ2 n and Var(ˆσ) = ˆσ2 2n ( [ ]) ˆσ 2 approx. So, κ θ MVN 0, n 0 ˆσ 0 2 2n Define f κθ, take expectation of TC, minimize w.r.t. S Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

24 Results Results What are the benefits of the improved approach compared to the naïve approach? Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

25 Results Simulation study Fix parameters Draw historical demands Estimate parameters Calculate S via both approaches Repeat 5000 times Evaluate costs via true cost function Classical approach: S Min TC(S, n; ˆθ) Results in suboptimal S Improved approach: S ] Min E κθ [TC(S, n; ˆθ + κ θ ) Results in optimal S Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

26 Results Simulation study mean-stationary demand, µ = 10 σ n p h L Exp. dem. S S 100 TC(S ) TC( S) TC( S) % % % Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

27 Results Simulation study mean-stationary demand, µ = 10 σ n p h L Exp. dem. S S 100 TC(S ) TC( S) TC( S) % % % % % % Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

28 Results Simulation study mean-stationary demand, µ = 10 σ n p h L Exp. dem. S S 100 TC(S ) TC( S) TC( S) % % % % % % % % % Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

29 Results Simulation study mean-stationary demand, µ = 10 σ n p h L Exp. dem. S S 100 TC(S ) TC( S) TC( S) % % % % % % % % % % % % Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

30 Results Simulation study mean-stationary demand, µ = 10 σ n p h L Fill rate p p+h S S 100 TC(S ) TC( S) TC( S) % % % % % % % % % % % % % % % % Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

31 Results Violin plot of costs for order-up-to levels S and S Base case, n = 5 Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

32 Results Violin plot of costs for order-up-to levels S and S Base case, n = 5 Probability of costs > 30 twice as large under classical approach Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

33 Modeling alternatives Modeling alternatives Different options for modeling the error distribution Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

34 Modeling alternatives Exact distribution Given demand distribution and point estimate, model its error exactly Depends heavily on Normal distribution Error in regression coefficient vector: multivariate student s T Error in σ 2 : inverse χ 2 (multiplicative) Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

35 Modeling alternatives Bayesian analysis Prior knowledge of parameters data posterior parameter distribution Depends on choice of prior Uninformative prior results identical to our exact approach Parameters are considered random variables Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

36 Modeling alternatives Others Bootstrap Jack-knife Invariant to specific distribution Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

37 Conclusion & discussion Conclusion & discussion Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

38 Conclusion & discussion Conclusion General approach to incorporating uncertainty in inventory modeling Freedom in choice of estimator and approximation of error Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

39 Conclusion & discussion Conclusion General approach to incorporating uncertainty in inventory modeling Freedom in choice of estimator and approximation of error Safety stock mark-up Twofold benefit: Reduction in average costs Reduction in cost variance Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

40 Conclusion & discussion Conclusion General approach to incorporating uncertainty in inventory modeling Freedom in choice of estimator and approximation of error Safety stock mark-up Twofold benefit: Reduction in average costs Reduction in cost variance Largest benefit: n small, L large, p large Benefit invariant to demand parameterization Cost benefits of 30-50% realistic Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

41 Conclusion & discussion Exact expressions under mean-stationary, Normal demand Prak, Dennis, Ruud Teunter and Aris Syntetos, On the calculation of safety stocks when demand is forecasted, European Journal of Operational Research, forthcoming. Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

42 Conclusion & discussion Dealing with forecast uncertainty in inventory models 19th IIF workshop on Supply Chain Forecasting for Operations Lancaster University Dennis Prak Supervisor: Prof. R.H. Teunter June 29, 2016 Dennis Prak (RuG) Forecast uncertainty in inventory models June 29, / 29

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Estimating Demand Uncertainty Over Multi-Period Lead Times

Estimating Demand Uncertainty Over Multi-Period Lead Times Estimating Demand Uncertainty Over Multi-Period Lead Times ISIR 2016 Department of Management Science - Lancaster University August 23, 2016 Table of Contents 1 2 3 4 5 Main Formula for Safety Stocks In

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/11-11:17:37) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 2 2.2 Unknown

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Estimation after Model Selection

Estimation after Model Selection Estimation after Model Selection Vanja M. Dukić Department of Health Studies University of Chicago E-Mail: vanja@uchicago.edu Edsel A. Peña* Department of Statistics University of South Carolina E-Mail:

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Multi-armed bandit problems

Multi-armed bandit problems Multi-armed bandit problems Stochastic Decision Theory (2WB12) Arnoud den Boer 13 March 2013 Set-up 13 and 14 March: Lectures. 20 and 21 March: Paper presentations (Four groups, 45 min per group). Before

