Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test.

Size: px
Start display at page:

Download "Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test."

Transcription

1 Honors Statistics Aug 23-8:26 PM 3. Review team test Aug 23-8:31 PM 1

2 Nov 27-10:28 PM Nov 27-9:53 PM 2

3 May 8-7:44 PM May 1-9:09 PM 3

4 Dec 1-2:08 PM Sep 26-6:57 PM 4

5 Sep 26-6:58 PM Nov 30-7:23 PM 5

6 Nov 30-7:23 PM 6 If many, many emergency rooms are randomly selected during a given hour the number of patients seeking treatment for the flu will average 1.87 persons 1.09 is the standard deviation of the mean. If an emergency room is randomly selected, the number of people seeking treatment for the flu any given hour will typically differ from the average value 1.87 by 1.09 persons. Dec 7-11:53 PM 6

7 µ X = 5 σ X = 2 X + 3 µ X+3 = = 8 σ X+3 = 2 3X µ 3X = 3(5) = 15 σ 3X = 3(2)= 6 3X - 4 µ 3X-4 = 3(5) - 4 = 11 σ 3X-4 = 3(2) = 6 May 8-8:08 PM 3 Dec 6-2:56 PM 7

8 Dec 8-11:07 AM 5. X = the money value of the change found in the car µ X = 1(0.60) + 5(0.30) + 20(0.10) = 4.10 If the boy randomly scrounges for many, many years the amount of cash found will average $4.10 per year. This is the expected value of the cash recovered. σ 2 x = (1-4.1) 2 (0.60) + (5-4.1) 2 (0.30) + (20-4.1) 2 (0.10) = σ x = = $5.59 The standard deviation of X is σ x = $5.59 The amount of cash in a randomly selected year will typically differ from the mean ($4.10) by about $5.59. T = Y 1 + Y 2 + Y 3 µ T = = $12.30 σ 2 T = = σ T = = $9.69 Dec 10-5:25 PM 8

9 µ X = cm σ x = 7.2 cm I = X 2.54 µ I = = in σ I = 7.2 = 2.83 in Dec 6-2:59 PM May 8-8:21 PM 9

10 May 8-8:21 PM 8 Dec 7-11:55 PM 10

11 May 8-8:22 PM May 8-8:22 PM 11

12 Nov 21-8:16 PM Section I: Multiple Choice Select the best answer for each question. Questions T6.1 to T6.3 refer to the following setting. A psychologist studied the number of puzzles that subjects were able to solve in a five-minute period while listening to soothing music. Let X be the number of puzzles completed successfully by a randomly chosen subject. The psychologist found that X had the following probability distribution: T6.1. What is the probability that a randomly chosen subject completes more than the expected number of puzzles in the five-minute period while listening to soothing music? > (a) 0.1 > (b) 0.4 > (c) 0.8 > (d) 1 µ X = 1(0.2) + 2(0.4) + 3(0.3) + 4(0.1) = 2.3 > (e) Cannot be determined P(X = 3 or X = 4) = 0.4 Dec 9-9:43 PM 12

13 T6.2. The standard deviation of X is 0.9. Which of the following is the best interpretation of this value? D > (a) About 90% of subjects solved 3 or fewer puzzles. > (b) About 68% of subjects solved between 0.9 puzzles less and 0.9 puzzles more than the mean. > (c) The typical subject solved an average of 0.9 puzzles. > (d) The number of puzzles solved by subjects typically differed from the mean by about 0.9 puzzles. > (e) The number of puzzles solved by subjects typically differed from one another by about 0.9 puzzles. Dec 9-9:47 PM T6.3. Let D be the difference in the number of puzzles solved by two randomly selected subjects in a five-minute period. What is the standard deviation of D? D > (a) 0 > (b) 0.81 > (c) 0.9 > (d) 1.27 µ X = 1(0.2) + 2(0.4) + 3(0.3) + 4(0.1) = 2.3 > (e) 1.8 σ 2 x = (1-2.3) 2 (0.2) + (2-2.3) 2 (0.4) + (3-2.3) 2 (0.3) + (4-2.3) 2 (0.1) = 0.81 σ x = 0.81 = 0.9 D = X - X σ 2 D = = 1.62 σ D = 1.62 = Dec 9-9:46 PM 13

