Confidence Intervals: Review

Size: px
Start display at page:

Download "Confidence Intervals: Review"

Transcription

1 University of Utah February 28, 2018

2 1 2

3 Law of Large Numbers Draw your samples from any population with finite mean µ. Then LLN says

4 Law of Large Numbers Draw your samples from any population with finite mean µ. Then LLN says Sample mean of observed values gets closer and closer to the mean µ of the population.

5 Law of Large Numbers Draw your samples from any population with finite mean µ. Then LLN says Sample mean of observed values gets closer and closer to the mean µ of the population. In other words x µ

6 Central Limit Theorem If any random sample of size n is selected from any population with mean µ and standard deviation is σ, then when n is large the distribution of the sample mean X is approximately normal. That is X N(µ, σ n ) (1)

7 Confidence Intervals for Normal population All confidence intervals we construct for mean will have a form similar to this: estimate ± margine error Estimate is X, where X is sample mean

8 Confidence Intervals for Normal population All confidence intervals we construct for mean will have a form similar to this: estimate ± margine error Estimate is X, where X is sample mean Margin error is z σ n where σ is standard deviation of population, n is sample size, and z is found from standard Normal distribution. In other words X z σ n < µ < X + z σ n

9 Example 1 Consider a population that is distributed N(µ, 20). Find a 90% confidence interval for the population mean when the sample mean of size 9 is 8.

10 Example 1 Consider a population that is distributed N(µ, 20). Find a 90% confidence interval for the population mean when the sample mean of size 9 is 8. Solution: First, what do we need to find?

11 Example 1 Consider a population that is distributed N(µ, 20). Find a 90% confidence interval for the population mean when the sample mean of size 9 is 8. Solution: First, what do we need to find? P(X z σ n < µ < X + z σ n ) =.90 What do we know?

12 Example 1 Consider a population that is distributed N(µ, 20). Find a 90% confidence interval for the population mean when the sample mean of size 9 is 8. Solution: First, what do we need to find? P(X z σ n < µ < X + z σ n ) =.90 What do we know? We know X = 8, n = 9, σ = 20 and from the table z = 1.65.

13 Example 1 Consider a population that is distributed N(µ, 20). Find a 90% confidence interval for the population mean when the sample mean of size 9 is 8. Solution: First, what do we need to find? P(X z σ n < µ < X + z σ n ) =.90 What do we know? We know X = 8, n = 9, σ = 20 and from the table z = So 90% Confidence Interval for µ is ( , ) 9 9

14 Example 2 (15.28 (kind of)) To estimate the mean score of µ of those who took the Medical College Admission Test on your campus, you will obtain the scores of an SRS of students. From published information, you know that the scores are approximately Normal with standard deviation about 6.4. You want your sample mean X to estimate µ with an error of no more than 1 point in either direction. a) What standard deviation must X have so that 99.7% of all samples give an X within 1 point of µ? (Use: rule) b) How large SRS do you need in order to reduce the standard deviation of X to the value you found in part (a)?

15 Solution of Example 2 a)we know that X N(µ, 6.4/ n). We know by rule that 99.7% of all observations fall within 3 standard devations, so we want that 3σ/ n = 1 i.e. P(X 3 σ n < µ < X + 3 σ n ) =.997 So the standard deviation of x must therefore be 1/3.

16 Solution of Example 2 a)we know that X N(µ, 6.4/ n). We know by rule that 99.7% of all observations fall within 3 standard devations, so we want that 3σ/ n = 1 i.e. P(X 3 σ n < µ < X + 3 σ n ) =.997 So the standard deviation of x must therefore be 1/3. b) Since σ/ n = 1/3, so 6.4 = n/3 that is n = 19.2 so n= We need to take n as a whole number so n = 369.

17 Example 3 or 16.8 An NHANES reports gives the data for 654 women aged 20 to 29 years. The mean of BMI of these 654 women was x = We treated these data as an SRS from a normally distributed population with standard deviation σ = 7.5

18 Example 3 or 16.8 An NHANES reports gives the data for 654 women aged 20 to 29 years. The mean of BMI of these 654 women was x = We treated these data as an SRS from a normally distributed population with standard deviation σ = 7.5 a)give three confidence intervals for the mean BMI µ in this population, using 90%, 95%, and 99% confidence b) What are the margins of error for 90%, 95%, and 99%?

