GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3

Size: px
Start display at page:

Download "GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3"

Transcription

1 GEK544 The Mathematics of Games Suggested Solutions to Tutorial 3. Consider a Las Vegas roulette wheel with a bet of $5 on black (payoff = : ) and a bet of $ on the specific group of 4 (e.g. 3, 4, 6, 7 ; payoff = 8 : ). What is the bettor s expectation (per unit) on this combined bet? Suggested solution. Let us consider the specific group of four numbers : 3, 4, 6, 7. The numbers 3 and 7 are also black. Then A = {outcome is black } and B = {outcome is 3, 4, 6 or 7}. P := P (A and B) = P ({outcome is 3 or 7 }) = P := P (A and [ not B]) = P ( {outcome is black but not 3 and 7 }) = 8 38, P 3 := P ([ not A] and B) = P ({outcome is 4 or 6 }) = P 4 := P ([ not A] and [not B]) = P ({ outcome is white, 0, or 00, and not 4 or 6 } ) = = 8 Denote by X(5 : [ 7]) the expectation with the specific betting pattern, namely, $ 5 on black and $ on the specific group of 4 (the number [7] represents the total amount wagered). These result X(5 : [ 7]) = P (5 + 8) + P (5 ) + P 3 ( 8 5) + P 4 ( 5 ) = 6 8 (5 + 8) + (5 ) + ( 8 5) + ( 5 ) = ( ) = 4 + ( ) That is, the bettor s expectation per unit is given by X ([ ]) =

2 Next, let us consider the specific group of four numbers : 7, 8, 0,. The numbers 8, 0 and are also black. Then A = {outcome is black } and B = {outcome is 7, 8, 0 or }. P := P (A and B) = P ({outcome is 8, 0 or }) = 3 P := P (A and [ not B]) = P ( {outcome is black but not 8, 0 and }) = 8 3 = , P 3 := P ([ not A] and B) = P ({outcome is 7 }) = P 4 := P ([ not A] and [not B]) = P ({ outcome is white, 0, or 00, and not 7 } ) = = Denote by X(5 : [ 7]) the expectation with the specific betting pattern, namely, $ 5 on black and $ on the specific group of 4 (the number [7] represents the total amount wagered). These result X(5 : [ 7]) = P (5 + 8) + P (5 ) + P 3 ( 8 5) + P 4 ( 5 ) = 3 5 (5 + 8) + (5 ) + ( 8 5) + ( 5 ) ( 8 = ) ( ) 38 = 4 That is, the bettor s expectation per unit is given by X ([ ]) = (the same). You may continue the calculation and show that the answer is the same no matter how many of the 4 numbers in black.

3 . A mythical slot machine has three wheels, each containing ten symbols. On each wheel there is JACKPOT symbol and other non-paying symbols. You put in silver dollar ($) in the slot and the payoffs are as follows : 3 JACKPOT symbols $487 in silver is returned (including your $). JACKPOT symbols $0 in silver is returned (including your $). JACKPOT symbols $ in silver is returned (you get your wager back!). Define what it would mean to say that this slot machine is fair and then show that it is indeed a fair one-armed bandit! Suggested solution. Assuming that the slot machine is random. P = P ( Jackpot symbol exactly) = = ; P = P ( Jackpot symbols exactly) = = ; P 3 = P (3 Jackpot symbols) = p N = P (No Jackpot symbol at all) = The profits are 0, and 486, respectively. We infer that = 000 ; 0 = = (P + P + P 3 ) [ please verify]. 0 0 X = P 0 + P + P p N ( ) = = 0.

