Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest

Size: px
Start display at page:

Download "Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest"

Transcription

1 Plan Martingales 1. Basic Definitions 2. Examles 3. Overview of Results Reading: G&S Section Next Time: More Martingales Midterm Exam: Tuesday 28 March in class Samle exam roblems ( Homework 5 ) available tomorrow at the latest A Peculiar Etymology Horse Riding. A stra or arrangement of stras fastened at one end to the noseband, bit, or reins of a horse and at the other to its girth, in order to revent it from rearing or throwing its head back, or to strengthen the action of the bit. 2. Nautical. A stay which holds down the jib-boom of a square-rigged shi, running from the boom to the dolhin-striker. 3. Gambling. Any of various gambling systems in which a losing layer reeatedly doubles or otherwise increases a stake such that any win would cover losses accrued from receding bets. 4. Probability and Statistics. stay tuned... The Basic Definition 2. (from which the more general definition below will sring, and which will be the most common case, by why by secific when we can be general, eh?) A stochastic rocess (X n ) n 0 is a martingale if 1. E X n < for all n 0, and 2. E(X n+1 X 0,..., X n ) = X n. This definition will be suerseded below but is the base case. Useful metahor: Let X n be a gambler s wealth at after the nth bet. martingale catures a notion of a fair game. How? This definition of a The Original Martingale 3. Suose you start with a large fortune w 0. (How large it needs to be, we will see.) You are offered a series of bets with a robability of winning equal to 1/2. (Yeah, right.) The original martingale strategy is to bet $d, say, on the first bet. If you win, sto. If you lose, bet $2d on second bet. Continue this way, stoing lay as soon as you win and betting $2 n d on the n + 1st bet. You will win eventually, say at bet t 1, at which oint you will have won 2 t 1 d (d + 2d d + 2 t 2 d) = d (1) dollars, where the second term is zero when t = 1. Seems like a sure thing, eh? Let W n denote your wealth after the nth bet in a series of bets like the above but without the stoing rule. Then, W 0 = w 0 and where Ξ k are iid Bernoulli 1/2. W n = w 0 + n Ξ k d2 k 1, (2) k= Mar 2006

2 Now, (W n ) is a random walk, with E W n < and E(W n+1 W 0,..., W n ) = E(W n+1 Ξ 0,..., Ξ n ) = W n + E(d2 n Ξ n+1 ) = W n. (3) Hence, (W n ) n 0 is a martingale by the above definition. Still, it s not quite what we want. Let T = min n 1: Ξ n = 1 be the first bet that you win. What can we say about T? Well first off, it s Geometric 1/2, that is, P{T = n} = 2 n for n 1. But wait, is there more? There s something familiar abou this time.... X 0 = W 0 = w 0. This is your wealth. Define X n = W T n for n 1. This is your wealth on the the martingale system. Any questions? Loosely, if n T, X n+1 = X n. If n < T, then X n+1 = W n+1 and X n = W n. So, (X n ) should be a martingale. Formally, we need to show that E X n <. And that E(X n+1 X 0,..., X n ) = X n. Note that X n+1 1{T n} = X n 1{T n} (4) X n+1 1{T > n} = (X n + Ξ n+1 d2 n ) 1{T > n}. (5) That is, X n+1 = X n 1{T n} + (X n + Ξ n+1 d2 n ) 1{T > n}. (6) What do we need to bring this home?... the class stes in......and thus we get that (X n ) n 0 is a martingale as defined above. But would you want to use this strategy. Let D be the biggest debt you owed rior to winning. That is, D = X T 1. Then, n 2 ED = 2 n d 2 k = d 2 n (2 n 1 1). (7) n=1 k=0 n=1 Even Bill Gates should think twice about using this aroach Mar 2006