14 T6.4. Suppose a student is randomly selected from your school. Which of the following pairs of random variables are most likely independent? > (a) X = student s height; Y = student s weight > (b) X = student s IQ; Y = student s GPA > (c) X = student s PSAT Math score; Y = student s PSAT Verbal score > (d) X = average amount of homework the student does per night; Y = student s GPA > (e) X = average amount of homework the student does per night; Y = student s height Dec 9-9:48 PM T6.5. A certain vending machine offers 20-ounce bottles of soda for $1.50. The number of bottles X bought from the machine on any day is a random variable with mean 50 and standard deviation 15. Let the random variable Y equal the total revenue from this machine on a given day. Assume that the machine works properly and that no sodas are stolen from the machine. What are the mean and standard deviation of Y? > (a) µ Y = $1.50, σ Y = $22.50 > (b) µ Y = $1.50, σ Y = $33.75 > (c) µ Y = $75, σ Y = $18.37 > (d) µ Y = $75, σ Y = $22.50 > (e) µ Y = $75, σ Y = $33.75 Y = 1.50(X) µ Y = 1.50(50) = $75 σ Y = 1.5(15) = $22.5 Dec 9-9:49 PM 14

15 T6.6. The weight of tomatoes chosen at random from a bin at the farmer s market follows a Normal distribution with mean µ = 10 ounces and standard deviation σ = 1 ounce. Suppose we pick four tomatoes at random from the bin and find their total weight T. The random variable T is (a) Normal, with mean 10 ounces and standard deviation 1 ounce. (b) Normal, with mean 40 ounces and standard deviation 2 ounces. (c) Normal, with mean 40 ounces and standard deviation 4 ounces. (d) binomial, with mean 40 ounces and standard deviation 2 ounces. (e) binomial, with mean 40 ounces and standard deviation 4 ounces. µ T = = 40 ounces σ 2 T = = 4 σ T = 4.0 = 2 ounces B Dec 9-9:50 PM T6.11 Let Y denote the number of broken eggs in a randomly selected carton of one dozen store brand eggs at a local supermarket. Suppose that the probability distribution of Y is as follows. > (a) What is the probability that at least 10 eggs in a randomly selected carton are unbroken? P(Y 2) = P(Y=0) + P(Y=1) + P(Y=2) = = 0.96 > (b) Calculate and interpret µy µy = 0(0.78) + 1(0.11) + 2(0.07) + 3(0.03) = 0.38 If many, many egg cartons were randomly selected the number of broken eggs in the carton would average 0.38 broken eggs. > (c) Calculate and interpret σy. Show your work. σ 2 Y = (0.38-0) 2 (0.78) + (0.38-1) 2 (0.11) + (0.38-2) 2 (0.07) + (0.38-3) 2 (0.03) + (0.38-4) 2 (0.01) = σ Y = = If a carton of eggs is randomly selected, the number of broken eggs in the carton will typically differ from the average 0.38 by 0.82 eggs. > (d) A quality control inspector at the store keeps looking at randomly selected cartons of eggs until he finds one with at least 2 broken eggs. Find the probability that this happens in one of the first three cartons he inspects. THIS QUESTION IS A PREVIEW OF SECTION 6.3 P( at least two broken eggs) =P(Y=2) + P(Y=3) + P(Y=4) = = 0.11 P(less than 2 broken eggs) = = 0.89 Let X be the number of cartons selected until you find one with at least 2 broken eggs. P(X = 1) = 0.11 P(X = 2) = (0.89)(0.11) = P(X = 3) = (0.89)(0.89)(0.11) = P(X 3) = = Dec 9-9:50 PM 15

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda 1. Review OTL C6#7 emphasis Normal Distributions Aug 23-8:31 PM 1 1. Multiple choice: Select the best answer for Exercises 65 and 66, which refer to the following

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda 1. Review OTL C6#4 Chapter 6.2 rules for means and variances Aug 23-8:31 PM 1 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at random and