4 3. The martingale strategy had the gambler double his bet after every loss, so that the first win would recover all previous losses plus win a profit equal to the original stake. Since a gambler with infinite wealth will with probability eventually flip heads, the Martingale betting strategy was seen as a sure thing by those who practised it. Of course, none of these practitioners in fact possessed infinite wealth, and the exponential growth of the bets would eventually bankrupt those who choose to use the martingale strategy. Moreover, it has become impossible to implement in modern casinos, due to the betting limit at the tables. Because the betting limits reduce the casino s short term variance, the martingale strategy itself does not pose a threat to the casino, and many will encourage its use, knowing that they have the house advantage no matter when or how much is wagered. Let one round be defined as a sequence of consecutive losses followed by a win, or consecutive losses resulting in bankruptcy of the gambler. After a win, the gambler resets and is considered to have started a new round. A continuous sequence of martingale bets can thus be partitioned into a sequence of independent rounds. We will analyze the expected value of one round. Let l be the probability of losing (e.g. betting for even for roulette has 0/38 chance of losing). Let y be the amount of the commencing bet, and n the finite number of bets you can afford to lose. Show that the expected profit per unit (a loss if the number is negative) per round is given by X ([]) = [ ( l) ] ( correction). Suggested solution. Backward thinking. You may choose anyone of the following arguments. In the sequence of numbers 0 y = y, y, y,, n y, n y, the chance that the gambler loses the first n games is l n. The total loss is y + y + y + + n y = y [ n ] = y n = y (n ). The chance that the bettor does not lose all n games is ( l n ). In this case, disregard where is the win in the round, the profit is y. Hence X([ round ]) = ( l n ) y + l n [ (y ( n )) ] = y [ ( l) n ].

5 To calculate the expected amount wagered in a round, let us draw an analog with the free odds in Craps : Expected amount of betting for a Pass Bettor, with possible free odds = ( + ) = + 3. On can understand this in the following manner. To start the game, one has to put down unit. However, there are /3 of the possibility that one can put down an additional unit. Back to the present case - to start the game, one has put down y units. If and when the first game is lost (with possibility equal to l ), the bettor puts down an additional ( y) units. And once the first two games are lost (with with possibility equal to l l = l ), one has to put down an additional ( y) units, and so on. It follows that Expected amount of betting in a round = y + l ( y) + l ( y) + + l n ( n y) st nd 3 rd n th game (amount put down on) = y [ + ( l ) + ( l ) + + ( l ) n ] = y [ ( l) n ] l ( = y n for l = ). Thus for l ; X([]) = X([ round ]) Expected amount of betting in a round = y [ ( l)n ] y ( ) ( l) n l = [ ( l) ]. We observe the simplicity and beauty of the final answer when we consider the expectation per unit. Also, as a side note, X([]) < 0 once the probability of losing l >. When l =, X([ round ]) = 0. Hence X([]) = X([ round ]) n y = 0 when l =.

6 Forward thinking. P (W ) = P (wins the first game) = ( l) ; P (W ) = P (loses the first game and wins the second game) = l ( l) ; P (W 3 ) = P (loses the first two games and wins the third game) = l l ( l) ; P (W n ) = P (loses the first n games and wins the last game) = l n ( l). As above, the chance that the gambler loses (all) the first n games is l n, and the amount lost is equal to y ( n ). Thus [ recall that on each round (barring bankruptcy) the profit is y ] X([ round ]) = P (W ) y + P (W ) y + + P (W n ) y l n [ y ( n )] = [ ( l) + l ( l) + + l n ( l) l n [ ( n )] ] y = [ ( l) + (l l ) + + (l n l n ) l n [ ( n )] ] y = [ n l n ] y (same as above).

7 Notes on geometry and arithmetic sum S k = + a + a + + a k. Here a is a number. To find the sum S k ( k =,, ), the idea is to go walk one step forward : a S k = a + a + a a k+. Hence a S k S k = a k+ = S k = ak+ a When a =, the idea does not work, but observe that k = = (k + ). As for S n = n, where n is an integer, we apply the mirror reflection idea : S n = n + (n ) + (n ) , Put them in juxtaposition S n = n, S n = n + (n ) + (n ) + + Summing them vertically we obtain S n = (n + ) + (n + ) + (n + ) + + (n + ) n teams = S n = n (n + ) = S n = n (n + ).