3 Examle 4. Another aroach to Gambler s Ruin Let S n be a simle random walk with S 0 = w {0,..., N}. Suose we sto the walk when it first hits either 0 or N. Which will it hit first? Write S n = w + n k=1 Ξ k where the Ξ K are iid Bernoulli. Let q = 1. ( ) Define Y n = q Sn. Let T be the first hitting time of {0, N}. We want to understand the limiting behavior of X n = Y T n. As before, ( ) q Sn+Ξ n+1 X n+1 = X n 1{T n} + 1{T < n}. (8) Note that T is a stoing time with resect to Ξ 1,..., Ξ n. Hence, ( (q ) Sn+Ξ n+1 ) E(X n+1 Ξ 1,..., Ξ n ) = E(X n 1{T n} Ξ 1,..., Ξ n ) + E 1{T < n} Ξ 1,..., Ξ n (9) ( ) ( q Sn (q ) Ξn+1 ) = X n 1{T n} + E Ξ 1,..., Ξ n 1{T < n} (10) ( ) q Sn ( ) q Ξn+1 = X n 1{T n} + E 1{T < n} (11) = X n 1{T n} + ( ) q Sn ((q/) + q(/q))1{t < n} (12) = X n 1{T n} + X n 1{T < n} (13) = X n. This isn t quite the definition, though. Perhas we would work it out that the information in Ξ 1,..., Ξ n is the same as the information in X 0,..., X n. A good strategy. But what a bother. Take this as motivation for the general definition below. Now, EY n = (q/) w for all n, so doesn t it make sense that EY T would be the same? And thus, EX n = (q/) w = EX T for all n. Hmmm...let s suose it s true. Take this as motivation for one of the main results later. If true, then ( ) q 0 ( ) q N ( ) q w EX T = r w + (1 r w ) =, (15) where r w is the ruin robability with initial wealth w. Then, ( ) q w ( q N ) (14) r w = 1 ( q ) N n (16) as long as 1 2. That s what we got before. Nice. We ve seen a martingale argument for the = 1 2 assumtion. case as well. A lot of ower in that simle 3 21 Mar 2006

4 Intermediate Definition 5. A sequence of random variables (Y n ) n 0 is a martingale with resect to a sequence (X n ) n 0 if for all n 0, 1. E Y n < 2. E(Y n+1 X 0,..., X n ) = Y n. If X n = Y n for all n, this reduces to the revious definition. Definition 6. A filtration in a σ-field F is a sequence (F n ) n 0 of sub-σ-fields of F such that F n F n+1 for all n 0. Write F = lim n F n for the smallest σ-field containing all the F n s. A sequence of random variables (X n ) n 0 is adated to the filtration if X n is F n -measurable for all n 0. That is, events {X n A} F n. Intuitive unacking follows. General Definition 7. Let (F n ) n 0 be a filtration in F and let (Y n ) n 0 be a sequence of random variables adated to that filtration. Then, (Y n ) is a martingale (with resect to (F n )) if 1. E Y n < 2. E(Y n+1 F n ) = Y n. If F n = σ(y 0,..., Y n ), we get the basic definition. If F n = σ(x 0,..., X n ), we get the intermediate definition. More intuitive unacking.... Definition 8. Let (F n ) n 0 be a filtration in F and let (Y n ) n 0 be a sequence of random variables adated to that filtration. Then, (Y n ) is a sub-martingale (with resect to (F n )) if 1. E max(y n, 0) < 2. Y n E(Y n+1 F n ). And (Y n ) is a suer-martingale (with resect to (F n )) if 1. E max( Y n, 0) < 2. Y n E(Y n+1 F n ). Questions 9. a. Show that Y n is a martingale if and only if it is a sub-martingale and a suer-martingale. b. Suose that Y n is a sub-martingale, what can you say about Y n? c. Find three examles of a sub- or suer-martingale Mar 2006