19 Example 3 or 16.8 An NHANES reports gives the data for 654 women aged 20 to 29 years. The mean of BMI of these 654 women was x = We treated these data as an SRS from a normally distributed population with standard deviation σ = 7.5 a)give three confidence intervals for the mean BMI µ in this population, using 90%, 95%, and 99% confidence b) What are the margins of error for 90%, 95%, and 99%? Solution a) We know x = 26.8 and σ = 7.5 and n = 654 for all three cases. So z = for 90% confidence level and z = for 95% confidence level and z = for 99% confidence level.

20 Example 3 solution 90% Confidence Interval is 26.8 ± 1.645(7.5/ 654), that is to Margin of error is

21 Example 3 solution 90% Confidence Interval is 26.8 ± 1.645(7.5/ 654), that is to Margin of error is % Confidence Interval is 26.8 ± 1.960(7.5/ 654), that is to Margin of error is

22 Example 3 solution 90% Confidence Interval is 26.8 ± 1.645(7.5/ 654), that is to Margin of error is % Confidence Interval is 26.8 ± 1.960(7.5/ 654), that is to Margin of error is % Confidence Interval is 26.8 ± 2.576(7.5/ 654), that is to Margin of error is

23 Example 4 or 16.19(kind of) A class survey in a large class for first-year students asked, About how many minutes do you study on a typical weeknight?. The mean response of the 463 students was x = 118 minutes. Suppose that we know that the study time follows a Normal distribution with standard deviation σ = 65 minutes in the population of all first-year students at the university. a) Use the survey result to give a 99% confidence interval for the mean of the study time of all first-year students. b) Assume there were 464 responses and one student claimed to study minutes per night. But then x = 247 minutes. Now what is the 99% confidence interval for the mean?

24 Solution for Example 4 Solution:a) Margin of error is So Confidence interval is 118 ± which is from minutes to minutes.

25 Solution for Example 4 Solution:a) Margin of error is So Confidence interval is 118 ± which is from minutes to minutes. b) Margin of error is So Confidence interval is 247 ± which is from minutes to minutes.

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 315 - Lecture 3 Instructor: Aylin ALIN 04/02/2014 Midterm # 2 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

*****CENTRAL LIMIT THEOREM (CLT)*****

*****CENTRAL LIMIT THEOREM (CLT)***** Sampling Distributions and CLT Day 5 *****CENTRAL LIMIT THEOREM (CLT)***** (One of the MOST important theorems in Statistics - KNOW AND UNDERSTAND THIS!!!!!!) Draw an SRS of size n from ANY population

More information

Density curves. (James Madison University) February 4, / 20

Density curves. (James Madison University) February 4, / 20 Density curves Figure 6.2 p 230. A density curve is always on or above the horizontal axis, and has area exactly 1 underneath it. A density curve describes the overall pattern of a distribution. Example

More information

Chapter 9 & 10. Multiple Choice.

Chapter 9 & 10. Multiple Choice. Chapter 9 & 10 Review Name Multiple Choice. 1. An agricultural researcher plants 25 plots with a new variety of corn. The average yield for these plots is X = 150 bushels per acre. Assume that the yield

More information

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of Stat 400, section 4.3 Normal Random Variables notes prepared by Tim Pilachowski Another often-useful probability density function is the normal density function, which graphs as the familiar bell-shaped

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Distribution of the Sample Mean

Distribution of the Sample Mean Distribution of the Sample Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Experiment (1 of 3) Suppose we have the following population : 4 8 1 2 3 4 9 1

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

Section The Sampling Distribution of a Sample Mean

Section The Sampling Distribution of a Sample Mean Section 5.2 - The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light

More information

I. Standard Error II. Standard Error III. Standard Error 2.54

I. Standard Error II. Standard Error III. Standard Error 2.54 1) Original Population: Match the standard error (I, II, or III) with the correct sampling distribution (A, B, or C) and the correct sample size (1, 5, or 10) I. Standard Error 1.03 II. Standard Error

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5 H homework problems, C-copyright Joe Kahlig Chapter Solutions, Page Chapter Homework Solutions Compiled by Joe Kahlig. (a) finite discrete (b) infinite discrete (c) continuous (d) finite discrete (e) continuous.