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is Geometric distribution The geometric distribution function is x f ( x) p(1 p) 1 x {1,2,3,...}, 0 p 1 It is the pdf of the random variable X, which equals the smallest positive integer x such that in a

More information

A Martingale Betting Strategy

A Martingale Betting Strategy MATH 529 A Martingale Betting Strategy The traditional martingale betting strategy calls for the bettor to double the wager after each loss until finally winning. This strategy ensures that, even with

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

The Kelly Criterion. How To Manage Your Money When You Have an Edge

The Kelly Criterion. How To Manage Your Money When You Have an Edge The Kelly Criterion How To Manage Your Money When You Have an Edge The First Model You play a sequence of games If you win a game, you win W dollars for each dollar bet If you lose, you lose your bet For

More information

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION RAVI PHATARFOD *, Monash University Abstract We consider two aspects of gambling with the Kelly criterion. First, we show that for a wide range of final

More information

Expectation Exercises.

Expectation Exercises. Expectation Exercises. Pages Problems 0 2,4,5,7 (you don t need to use trees, if you don t want to but they might help!), 9,-5 373 5 (you ll need to head to this page: http://phet.colorado.edu/sims/plinkoprobability/plinko-probability_en.html)

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

Homework 9 (for lectures on 4/2)

Homework 9 (for lectures on 4/2) Spring 2015 MTH122 Survey of Calculus and its Applications II Homework 9 (for lectures on 4/2) Yin Su 2015.4. Problems: 1. Suppose X, Y are discrete random variables with the following distributions: X

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Probability Notes: Binomial Probabilities

Probability Notes: Binomial Probabilities Probability Notes: Binomial Probabilities A Binomial Probability is a type of discrete probability with only two outcomes (tea or coffee, win or lose, have disease or don t have disease). The category

More information

Section M Discrete Probability Distribution

Section M Discrete Probability Distribution Section M Discrete Probability Distribution A random variable is a numerical measure of the outcome of a probability experiment, so its value is determined by chance. Random variables are typically denoted

More information

Chapter 4. Probability Lecture 1 Sections: Fundamentals of Probability

Chapter 4. Probability Lecture 1 Sections: Fundamentals of Probability Chapter 4 Probability Lecture 1 Sections: 4.1 4.2 Fundamentals of Probability In discussing probabilities, we must take into consideration three things. Event: Any result or outcome from a procedure or

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

Appendix to Failure of the No-Arbitrage Principle

Appendix to Failure of the No-Arbitrage Principle London School of Economics and Political Science From the SelectedWorks of Kristof Madarasz 2008 Appendix to Failure of the No-Arbitrage Principle Kristof Madarasz, London School of Economics and Political

More information

A GENERALIZED MARTINGALE BETTING STRATEGY

A GENERALIZED MARTINGALE BETTING STRATEGY DAVID K. NEAL AND MICHAEL D. RUSSELL Astract. A generalized martingale etting strategy is analyzed for which ets are increased y a factor of m 1 after each loss, ut return to the initial et amount after

More information

Why casino executives fight mathematical gambling systems. Casino Gambling Software: Baccarat, Blackjack, Roulette, Craps, Systems, Basic Strategy

Why casino executives fight mathematical gambling systems. Casino Gambling Software: Baccarat, Blackjack, Roulette, Craps, Systems, Basic Strategy Why casino executives fight mathematical gambling systems Casino Gambling Software: Baccarat, Blackjack, Roulette, Craps, Systems, Basic Strategy Software for Lottery, Lotto, Pick 3 4 Lotteries, Powerball,

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Day 2.notebook November 25, Warm Up Are the following probability distributions? If not, explain.

Day 2.notebook November 25, Warm Up Are the following probability distributions? If not, explain. Warm Up Are the following probability distributions? If not, explain. ANSWERS 1. 2. 3. Complete the probability distribution. Hint: Remember what all P(x) add up to? 4. Find the mean and standard deviation.

More information

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin Arbitrage Pricing What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin March 27, 2010 Introduction What is Mathematical Finance?