5 Examle 10. Simle Random Walk Let S n be a simle random walk as we have defined so often. Then, E S n < for all n because S n n and E(S n+1 S 0,..., S n ) = S n + ( q), (17) Note that σ(s 0,..., S n ) = σ(s 0, Ξ 1,..., Ξ n ). Define X n = S n n( q). Then X n is a martingale. (Why?) Examle 11. Sums of Random Variables The same trick works with more general sums. Suose that (X n ) n 0 are indeendent random variables with E X n <. Let Y n = X X n for n 0. Then, (Y n ) is a martingale by the same argument. (Make it.) We can generalize this. Let (X n ) n 0 be a sequence of real-valued random variables. Let g k and h k be functions on R k with the h k H k < for some constants H k. Let f be a function so that E f(g k+1 (X 0,..., X k )) <. Let Z k = f(g k+1 (X 0,..., X k )). Define Y n by Y n = n (Z k E(Z k X 0,..., X k 1 )) h k (X 0,..., X k 1 ), (18) k=0 Then, (Y n ) n 0 is a martingale. Why? This is examle is not so interesting by itself, but it is quite a general mechanism for constructing martingales. And it hels you unack comlicated exressions Mar 2006

6 Examle 12. Variance of a Sum Let (X n ) n 0 be iid random variables with X 0 = 0 and EX n = 0 and EXn 2 = σ 2 for n 1. Define ( n ) 2 Y n = X k nσ 2. (19) Then (Y n ) is a martingale. Show this. k=1 What can you say about M n = ( 1 n n k=1 X k ) 2 σ2 n? Examle 13. The Doob Process Let X be a random variable with E X <. Let (Z n ) n 0 be an arbitrary sequence of random variables. Define X n = E(X Z 0,..., Z n ). Note that E X n E X. (Why?) And by the Mighty Conditioning Identity. E(X n+1 Z 0,..., Z n ) = E(E(X Z 0,..., Z n+1 ) Z 0,..., Z n ) (20) = E(X Z 0,..., Z n ) (21) = X n, (22) Examle 14. Harmonic Functions on Markov Chains Let X be a countable-state Markov chain on S with transition robabilities P. Let be the drift oerator: V = P V V. Recall that any V for which V = 0 we called harmonic. This is a function for which E(V (X n+1 ) X n ) = V (X n ). (23) Hmmm... Define Y n = V (X n ) for a harmonic V. As long as E V (X n ) is finite, we ve got a martingale. This will hold, for examle, if we choose a bounded harmonic function. This is a useful mechanism for discovering martingales in Markov Chains Mar 2006

7 Examle 15. Eigenvector Induced Martingales for Markov Chains A slight generalization. Now, let V be an eigenfunction (eigenvector) of P with eigenvalue λ. That is, for all s S, P (s, s )V (s ) = λv (s), (24) s S or equivalently, E(V (X n+1 ) X n ) = λv (X n ). (25) So, define Y n = λ n V (X n ) (26) for such a V and n 0. If E V (X n ) <, we have ) E(Y n+1 X 0,... X n ) = E (λ (n+1) V (X n+1 )givenx 0,..., X n (27) = λ n λ 1 E(V (X n+1 ) X n ) (28) = λ n λ 1 λv (X n ) (29) = Y n, (30) then (Y n ) is a martingale with resect to X. This has a direct alication to Branching Processes which we ll see in the near future. Examle 16. Discretization and Derivatives Let U be a Uniform 0, 1 random variable. Define X n = k2 n for the unique k such that k2 n U < (k + 1)2 n. As n increases, X n gives finer and finer information about U. Let f be a bounded function on [0, 1] and define What is Y n aroximating here as n? Y n = 2 n ( f(x n + 2 n ) f(x n ) ). (31) What is the distribution of U given X 0,..., X n? Show that Y n is a martingale wrt X n Mar 2006