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

15.063: Communicating with Data Summer Recitation 4 Probability III

15.063: Communicating with Data Summer Recitation 4 Probability III 15.063: Communicating with Data Summer 2003 Recitation 4 Probability III Today s Content Normal RV Central Limit Theorem (CLT) Statistical Sampling 15.063, Summer '03 2 Normal Distribution Any normal RV

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. It is Time for Homework Again! ( ω `) Please hand in your homework. Third homework will be posted on the website,

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The Normal Distribution.

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Section 6.5. The Central Limit Theorem

Section 6.5. The Central Limit Theorem Section 6.5 The Central Limit Theorem Idea Will allow us to combine the theory from 6.4 (sampling distribution idea) with our central limit theorem and that will allow us the do hypothesis testing in the

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

STATISTICS - CLUTCH CH.9: SAMPLING DISTRIBUTIONS: MEAN.

STATISTICS - CLUTCH CH.9: SAMPLING DISTRIBUTIONS: MEAN. !! www.clutchprep.com SAMPLING DISTRIBUTIONS (MEANS) As of now, the normal distributions we have worked with only deal with the population of observations Example: What is the probability of randomly selecting

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Statistics 511 Supplemental Materials

Statistics 511 Supplemental Materials Gaussian (or Normal) Random Variable In this section we introduce the Gaussian Random Variable, which is more commonly referred to as the Normal Random Variable. This is a random variable that has a bellshaped

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Making Sense of Cents

Making Sense of Cents Name: Date: Making Sense of Cents Exploring the Central Limit Theorem Many of the variables that you have studied so far in this class have had a normal distribution. You have used a table of the normal

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

STA215 Confidence Intervals for Proportions

STA215 Confidence Intervals for Proportions STA215 Confidence Intervals for Proportions Al Nosedal. University of Toronto. Summer 2017 June 14, 2017 Pepsi problem A market research consultant hired by the Pepsi-Cola Co. is interested in determining

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Estimation of the Mean and Proportion

Estimation of the Mean and Proportion Chapter 8 Estimation of the Mean and Proportion In statistics, we collect samples to know more about a population. If the sample is representative of the population, the sample mean or proportion should

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions:

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: (1) Our data (observations)

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

University of California, Los Angeles Department of Statistics. The central limit theorem The distribution of the sample mean

University of California, Los Angeles Department of Statistics. The central limit theorem The distribution of the sample mean University of California, Los Angeles Department of Statistics Statistics 12 Instructor: Nicolas Christou First: Population mean, µ: The central limit theorem The distribution of the sample mean Sample

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

Sampling Distributions Solutions STAT-UB.0103 Statistics for Business Control and Regression Models

Sampling Distributions Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Sampling Distributions Solutions STAT-UB.010 Statistics for Business Control and Regression Models Normal Random Variables Review) 1. Suppose that X is a normal random variable with mean µ = 26 and standard

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test.

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test. Honors Statistics Aug 23-8:26 PM 3. Review team test Aug 23-8:31 PM 1 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 2 May 8-7:44 PM May 1-9:09 PM 3 Dec 1-2:08 PM Sep

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

L04: Homework Answer Key

L04: Homework Answer Key L04: Homework Answer Key Instructions: You are encouraged to collaborate with other students on the homework, but it is important that you do your own work. Before working with someone else on the assignment,

More information

Announcements. Unit 2: Probability and distributions Lecture 3: Normal distribution. Normal distribution. Heights of males

Announcements. Unit 2: Probability and distributions Lecture 3: Normal distribution. Normal distribution. Heights of males Announcements Announcements Unit 2: Probability and distributions Lecture 3: Statistics 101 Mine Çetinkaya-Rundel First peer eval due Tues. PS3 posted - will be adding one more question that you need to

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Chapter 9-1/2 McGraw-Hill/Irwin Copyright 2011 by the McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO1. Define a point estimate. LO2. Define

More information

Lesson 3: Basic theory of stochastic processes

Lesson 3: Basic theory of stochastic processes Lesson 3: Basic theory of stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Probability space We start with some

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

Lecture 5 - Continuous Distributions

Lecture 5 - Continuous Distributions Lecture 5 - Continuous Distributions Statistics 102 Colin Rundel January 30, 2013 Announcements Announcements HW1 and Lab 1 have been graded and your scores are posted in Gradebook on Sakai (it is good

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables.