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Steve Dunbar Due Mon, October 5, 2009 1. (a) For T 0 = 10 and a = 20, draw a graph of the probability of ruin as a function

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

DCM 2004 How Do They Know My Opinion? Day 14 Page 1

DCM 2004 How Do They Know My Opinion? Day 14 Page 1 DCM 2004 How Do They Know My Opinion? Day 14 Page 1 Monday, January 26 Preparation Read Wade, Blaise Pascal: An Apologist for Our Time; and Pascal s Wager Do these problems on a separate sheet of paper.

More information

The parable of the bookmaker

The parable of the bookmaker The parable of the bookmaker Consider a race between two horses ( red and green ). Assume that the bookmaker estimates the chances of red to win as 5% (and hence the chances of green to win are 75%). This

More information

Key concepts: Certainty Equivalent and Risk Premium

Key concepts: Certainty Equivalent and Risk Premium Certainty equivalents Risk premiums 19 Key concepts: Certainty Equivalent and Risk Premium Which is the amount of money that is equivalent in your mind to a given situation that involves uncertainty? Ex:

More information

ECE 302 Spring Ilya Pollak

ECE 302 Spring Ilya Pollak ECE 302 Spring 202 Practice problems: Multiple discrete random variables, joint PMFs, conditional PMFs, conditional expectations, functions of random variables Ilya Pollak These problems have been constructed

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Expected value is basically the average payoff from some sort of lottery, gamble or other situation with a randomly determined outcome.

Expected value is basically the average payoff from some sort of lottery, gamble or other situation with a randomly determined outcome. Economics 352: Intermediate Microeconomics Notes and Sample Questions Chapter 18: Uncertainty and Risk Aversion Expected Value The chapter starts out by explaining what expected value is and how to calculate

More information

Managerial Economics Uncertainty

Managerial Economics Uncertainty Managerial Economics Uncertainty Aalto University School of Science Department of Industrial Engineering and Management January 10 26, 2017 Dr. Arto Kovanen, Ph.D. Visiting Lecturer Uncertainty general

More information

Business Statistics Midterm Exam Fall 2013 Russell

Business Statistics Midterm Exam Fall 2013 Russell Name Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided into

More information

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable 6.1 Discrete and Continuous Random Variables 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable Random variable Takes numerical values that describe the outcomes of some

More information

Binary Options FREE Trading System

Binary Options FREE Trading System Binary Options FREE Trading System Copyright Notice 2015 ALL RIGHTS ARE RESERVED. THIS BOOK IS COVERED BY INTERNATIONAL COPYRIGHT LAW. THIS BOOK IS SOLD FOR THE USE OF THE ORIGINAL PURCHASER ONLY AND CANNOT

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

Using the Maximin Principle

Using the Maximin Principle Using the Maximin Principle Under the maximin principle, it is easy to see that Rose should choose a, making her worst-case payoff 0. Colin s similar rationality as a player induces him to play (under

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

VALUE ADDED TAX COMMITTEE (ARTICLE 398 OF DIRECTIVE 2006/112/EC) WORKING PAPER NO 882

VALUE ADDED TAX COMMITTEE (ARTICLE 398 OF DIRECTIVE 2006/112/EC) WORKING PAPER NO 882 EUROPEAN COMMISSION DIRECTORATE-GENERAL TAXATION AND CUSTOMS UNION Indirect Taxation and Tax administration Value added tax taxud.c.1(2015)4459580 EN Brussels, 28 September 2015 VALUE ADDED TAX COMMITTEE

More information

Chance/Rossman ISCAM II Chapter 0 Exercises Last updated August 28, 2014 ISCAM 2: CHAPTER 0 EXERCISES

Chance/Rossman ISCAM II Chapter 0 Exercises Last updated August 28, 2014 ISCAM 2: CHAPTER 0 EXERCISES ISCAM 2: CHAPTER 0 EXERCISES 1. Random Ice Cream Prices Suppose that an ice cream shop offers a special deal one day: The price of a small ice cream cone will be determined by rolling a pair of ordinary,