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

1 Introduction 1. 3 Confidence interval for proportion p 6

1 Introduction 1. 3 Confidence interval for proportion p 6 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/15-13:41:02) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 3 2.2 Unknown

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Modelling Returns: the CER and the CAPM

Modelling Returns: the CER and the CAPM Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20 Econometric Modelling of Financial Returns Financial data are mostly observational data: they

More information

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example, consider

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

A New Hybrid Estimation Method for the Generalized Pareto Distribution

A New Hybrid Estimation Method for the Generalized Pareto Distribution A New Hybrid Estimation Method for the Generalized Pareto Distribution Chunlin Wang Department of Mathematics and Statistics University of Calgary May 18, 2011 A New Hybrid Estimation Method for the GPD

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

CS340 Machine learning Bayesian model selection

CS340 Machine learning Bayesian model selection CS340 Machine learning Bayesian model selection Bayesian model selection Suppose we have several models, each with potentially different numbers of parameters. Example: M0 = constant, M1 = straight line,

More information

FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS

FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS Available Online at ESci Journals Journal of Business and Finance ISSN: 305-185 (Online), 308-7714 (Print) http://www.escijournals.net/jbf FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS Reza Habibi*

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

The Two-Sample Independent Sample t Test

The Two-Sample Independent Sample t Test Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 The General Formula The Equal-n Formula 4 5 6 Independence Normality Homogeneity of Variances 7 Non-Normality Unequal

More information

(5) Multi-parameter models - Summarizing the posterior

(5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Spring, 2017 Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example,

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Further Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Outline

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

The Two Sample T-test with One Variance Unknown

The Two Sample T-test with One Variance Unknown The Two Sample T-test with One Variance Unknown Arnab Maity Department of Statistics, Texas A&M University, College Station TX 77843-343, U.S.A. amaity@stat.tamu.edu Michael Sherman Department of Statistics,

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

Bayesian Normal Stuff

Bayesian Normal Stuff Bayesian Normal Stuff - Set-up of the basic model of a normally distributed random variable with unknown mean and variance (a two-parameter model). - Discuss philosophies of prior selection - Implementation

More information

Value at Risk Ch.12. PAK Study Manual

Value at Risk Ch.12. PAK Study Manual Value at Risk Ch.12 Related Learning Objectives 3a) Apply and construct risk metrics to quantify major types of risk exposure such as market risk, credit risk, liquidity risk, regulatory risk etc., and

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

This is a open-book exam. Assigned: Friday November 27th 2009 at 16:00. Due: Monday November 30th 2009 before 10:00.

This is a open-book exam. Assigned: Friday November 27th 2009 at 16:00. Due: Monday November 30th 2009 before 10:00. University of Iceland School of Engineering and Sciences Department of Industrial Engineering, Mechanical Engineering and Computer Science IÐN106F Industrial Statistics II - Bayesian Data Analysis Fall

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

Monetary Economics Final Exam

Monetary Economics Final Exam 316-466 Monetary Economics Final Exam 1. Flexible-price monetary economics (90 marks). Consider a stochastic flexibleprice money in the utility function model. Time is discrete and denoted t =0, 1,...

More information

A Bayesian Control Chart for the Coecient of Variation in the Case of Pooled Samples

A Bayesian Control Chart for the Coecient of Variation in the Case of Pooled Samples A Bayesian Control Chart for the Coecient of Variation in the Case of Pooled Samples R van Zyl a,, AJ van der Merwe b a PAREXEL International, Bloemfontein, South Africa b University of the Free State,

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Estimation of a parametric function associated with the lognormal distribution 1

Estimation of a parametric function associated with the lognormal distribution 1 Communications in Statistics Theory and Methods Estimation of a parametric function associated with the lognormal distribution Jiangtao Gou a,b and Ajit C. Tamhane c, a Department of Mathematics and Statistics,

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

Portfolio Optimization. Prof. Daniel P. Palomar

Portfolio Optimization. Prof. Daniel P. Palomar Portfolio Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST, Hong

More information

Lecture 12: The Bootstrap

Lecture 12: The Bootstrap Lecture 12: The Bootstrap Reading: Chapter 5 STATS 202: Data mining and analysis October 20, 2017 1 / 16 Announcements Midterm is on Monday, Oct 30 Topics: chapters 1-5 and 10 of the book everything until

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Robust Longevity Risk Management