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. Normal distribution curve as probability distribution curve The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. The area under the normal

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Module 5 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculate the specified probability ) Suppose that T is a random variable. Given

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS MIDTERM EXAM - STATISTICS FALL 2014, SECTION 005

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS MIDTERM EXAM - STATISTICS FALL 2014, SECTION 005 MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS MIDTERM EXAM - STATISTICS 2550 - FALL 2014, SECTION 005 Instructor: A. Oyet Date: October 16, 2014 Name(Surname First): Student

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

STA 320 Fall Thursday, Dec 5. Sampling Distribution. STA Fall

STA 320 Fall Thursday, Dec 5. Sampling Distribution. STA Fall STA 320 Fall 2013 Thursday, Dec 5 Sampling Distribution STA 320 - Fall 2013-1 Review We cannot tell what will happen in any given individual sample (just as we can not predict a single coin flip in advance).

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Activity #17b: Central Limit Theorem #2. 1) Explain the Central Limit Theorem in your own words.

Activity #17b: Central Limit Theorem #2. 1) Explain the Central Limit Theorem in your own words. Activity #17b: Central Limit Theorem #2 1) Explain the Central Limit Theorem in your own words. Importance of the CLT: You can standardize and use normal distribution tables to calculate probabilities

More information

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Probability and Sampling Distributions Random variables. Section 4.3 (Continued)

Probability and Sampling Distributions Random variables. Section 4.3 (Continued) Probability and Sampling Distributions Random variables Section 4.3 (Continued) The mean of a random variable The mean (or expected value) of a random variable, X, is an idealization of the mean,, of quantitative

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences May 18, 2015 Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The

More information

University of California, Los Angeles Department of Statistics

University of California, Los Angeles Department of Statistics University of California, Los Angeles Department of Statistics Statistics 13 Instructor: Nicolas Christou The central limit theorem The distribution of the sample proportion The distribution of the sample

More information

Math 14, Homework 6.2 p. 337 # 3, 4, 9, 10, 15, 18, 19, 21, 22 Name

Math 14, Homework 6.2 p. 337 # 3, 4, 9, 10, 15, 18, 19, 21, 22 Name Name 3. Population in U.S. Jails The average daily jail population in the United States is 706,242. If the distribution is normal and the standard deviation is 52,145, find the probability that on a randomly

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Section 3.5a Applying the Normal Distribution MDM4U Jensen

Section 3.5a Applying the Normal Distribution MDM4U Jensen Section 3.5a Applying the Normal Distribution MDM4U Jensen Part 1: Normal Distribution Video While watching the video, answer the following questions 1. What is another name for the Empirical rule? The

More information

Exercise Questions: Chapter What is wrong? Explain what is wrong in each of the following scenarios.

Exercise Questions: Chapter What is wrong? Explain what is wrong in each of the following scenarios. 5.9 What is wrong? Explain what is wrong in each of the following scenarios. (a) If you toss a fair coin three times and a head appears each time, then the next toss is more likely to be a tail than a

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

1. State Sales Tax. 2. Baggage Check

1. State Sales Tax. 2. Baggage Check 1. State Sales Tax A survey asks a random sample of 1500 adults in Ohio if they support an increase in the state sales tax from 5% to 6% with the additional revenue going to education. If 40% of all adults

More information

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name 7.1 p. 379 # 7, 9, 18, 0, 1, 3, 5, 6 Name 7. Find each. (a) z α Step 1 Step Shade the desired percent under the mean statistics calculator to 99% confidence interval 3 1 0 1 3 µ 3σ µ σ µ σ µ µ+σ µ+σ µ+3σ

More information