More information

Analysis of Keno Bonus Wheels June 20, 2017

Analysis of Keno Bonus Wheels June 20, 2017 Analysis of Keno Bonus Wheels June 20, 2017 Prepared For John Feola New Vision Gaming 5 Samuel Phelps Way North Reading, MA 01864 Office: 978 664-1515 Fax: 978-664 - 5117 www.newvisiongaming.com Prepared

More information

Prentice Hall Connected Mathematics, Grade 7 Unit 2004 Correlated to: Maine Learning Results for Mathematics (Grades 5-8)

Prentice Hall Connected Mathematics, Grade 7 Unit 2004 Correlated to: Maine Learning Results for Mathematics (Grades 5-8) : Maine Learning Results for Mathematics (Grades 5-8) A. NUMBERS AND NUMBER SENSE Students will understand and demonstrate a sense of what numbers mean and how they are used. Students will be able to:

More information

Resistance to support

Resistance to support 1 2 2.3.3.1 Resistance to support In this example price is clearly consolidated and we can expect a breakout at some time in the future. This breakout could be short or it could be long. 3 2.3.3.1 Resistance

More information

The Simple Random Walk

The Simple Random Walk Chapter 8 The Simple Random Walk In this chapter we consider a classic and fundamental problem in random processes; the simple random walk in one dimension. Suppose a walker chooses a starting point on

More information

Applying the Kelly criterion to lawsuits

Applying the Kelly criterion to lawsuits Law, Probability and Risk Advance Access published April 27, 2010 Law, Probability and Risk Page 1 of 9 doi:10.1093/lpr/mgq002 Applying the Kelly criterion to lawsuits TRISTAN BARNETT Faculty of Business

More information

Should Win Limits Become a Part of Responsible Gambling?

Should Win Limits Become a Part of Responsible Gambling? Should Win Limits Become a Part of Responsible Gambling? Presented by Doug Walker College of Charleston Responsible Gambling Council Discovery 2017 20 April Toronto, Canada A typical casino visit Consider

More information

STATISTICS - CLUTCH CH.4: THE DISCRETE RANDOM VARIABLE.

STATISTICS - CLUTCH CH.4: THE DISCRETE RANDOM VARIABLE. !! www.clutchprep.com DISCRETE Discrete variables are variables that are broken down into discrete chunks Anything countable: profit (-$5, $20, $100, ), first digit (0,1,2, ), number of kids (0,1,2, )

More information

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley.

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley. Appendix: Statistics in Action Part I Financial Time Series 1. These data show the effects of stock splits. If you investigate further, you ll find that most of these splits (such as in May 1970) are 3-for-1

More information

How quantitative methods influence and shape finance industry

How quantitative methods influence and shape finance industry How quantitative methods influence and shape finance industry Marek Musiela UNSW December 2017 Non-quantitative talk about the role quantitative methods play in finance industry. Focus on investment banking,

More information

Risk management. VaR and Expected Shortfall. Christian Groll. VaR and Expected Shortfall Risk management Christian Groll 1 / 56

Risk management. VaR and Expected Shortfall. Christian Groll. VaR and Expected Shortfall Risk management Christian Groll 1 / 56 Risk management VaR and Expected Shortfall Christian Groll VaR and Expected Shortfall Risk management Christian Groll 1 / 56 Introduction Introduction VaR and Expected Shortfall Risk management Christian

More information

This Chief Counsel Advice responds to your request for assistance about a

This Chief Counsel Advice responds to your request for assistance about a CLICK HERE to return to the home page Office of Chief Counsel Internal Revenue Service Memorandum Release Number: AM2008-011 Release Date: 12/12/08 CC:ITA:B01 POSTN-138904-08 Third Party Communication:

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Applying Risk Theory to Game Theory Tristan Barnett. Abstract

Applying Risk Theory to Game Theory Tristan Barnett. Abstract Applying Risk Theory to Game Theory Tristan Barnett Abstract The Minimax Theorem is the most recognized theorem for determining strategies in a two person zerosum game. Other common strategies exist such

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

Probability Part #3. Expected Value

Probability Part #3. Expected Value Part #3 Expected Value Expected Value expected value involves the likelihood of a gain or loss in a situation that involves chance it is generally used to determine the likelihood of financial gains and

More information

The Game-Theoretic Framework for Probability

The Game-Theoretic Framework for Probability 11th IPMU International Conference The Game-Theoretic Framework for Probability Glenn Shafer July 5, 2006 Part I. A new mathematical foundation for probability theory. Game theory replaces measure theory.