Robust Longevity Risk Management Robust Longevity Risk Management Hong Li a,, Anja De Waegenaere a,b, Bertrand Melenberg a,b a Department of Econometrics and Operations Research, Tilburg University b Netspar Longevity 10 3-4, September,

More information

A Stochastic Reserving Today (Beyond Bootstrap)

A Stochastic Reserving Today (Beyond Bootstrap) A Stochastic Reserving Today (Beyond Bootstrap) Presented by Roger M. Hayne, PhD., FCAS, MAAA Casualty Loss Reserve Seminar 6-7 September 2012 Denver, CO CAS Antitrust Notice The Casualty Actuarial Society

More information

A Bayesian Implementation of the Standard Optimal Hedging Model: Parameter Estimation Risk and Subjective Views

A Bayesian Implementation of the Standard Optimal Hedging Model: Parameter Estimation Risk and Subjective Views A Bayesian Implementation of the Standard Optimal Hedging Model: Parameter Estimation Risk and Subjective Views by Wei Shi and Scott H. Irwin May 23, 2005 Selected Paper prepared for presentation at the

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling

Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling 1: Formulation of Bayesian models and fitting them with MCMC in WinBUGS David Draper Department of Applied Mathematics and

More information

Two-term Edgeworth expansions of the distributions of fit indexes under fixed alternatives in covariance structure models

Two-term Edgeworth expansions of the distributions of fit indexes under fixed alternatives in covariance structure models Economic Review (Otaru University of Commerce), Vo.59, No.4, 4-48, March, 009 Two-term Edgeworth expansions of the distributions of fit indexes under fixed alternatives in covariance structure models Haruhiko

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

(11) Case Studies: Adaptive clinical trials. ST440/540: Applied Bayesian Analysis

(11) Case Studies: Adaptive clinical trials. ST440/540: Applied Bayesian Analysis Use of Bayesian methods in clinical trials Bayesian methods are becoming more common in clinical trials analysis We will study how to compute the sample size for a Bayesian clinical trial We will then

More information

Asset Allocation and Risk Assessment with Gross Exposure Constraints

Asset Allocation and Risk Assessment with Gross Exposure Constraints Asset Allocation and Risk Assessment with Gross Exposure Constraints Forrest Zhang Bendheim Center for Finance Princeton University A joint work with Jianqing Fan and Ke Yu, Princeton Princeton University

More information

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth Lecture Note 9 of Bus 41914, Spring 2017. Multivariate Volatility Models ChicagoBooth Reference: Chapter 7 of the textbook Estimation: use the MTS package with commands: EWMAvol, marchtest, BEKK11, dccpre,

More information

Revisiting the safety stock estimation problem. A supply chain risk point of view.

Revisiting the safety stock estimation problem. A supply chain risk point of view. Revisiting the safety stock estimation problem. A supply chain risk point of view. Juan R. Trapero 1 Manuel Cardos 2 Nikolaos Kourentzes 3 1 Universidad de Castilla-La Mancha. Department of Business Administration

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

Window Width Selection for L 2 Adjusted Quantile Regression

Window Width Selection for L 2 Adjusted Quantile Regression Window Width Selection for L 2 Adjusted Quantile Regression Yoonsuh Jung, The Ohio State University Steven N. MacEachern, The Ohio State University Yoonkyung Lee, The Ohio State University Technical Report

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Multi-armed bandits in dynamic pricing

Multi-armed bandits in dynamic pricing Multi-armed bandits in dynamic pricing Arnoud den Boer University of Twente, Centrum Wiskunde & Informatica Amsterdam Lancaster, January 11, 2016 Dynamic pricing A firm sells a product, with abundant inventory,

More information

The Constant Expected Return Model

The Constant Expected Return Model Chapter 1 The Constant Expected Return Model The first model of asset returns we consider is the very simple constant expected return (CER)model.Thismodelassumesthatanasset sreturnover time is normally

More information

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions:

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: (1) Our data (observations)

More information

Relationship between Correlation and Volatility. in Closely-Related Assets

Relationship between Correlation and Volatility. in Closely-Related Assets Relationship between Correlation and Volatility in Closely-Related Assets Systematic Alpha Management, LLC April 26, 2016 The purpose of this mini research paper is to address in a more quantitative fashion

More information

Chapter 6: Point Estimation

Chapter 6: Point Estimation Chapter 6: Point Estimation Professor Sharabati Purdue University March 10, 2014 Professor Sharabati (Purdue University) Point Estimation Spring 2014 1 / 37 Chapter Overview Point estimator and point estimate

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

An Information Based Methodology for the Change Point Problem Under the Non-central Skew t Distribution with Applications.