8 Past Examle 17. Likelihood Ratios Examle from homework. Very imortant in some alications such as sequential analysis. Future Examle 18. False Discovery Rates Next time will show how a martingale argument roves the result of Benjamini and Hochberg (1995). Outline 19. Main Results for (sub and suer) martingales 1. Decomosition into martingale lus redictable rocess 2. Strong convergence theorems 3. Ucrossing Inequalities 4. Large Deviation Bounds 5. Maximal Inequalities 6. Otional Samling of Process at Stoing Times 7. Otional Stoing of Process at Stoing Times 8 21 Mar 2006

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

Chapter 1: Stochastic Processes

Chapter 1: Stochastic Processes Chater 1: Stochastic Processes 4 What are Stochastic Processes, and how do they fit in? STATS 210 Foundations of Statistics and Probability Tools for understanding randomness (random variables, distributions)

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Lecture 2. Main Topics: (Part II) Chapter 2 (2-7), Chapter 3. Bayes Theorem: Let A, B be two events, then. The probabilities P ( B), probability of B.

Lecture 2. Main Topics: (Part II) Chapter 2 (2-7), Chapter 3. Bayes Theorem: Let A, B be two events, then. The probabilities P ( B), probability of B. STT315, Section 701, Summer 006 Lecture (Part II) Main Toics: Chater (-7), Chater 3. Bayes Theorem: Let A, B be two events, then B A) = A B) B) A B) B) + A B) B) The robabilities P ( B), B) are called

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

SUBORDINATION BY ORTHOGONAL MARTINGALES IN L p, 1 < p Introduction: Orthogonal martingales and the Beurling-Ahlfors transform

SUBORDINATION BY ORTHOGONAL MARTINGALES IN L p, 1 < p Introduction: Orthogonal martingales and the Beurling-Ahlfors transform SUBORDINATION BY ORTHOGONAL MARTINGALES IN L, 1 < PRABHU JANAKIRAMAN AND ALEXANDER VOLBERG 1. Introduction: Orthogonal martingales and the Beurling-Ahlfors transform We are given two martingales on the

More information

***SECTION 7.1*** Discrete and Continuous Random Variables

***SECTION 7.1*** Discrete and Continuous Random Variables ***SECTION 7.*** Discrete and Continuous Random Variables Samle saces need not consist of numbers; tossing coins yields H s and T s. However, in statistics we are most often interested in numerical outcomes

More information

Brownian Motion, the Gaussian Lévy Process

Brownian Motion, the Gaussian Lévy Process Brownian Motion, the Gaussian Lévy Process Deconstructing Brownian Motion: My construction of Brownian motion is based on an idea of Lévy s; and in order to exlain Lévy s idea, I will begin with the following

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Supplemental Material: Buyer-Optimal Learning and Monopoly Pricing

Supplemental Material: Buyer-Optimal Learning and Monopoly Pricing Sulemental Material: Buyer-Otimal Learning and Monooly Pricing Anne-Katrin Roesler and Balázs Szentes February 3, 207 The goal of this note is to characterize buyer-otimal outcomes with minimal learning

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Akimichi Takemura, Univ. of Tokyo March 31, 2008 1 Outline: A.Takemura 0. Background and our contributions

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

Information and uncertainty in a queueing system

Information and uncertainty in a queueing system Information and uncertainty in a queueing system Refael Hassin December 7, 7 Abstract This aer deals with the effect of information and uncertainty on rofits in an unobservable single server queueing system.

More information

2/20/2013. of Manchester. The University COMP Building a yes / no classifier

2/20/2013. of Manchester. The University COMP Building a yes / no classifier COMP4 Lecture 6 Building a yes / no classifier Buildinga feature-basedclassifier Whatis a classifier? What is an information feature? Building a classifier from one feature Probability densities and the

More information

Theoretical Statistics. Lecture 4. Peter Bartlett

Theoretical Statistics. Lecture 4. Peter Bartlett 1. Concentration inequalities. Theoretical Statistics. Lecture 4. Peter Bartlett 1 Outline of today s lecture We have been looking at deviation inequalities, i.e., bounds on tail probabilities likep(x