More information

Name Period AP Statistics Unit 5 Review

Name Period AP Statistics Unit 5 Review Name Period AP Statistics Unit 5 Review Multiple Choice 1. Jay Olshansky from the University of Chicago was quoted in Chance News as arguing that for the average life expectancy to reach 100, 18% of people

More information

2.) What is the set of outcomes that describes the event that at least one of the items selected is defective? {AD, DA, DD}

2.) What is the set of outcomes that describes the event that at least one of the items selected is defective? {AD, DA, DD} Math 361 Practice Exam 2 (Use this information for questions 1 3) At the end of a production run manufacturing rubber gaskets, items are sampled at random and inspected to determine if the item is Acceptable

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

d) Find the standard deviation of the random variable X.

d) Find the standard deviation of the random variable X. Q 1: The number of students using Math lab per day is found in the distribution below. x 6 8 10 12 14 P(x) 0.15 0.3 0.35 0.1 0.1 a) Find the mean for this probability distribution. b) Find the variance

More information

I can use simulation to model chance behavior. I can describe a probability model for a chance process. I can use basic probability rules, including

I can use simulation to model chance behavior. I can describe a probability model for a chance process. I can use basic probability rules, including 1 AP Statistics Unit 3 Concepts (Chapter 5, 6, 7) Baseline Topics: (must show mastery in order to receive a 3 or above I can distinguish between a parameter and a statistic. I can use a probability distribution

More information

Math 14, Homework 6.2 p. 337 # 3, 4, 9, 10, 15, 18, 19, 21, 22 Name

Math 14, Homework 6.2 p. 337 # 3, 4, 9, 10, 15, 18, 19, 21, 22 Name Name 3. Population in U.S. Jails The average daily jail population in the United States is 706,242. If the distribution is normal and the standard deviation is 52,145, find the probability that on a randomly

More information

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016.

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016. Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#3 4. Normal Curve Quiz Aug 23-8:31 PM 1 May 1-9:09 PM Apr 28-10:29 AM 2 27, 28, 29, 30 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Chapter 6 Section 1 Day s.notebook. April 29, Honors Statistics. Aug 23-8:26 PM. 3. Review OTL C6#2. Aug 23-8:31 PM

Chapter 6 Section 1 Day s.notebook. April 29, Honors Statistics. Aug 23-8:26 PM. 3. Review OTL C6#2. Aug 23-8:31 PM Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#2 Aug 23-8:31 PM 1 Apr 27-9:20 AM Jan 18-2:13 PM 2 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 3 Ask about 1 and

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda Aug 23-8:31 PM 1 Write a program to generate random numbers. I've decided to give them free will. A Skip 4, 12, 16 Apr 25-10:55 AM Toss 4 times Suppose you

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The Normal Distribution.

More information

*****CENTRAL LIMIT THEOREM (CLT)*****

*****CENTRAL LIMIT THEOREM (CLT)***** Sampling Distributions and CLT Day 5 *****CENTRAL LIMIT THEOREM (CLT)***** (One of the MOST important theorems in Statistics - KNOW AND UNDERSTAND THIS!!!!!!) Draw an SRS of size n from ANY population

More information

Honors Statistics. Aug 23-8:26 PM. 1. Collect folders and materials. 2. Continue Binomial Probability. 3. Review OTL C6#11 homework

Honors Statistics. Aug 23-8:26 PM. 1. Collect folders and materials. 2. Continue Binomial Probability. 3. Review OTL C6#11 homework Honors Statistics Aug 23-8:26 PM 1. Collect folders and materials 2. Continue Binomial Probability 3. Review OTL C6#11 homework 4. Binomial mean and standard deviation 5. Past Homework discussion 6. Return

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

TRUE-FALSE: Determine whether each of the following statements is true or false.