More information

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,...

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,... Assignment 3 - Statistics Name: Permutation: Combination: n n! P r = (n r)! n n! C r = (n r)!r! n = 1,2,3,... n = 1,2,3,... The Fundamental Counting Principle: If two indepndent events A and B can happen

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Chapter 9. Idea of Probability. Randomness and Probability. Basic Practice of Statistics - 3rd Edition. Chapter 9 1. Introducing Probability

Chapter 9. Idea of Probability. Randomness and Probability. Basic Practice of Statistics - 3rd Edition. Chapter 9 1. Introducing Probability Chapter 9 Introducing Probability BPS - 3rd Ed. Chapter 9 1 Idea of Probability Probability is the science of chance behavior Chance behavior is unpredictable in the short run but has a regular and predictable

More information

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General

More information

Problem Set. Solutions to the problems appear at the end of this document.

Problem Set. Solutions to the problems appear at the end of this document. Problem Set Solutions to the problems appear at the end of this document. Unless otherwise stated, any coupon payments, cash dividends, or other cash payouts delivered by a security in the following problems

More information

Markets for Financial Capital

Markets for Financial Capital Markets for Financial Capital 427 Markets for Financial Capital Having seen how markets for physical capital work, let us turn to the examination of markets for financial capital. As we discussed, firms

More information

Notes for Session 2, Expected Utility Theory, Summer School 2009 T.Seidenfeld 1

Notes for Session 2, Expected Utility Theory, Summer School 2009 T.Seidenfeld 1 Session 2: Expected Utility In our discussion of betting from Session 1, we required the bookie to accept (as fair) the combination of two gambles, when each gamble, on its own, is judged fair. That is,

More information

Remarks on Probability

Remarks on Probability omp2011/2711 S1 2006 Random Variables 1 Remarks on Probability In order to better understand theorems on average performance analyses, it is helpful to know a little about probability and random variables.

More information

Standard Decision Theory Corrected:

Standard Decision Theory Corrected: Standard Decision Theory Corrected: Assessing Options When Probability is Infinitely and Uniformly Spread* Peter Vallentyne Department of Philosophy, University of Missouri-Columbia Originally published

More information

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance Normal Form Games & Dominance Let s play the quarters game again We each have a quarter. Let s put them down on the desk at the same time. If they show the same side (HH or TT), you take my quarter. If

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Duan LI Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong http://www.se.cuhk.edu.hk/

More information

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives CHAPTER Duxbury Thomson Learning Making Hard Decision Third Edition RISK ATTITUDES A. J. Clark School of Engineering Department of Civil and Environmental Engineering 13 FALL 2003 By Dr. Ibrahim. Assakkaf

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

Random Variables and Applications OPRE 6301

Random Variables and Applications OPRE 6301 Random Variables and Applications OPRE 6301 Random Variables... As noted earlier, variability is omnipresent in the business world. To model variability probabilistically, we need the concept of a random

More information

Buy rules: Sell rules: Strategy #2. Martingale hedging with exponential lot increase... 6

Buy rules: Sell rules: Strategy #2. Martingale hedging with exponential lot increase... 6 Contents Introduction... 2 Data... 2 Short instructions on how to use Forex Tester.... 2 Sum up... 3 STRATEGIES... 3 Martingale strategies... 3 Strategy #1. Martingale Grid & Hedging... 4 Buy rules:...