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 126 Spring 2006 Final Exam Wednesday, May 17, 8am 11am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 180 minutes to complete the final. The final consists of

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General

More information

MTH The theory of martingales in discrete time Summary

MTH The theory of martingales in discrete time Summary MTH 5220 - The theory of martingales in discrete time Summary This document is in three sections, with the first dealing with the basic theory of discrete-time martingales, the second giving a number of

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

18.440: Lecture 35 Martingales and the optional stopping theorem

18.440: Lecture 35 Martingales and the optional stopping theorem 18.440: Lecture 35 Martingales and the optional stopping theorem Scott Sheffield MIT 1 Outline Martingales and stopping times Optional stopping theorem 2 Outline Martingales and stopping times Optional

More information

Advanced Probability and Applications (Part II)

Advanced Probability and Applications (Part II) Advanced Probability and Applications (Part II) Olivier Lévêque, IC LTHI, EPFL (with special thanks to Simon Guilloud for the figures) July 31, 018 Contents 1 Conditional expectation Week 9 1.1 Conditioning

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman December 15, 2017 Contents 0 Introduction 3 0.1 Syllabus......................................... 4 0.2 Problem sheets.....................................

More information

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Normal Distribution and Brownian Process Page 1 Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Searching for a Continuous-time

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit.

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit. STA 103: Final Exam June 26, 2008 Name: } {{ } by writing my name i swear by the honor code Read all of the following information before starting the exam: Print clearly on this exam. Only correct solutions

More information

MLLunsford 1. Activity: Mathematical Expectation

MLLunsford 1. Activity: Mathematical Expectation MLLunsford 1 Activity: Mathematical Expectation Concepts: Mathematical Expectation for discrete random variables. Includes expected value and variance. Prerequisites: The student should be familiar with

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Business Statistics 41000: Homework # 2

Business Statistics 41000: Homework # 2 Business Statistics 41000: Homework # 2 Drew Creal Due date: At the beginning of lecture # 5 Remarks: These questions cover Lectures #3 and #4. Question # 1. Discrete Random Variables and Their Distributions

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

INDEX NUMBERS. Introduction

INDEX NUMBERS. Introduction INDEX NUMBERS Introduction Index numbers are the indicators which reflect changes over a secified eriod of time in rices of different commodities industrial roduction (iii) sales (iv) imorts and exorts

More information

Goal Problems in Gambling Theory*

Goal Problems in Gambling Theory* Goal Problems in Gambling Theory* Theodore P. Hill Center for Applied Probability and School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 Abstract A short introduction to goal

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016 Asymtotics Author: Anrés Hincaié an Linyi Cao This Version: August 9, 2016 Asymtotics 3 In arametric moels, we usually assume that the oulation follows some istribution F (x θ) with unknown θ. Knowing

More information

and their probabilities p

and their probabilities p AP Statistics Ch. 6 Notes Random Variables A variable is any characteristic of an individual (remember that individuals are the objects described by a data set and may be eole, animals, or things). Variables

More information

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3 GEK544 The Mathematics of Games Suggested Solutions to Tutorial 3. Consider a Las Vegas roulette wheel with a bet of $5 on black (payoff = : ) and a bet of $ on the specific group of 4 (e.g. 3, 4, 6, 7

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

4.1 Additive property of Gaussian Random Variable

4.1 Additive property of Gaussian Random Variable Math 181 Lecture 4 Random Walks with Gaussian Steps In this lecture we discuss random walks in which the steps are continuous normal (i.e. Gaussian) random variables, rather than discrete random variables.