TRUE-FALSE: Determine whether each of the following statements is true or false. Chapter 6 Test Review Name TRUE-FALSE: Determine whether each of the following statements is true or false. 1) A random variable is continuous when the set of possible values includes an entire interval

More information

STT 315 Practice Problems Chapter 3.7 and 4

STT 315 Practice Problems Chapter 3.7 and 4 STT 315 Practice Problems Chapter 3.7 and 4 Answer the question True or False. 1) The number of children in a family can be modelled using a continuous random variable. 2) For any continuous probability

More information

Distribution of the Sample Mean

Distribution of the Sample Mean Distribution of the Sample Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Experiment (1 of 3) Suppose we have the following population : 4 8 1 2 3 4 9 1

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 8 Sampling Distributions 8.1 Distribution of the Sample Mean 1 Describe the distribution of the sample mean: normal population. MULTIPLE CHOICE. Choose the one alternative that best completes the statement

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Test 6A AP Statistics Name:

Test 6A AP Statistics Name: Test 6A AP Statistics Name: Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. A marketing survey compiled data on the number of personal computers in households. If X = the

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Math 13 Statistics Fall 2014 Midterm 2 Review Problems. Due on the day of the midterm (Friday, October 3, 2014 at 6 p.m. in N12)

Math 13 Statistics Fall 2014 Midterm 2 Review Problems. Due on the day of the midterm (Friday, October 3, 2014 at 6 p.m. in N12) Math 13 Statistics Fall 2014 Midterm 2 Review Problems Due on the day of the midterm (Friday, October 3, 2014 at 6 p.m. in N12) PRINT NAME (ALL UPPERCASE): Problem 1: A couple wants to have three babies

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences May 18, 2015 Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The

More information

LECTURE 6 DISTRIBUTIONS

LECTURE 6 DISTRIBUTIONS LECTURE 6 DISTRIBUTIONS OVERVIEW Uniform Distribution Normal Distribution Random Variables Continuous Distributions MOST OF THE SLIDES ADOPTED FROM OPENINTRO STATS BOOK. NORMAL DISTRIBUTION Unimodal and

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Problem Set 08 Sampling Distribution of Sample Mean

Problem Set 08 Sampling Distribution of Sample Mean Problem Set 08 Sampling Distribution of Sample Mean MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the requested probability. 1) The table reports

More information

+ Chapter 7. Random Variables. Chapter 7: Random Variables 2/26/2015. Transforming and Combining Random Variables

+ Chapter 7. Random Variables. Chapter 7: Random Variables 2/26/2015. Transforming and Combining Random Variables + Chapter 7: Random Variables Section 7.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE + Chapter 7 Random Variables 7.1 7.2 7.2 Discrete

More information

Test 7A AP Statistics Name: Directions: Work on these sheets.

Test 7A AP Statistics Name: Directions: Work on these sheets. Test 7A AP Statistics Name: Directions: Work on these sheets. Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. Suppose X is a random variable with mean µ. Suppose we observe

More information

The Uniform Distribution

The Uniform Distribution The Uniform Distribution EXAMPLE 1 The previous problem is an example of the uniform probability distribution. Illustrate the uniform distribution. The data that follows are 55 smiling times, in seconds,

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

Sampling Distributions Solutions STAT-UB.0103 Statistics for Business Control and Regression Models

Sampling Distributions Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Sampling Distributions Solutions STAT-UB.010 Statistics for Business Control and Regression Models Normal Random Variables Review) 1. Suppose that X is a normal random variable with mean µ = 26 and standard

More information

Honors Statistics. 3. Review OTL C6#6. emphasis Normal Distributions. Chapter 6 Section 2 Day s.notebook. May 05, 2016.

Honors Statistics. 3. Review OTL C6#6. emphasis Normal Distributions. Chapter 6 Section 2 Day s.notebook. May 05, 2016. Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#6 emphasis Normal Distributions Aug 23-8:31 PM 1 Nov 21-8:16 PM Rainy days Imagine that we randomly select a day from the past 10 years. Let X be the recorded

More information

Edexcel Statistics 1 Normal Distribution Edited by: K V Kumaran

Edexcel Statistics 1 Normal Distribution Edited by: K V Kumaran Edexcel Statistics 1 Normal Distribution Edited by: K V Kumaran kumarmaths.weebly.com 1 kumarmaths.weebly.com 2 kumarmaths.weebly.com 3 kumarmaths.weebly.com 4 kumarmaths.weebly.com 5 kumarmaths.weebly.com

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP Note 1: The exercises below that are referenced by chapter number are taken or modified from the following open-source online textbook that was adapted by

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Daily Agenda 1. Review OTL C6#5 2. Quiz Section 6.1 A-Skip 35, 39, 40 Crickets The length in inches of a cricket chosen at random from a field is a random variable X with mean 1.2 inches

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

CHAPTER 1. Find the mean, median and mode for the number of returns prepared by each accountant.