An Information Based Methodology for the Change Point Problem Under the Non-central Skew t Distribution with Applications. An Information Based Methodology for the Change Point Problem Under the Non-central Skew t Distribution with Applications. Joint with Prof. W. Ning & Prof. A. K. Gupta. Department of Mathematics and Statistics

More information

Modeling skewness and kurtosis in Stochastic Volatility Models

Modeling skewness and kurtosis in Stochastic Volatility Models Modeling skewness and kurtosis in Stochastic Volatility Models Georgios Tsiotas University of Crete, Department of Economics, GR December 19, 2006 Abstract Stochastic volatility models have been seen as

More information

GMM Estimation. 1 Introduction. 2 Consumption-CAPM

GMM Estimation. 1 Introduction. 2 Consumption-CAPM GMM Estimation 1 Introduction Modern macroeconomic models are typically based on the intertemporal optimization and rational expectations. The Generalized Method of Moments (GMM) is an econometric framework

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

D.1 Sufficient conditions for the modified FV model

D.1 Sufficient conditions for the modified FV model D Internet Appendix Jin Hyuk Choi, Ulsan National Institute of Science and Technology (UNIST Kasper Larsen, Rutgers University Duane J. Seppi, Carnegie Mellon University April 7, 2018 This Internet Appendix

More information

Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation

Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation Yifan Li 1,2 Ingmar Nolte 1 Sandra Nolte 1 1 Lancaster University 2 University of Manchester 4th Konstanz - Lancaster Workshop on

More information

Black-Litterman Model

Black-Litterman Model Institute of Financial and Actuarial Mathematics at Vienna University of Technology Seminar paper Black-Litterman Model by: Tetyana Polovenko Supervisor: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold

More information

The Sharpe ratio of estimated efficient portfolios

The Sharpe ratio of estimated efficient portfolios The Sharpe ratio of estimated efficient portfolios Apostolos Kourtis First version: June 6 2014 This version: January 23 2016 Abstract Investors often adopt mean-variance efficient portfolios for achieving

More information

North West Los Angeles Average Price of Coffee in Licensed Establishments

North West Los Angeles Average Price of Coffee in Licensed Establishments North West Los Angeles Average Price of Coffee in Licensed Establishments By Courtney Engel, Natasha Ericta and Ray Luo Statistics 201A Sample Project Professor Xu December 14, 2006 1 1 Background and

More information

TABLE OF CONTENTS - VOLUME 2

TABLE OF CONTENTS - VOLUME 2 TABLE OF CONTENTS - VOLUME 2 CREDIBILITY SECTION 1 - LIMITED FLUCTUATION CREDIBILITY PROBLEM SET 1 SECTION 2 - BAYESIAN ESTIMATION, DISCRETE PRIOR PROBLEM SET 2 SECTION 3 - BAYESIAN CREDIBILITY, DISCRETE

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Global Currency Hedging

Global Currency Hedging Global Currency Hedging JOHN Y. CAMPBELL, KARINE SERFATY-DE MEDEIROS, and LUIS M. VICEIRA ABSTRACT Over the period 1975 to 2005, the U.S. dollar (particularly in relation to the Canadian dollar), the euro,

More information

A Note on Predicting Returns with Financial Ratios

A Note on Predicting Returns with Financial Ratios A Note on Predicting Returns with Financial Ratios Amit Goyal Goizueta Business School Emory University Ivo Welch Yale School of Management Yale Economics Department NBER December 16, 2003 Abstract This

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

Confidence interval for the 100p-th percentile for measurement error distributions

Confidence interval for the 100p-th percentile for measurement error distributions Journal of Physics: Conference Series PAPER OPEN ACCESS Confidence interval for the 100p-th percentile for measurement error distributions To cite this article: Clarena Arrieta et al 018 J. Phys.: Conf.

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has

More information

Mean GMM. Standard error

Mean GMM. Standard error Table 1 Simple Wavelet Analysis for stocks in the S&P 500 Index as of December 31 st 1998 ^ Shapiro- GMM Normality 6 0.9664 0.00281 11.36 4.14 55 7 0.9790 0.00300 56.58 31.69 45 8 0.9689 0.00319 403.49

More information

Review of key points about estimators

Review of key points about estimators Review of key points about estimators Populations can be at least partially described by population parameters Population parameters include: mean, proportion, variance, etc. Because populations are often

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information