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 17

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 17 MS&E 32 Spring 2-3 Stochastic Systems June, 203 Prof. Peter W. Glynn Page of 7 Section 0: Martingales Contents 0. Martingales in Discrete Time............................... 0.2 Optional Sampling for Discrete-Time

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes Alice & Bob are gambling (again). X = Alice s gain per flip: risk E[X] = 0... Time passes... Alice (yawning) says let s raise the stakes E[Y] = 0, as before. Are you (Bob) equally happy to play the new

More information

Prediction Market Prices as Martingales: Theory and Analysis. David Klein Statistics 157

Prediction Market Prices as Martingales: Theory and Analysis. David Klein Statistics 157 Prediction Market Prices as Martingales: Theory and Analysis David Klein Statistics 157 Introduction With prediction markets growing in number and in prominence in various domains, the construction of

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532l Lecture 10 Stochastic Games and Bayesian Games CPSC 532l Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games 4 Analyzing Bayesian

More information

A GENERALIZED MARTINGALE BETTING STRATEGY

A GENERALIZED MARTINGALE BETTING STRATEGY DAVID K. NEAL AND MICHAEL D. RUSSELL Astract. A generalized martingale etting strategy is analyzed for which ets are increased y a factor of m 1 after each loss, ut return to the initial et amount after

More information

Chapter 16. Random Variables. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 16. Random Variables. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 16 Random Variables Copyright 2010, 2007, 2004 Pearson Education, Inc. Expected Value: Center A random variable is a numeric value based on the outcome of a random event. We use a capital letter,

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012 IEOR 306: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 6, 202 Four problems, each with multiple parts. Maximum score 00 (+3 bonus) = 3. You need to show

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

if a < b 0 if a = b 4 b if a > b Alice has commissioned two economists to advise her on whether to accept the challenge.

if a < b 0 if a = b 4 b if a > b Alice has commissioned two economists to advise her on whether to accept the challenge. THE COINFLIPPER S DILEMMA by Steven E. Landsburg University of Rochester. Alice s Dilemma. Bob has challenged Alice to a coin-flipping contest. If she accepts, they ll each flip a fair coin repeatedly

More information

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION RAVI PHATARFOD *, Monash University Abstract We consider two aspects of gambling with the Kelly criterion. First, we show that for a wide range of final

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

The Kelly Criterion. How To Manage Your Money When You Have an Edge

The Kelly Criterion. How To Manage Your Money When You Have an Edge The Kelly Criterion How To Manage Your Money When You Have an Edge The First Model You play a sequence of games If you win a game, you win W dollars for each dollar bet If you lose, you lose your bet For

More information

Building Infinite Processes from Regular Conditional Probability Distributions

Building Infinite Processes from Regular Conditional Probability Distributions Chapter 3 Building Infinite Processes from Regular Conditional Probability Distributions Section 3.1 introduces the notion of a probability kernel, which is a useful way of systematizing and extending

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

C (1,1) (1,2) (2,1) (2,2)

C (1,1) (1,2) (2,1) (2,2) TWO COIN MORRA This game is layed by two layers, R and C. Each layer hides either one or two silver dollars in his/her hand. Simultaneously, each layer guesses how many coins the other layer is holding.

More information

MORE REALISTIC FOR STOCKS, FOR EXAMPLE

MORE REALISTIC FOR STOCKS, FOR EXAMPLE MARTINGALES BASED ON IID: ADDITIVE MG Y 1,..., Y t,... : IID EY = 0 X t = Y 1 +... + Y t is MG MULTIPLICATIVE MG Y 1,..., Y t,... : IID EY = 1 X t = Y 1... Y t : X t+1 = X t Y t+1 E(X t+1 F t ) = E(X t

More information

Asian Economic and Financial Review A MODEL FOR ESTIMATING THE DISTRIBUTION OF FUTURE POPULATION. Ben David Nissim.

Asian Economic and Financial Review A MODEL FOR ESTIMATING THE DISTRIBUTION OF FUTURE POPULATION. Ben David Nissim. Asian Economic and Financial Review journal homeage: htt://www.aessweb.com/journals/5 A MODEL FOR ESTIMATING THE DISTRIBUTION OF FUTURE POPULATION Ben David Nissim Deartment of Economics and Management,

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ MAT5 LECTURE 0 NOTES NATHANIEL GALLUP. Algebraic Limit Theorem Theorem : Algebraic Limit Theorem (Abbott Theorem.3.3) Let (a n ) and ( ) be sequences of real numbers such that lim n a n = a and lim n =

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

A random variable X is a function that assigns (real) numbers to the elements of the sample space S of a random experiment.