More information

SOUTH AFRICAN REVENUE SERVICE

SOUTH AFRICAN REVENUE SERVICE SOUTH AFRICAN REVENUE SERVICE INTERPRETATION NOTE NO. 41 (ISSUE 2) DATE: 31 March 2008 ACT: SECTION: SUBJECT: VALUE-ADDED TAX ACT, NO. 89 OF 1991 (the VAT Act) SECTIONS 1, 8(13), 8(13A), 9(3)(e), 16(3)(a),

More information

Finding the Sum of Consecutive Terms of a Sequence

Finding the Sum of Consecutive Terms of a Sequence Mathematics 451 Finding the Sum of Consecutive Terms of a Sequence In a previous handout we saw that an arithmetic sequence starts with an initial term b, and then each term is obtained by adding a common

More information

Chapter 9. Risk Analysis and Real Options

Chapter 9. Risk Analysis and Real Options Chapter 9 Risk Analysis and Real Options Grasp and execute decision trees Practically apply real options in capital budgeting Apply scenario and sensitivity analysis Comprehend and utilize the various

More information

Being Warren Buffett. Wharton Statistics Department

Being Warren Buffett. Wharton Statistics Department Being Warren Buffett Robert Stine & Dean Foster The School, Univ of Pennsylvania October, 2004 www-stat.wharton.upenn.edu/~stine Introducing students to risk Hands-on simulation experiment - Avoid computer

More information

Econometrica Supplementary Material

Econometrica Supplementary Material Econometrica Supplementary Material PUBLIC VS. PRIVATE OFFERS: THE TWO-TYPE CASE TO SUPPLEMENT PUBLIC VS. PRIVATE OFFERS IN THE MARKET FOR LEMONS (Econometrica, Vol. 77, No. 1, January 2009, 29 69) BY

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Ruomeng Lan Texas A&M University October 15, 2014 Ruomeng Lan (TAMU) Math 166 October 15, 2014 1 / 12 Mean, Median and Mode Definition: 1. The average or

More information

Game Theory. Wolfgang Frimmel. Repeated Games

Game Theory. Wolfgang Frimmel. Repeated Games Game Theory Wolfgang Frimmel Repeated Games 1 / 41 Recap: SPNE The solution concept for dynamic games with complete information is the subgame perfect Nash Equilibrium (SPNE) Selten (1965): A strategy

More information

Chapter 3 Dynamic Consumption-Savings Framework

Chapter 3 Dynamic Consumption-Savings Framework Chapter 3 Dynamic Consumption-Savings Framework We just studied the consumption-leisure model as a one-shot model in which individuals had no regard for the future: they simply worked to earn income, all

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

Randomness: what is that and how to cope with it (with view towards financial markets) Igor Cialenco

Randomness: what is that and how to cope with it (with view towards financial markets) Igor Cialenco Randomness: what is that and how to cope with it (with view towards financial markets) Igor Cialenco Dep of Applied Math, IIT igor@math.iit.etu MATH 100, Department of Applied Mathematics, IIT Oct 2014

More information

An Application of Ramsey Theorem to Stopping Games

An Application of Ramsey Theorem to Stopping Games An Application of Ramsey Theorem to Stopping Games Eran Shmaya, Eilon Solan and Nicolas Vieille July 24, 2001 Abstract We prove that every two-player non zero-sum deterministic stopping game with uniformly

More information

Multinomial Coefficient : A Generalization of the Binomial Coefficient

Multinomial Coefficient : A Generalization of the Binomial Coefficient Multinomial Coefficient : A Generalization of the Binomial Coefficient Example: A team plays 16 games in a season. At the end of the season, the team has 8 wins, 3 ties and 5 losses. How many different

More information

Online Appendix for Military Mobilization and Commitment Problems

Online Appendix for Military Mobilization and Commitment Problems Online Appendix for Military Mobilization and Commitment Problems Ahmer Tarar Department of Political Science Texas A&M University 4348 TAMU College Station, TX 77843-4348 email: ahmertarar@pols.tamu.edu

More information

N(A) P (A) = lim. N(A) =N, we have P (A) = 1.

N(A) P (A) = lim. N(A) =N, we have P (A) = 1. Chapter 2 Probability 2.1 Axioms of Probability 2.1.1 Frequency definition A mathematical definition of probability (called the frequency definition) is based upon the concept of data collection from an

More information