A random variable X is a function that assigns (real) numbers to the elements of the sample space S of a random experiment. RANDOM VARIABLES and PROBABILITY DISTRIBUTIONS A random variable X is a function that assigns (real) numbers to the elements of the samle sace S of a random exeriment. The value sace V of a random variable

More information

Objectives. 5.2, 8.1 Inference for a single proportion. Categorical data from a simple random sample. Binomial distribution

Objectives. 5.2, 8.1 Inference for a single proportion. Categorical data from a simple random sample. Binomial distribution Objectives 5.2, 8.1 Inference for a single roortion Categorical data from a simle random samle Binomial distribution Samling distribution of the samle roortion Significance test for a single roortion Large-samle

More information

1 Rare event simulation and importance sampling

1 Rare event simulation and importance sampling Copyright c 2007 by Karl Sigman 1 Rare event simulation and importance sampling Suppose we wish to use Monte Carlo simulation to estimate a probability p = P (A) when the event A is rare (e.g., when p

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532L Lecture 10 Stochastic Games and Bayesian Games CPSC 532L Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games Stochastic Games

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

Descriptive Statistics (Devore Chapter One)

Descriptive Statistics (Devore Chapter One) Descriptive Statistics (Devore Chapter One) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 0 Perspective 1 1 Pictorial and Tabular Descriptions of Data 2 1.1 Stem-and-Leaf

More information

Homework 3: Asset Pricing

Homework 3: Asset Pricing Homework 3: Asset Pricing Mohammad Hossein Rahmati November 1, 2018 1. Consider an economy with a single representative consumer who maximize E β t u(c t ) 0 < β < 1, u(c t ) = ln(c t + α) t= The sole

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Universal Portfolios

Universal Portfolios CS28B/Stat24B (Spring 2008) Statistical Learning Theory Lecture: 27 Universal Portfolios Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals Portfolio optimization setting Suppose we have

More information

Expected value is basically the average payoff from some sort of lottery, gamble or other situation with a randomly determined outcome.

Expected value is basically the average payoff from some sort of lottery, gamble or other situation with a randomly determined outcome. Economics 352: Intermediate Microeconomics Notes and Sample Questions Chapter 18: Uncertainty and Risk Aversion Expected Value The chapter starts out by explaining what expected value is and how to calculate

More information

Random Variables and Applications OPRE 6301

Random Variables and Applications OPRE 6301 Random Variables and Applications OPRE 6301 Random Variables... As noted earlier, variability is omnipresent in the business world. To model variability probabilistically, we need the concept of a random

More information

The Game-Theoretic Framework for Probability

The Game-Theoretic Framework for Probability 11th IPMU International Conference The Game-Theoretic Framework for Probability Glenn Shafer July 5, 2006 Part I. A new mathematical foundation for probability theory. Game theory replaces measure theory.

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Recap First-Price Revenue Equivalence Optimal Auctions. Auction Theory II. Lecture 19. Auction Theory II Lecture 19, Slide 1

Recap First-Price Revenue Equivalence Optimal Auctions. Auction Theory II. Lecture 19. Auction Theory II Lecture 19, Slide 1 Auction Theory II Lecture 19 Auction Theory II Lecture 19, Slide 1 Lecture Overview 1 Recap 2 First-Price Auctions 3 Revenue Equivalence 4 Optimal Auctions Auction Theory II Lecture 19, Slide 2 Motivation

More information

9 Expectation and Variance

9 Expectation and Variance 9 Expectation and Variance Two numbers are often used to summarize a probability distribution for a random variable X. The mean is a measure of the center or middle of the probability distribution, and

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information