CHAPTER 1. Find the mean, median and mode for the number of returns prepared by each accountant. CHAPTER 1 TUTORIAL 1. Explain the term below : i. Statistics ii. Population iii. Sample 2. A questionnaire provides 58 Yes, 42 No and 20 no-opinion. i. In the construction of a pie chart, how many degrees

More information

Confidence Intervals: Review

Confidence Intervals: Review University of Utah February 28, 2018 1 2 Law of Large Numbers Draw your samples from any population with finite mean µ. Then LLN says Law of Large Numbers Draw your samples from any population with finite

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys?

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? Chapters 6 8 Review 1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? (A) 1 (B) 3 1 (C) 3 (D) 4 1 (E) None of the above..

More information

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Objectives: Students will: Define a sampling distribution. Contrast bias and variability. Describe the sampling distribution of a proportion (shape, center, and spread).

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution Properties of a Binomial Experiment 1. It consists of a fixed number of observations called trials. 2. Each trial can result in one of only two mutually exclusive outcomes labeled

More information

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean.

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean. Lecture 3 Sampling distributions. Counts, Proportions, and sample mean. Statistical Inference: Uses data and summary statistics (mean, variances, proportions, slopes) to draw conclusions about a population

More information

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and Exercise Questions This exercise set only covers some topics discussed after the midterm. It does not mean that the problems in the final will be similar to these. Neither solutions nor answers will be

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Math 227 Practice Test 2 Sec Name

Math 227 Practice Test 2 Sec Name Math 227 Practice Test 2 Sec 4.4-6.2 Name Find the indicated probability. ) A bin contains 64 light bulbs of which 0 are defective. If 5 light bulbs are randomly selected from the bin with replacement,

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5 H homework problems, C-copyright Joe Kahlig Chapter Solutions, Page Chapter Homework Solutions Compiled by Joe Kahlig. (a) finite discrete (b) infinite discrete (c) continuous (d) finite discrete (e) continuous.

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

L04: Homework Answer Key

L04: Homework Answer Key L04: Homework Answer Key Instructions: You are encouraged to collaborate with other students on the homework, but it is important that you do your own work. Before working with someone else on the assignment,

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Ch 8 One Population Confidence Intervals

Ch 8 One Population Confidence Intervals Ch 8 One Population Confidence Intervals Section A: Multiple Choice C 1. A single number used to estimate a population parameter is a. the confidence interval b. the population parameter c. a point estimate

More information

Chapter 4 and Chapter 5 Test Review Worksheet

Chapter 4 and Chapter 5 Test Review Worksheet Name: Date: Hour: Chapter 4 and Chapter 5 Test Review Worksheet You must shade all provided graphs, you must round all z-scores to 2 places after the decimal, you must round all probabilities to at least

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

I. Standard Error II. Standard Error III. Standard Error 2.54

I. Standard Error II. Standard Error III. Standard Error 2.54 1) Original Population: Match the standard error (I, II, or III) with the correct sampling distribution (A, B, or C) and the correct sample size (1, 5, or 10) I. Standard Error 1.03 II. Standard Error

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 Transforming and

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 315 - Lecture 3 Instructor: Aylin ALIN 04/02/2014 Midterm # 2 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Use the Central Limit Theorem to find the indicated probability. The sample size is n,

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

work to get full credit.

work to get full credit. Chapter 18 Review Name Date Period Write complete answers, using complete sentences where necessary.show your work to get full credit. MULTIPLE CHOICE. Choose the one alternative that best completes the

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

Lecture 6: Normal distribution

Lecture 6: Normal distribution Lecture 6: Normal distribution Statistics 101 Mine Çetinkaya-Rundel February 2, 2012 Announcements Announcements HW 1 due now. Due: OQ 2 by Monday morning 8am. Statistics 101 (Mine Çetinkaya-Rundel) L6:

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Discrete Random Variables In this section, we introduce the concept of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can be thought

More information

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3 Estimation 7 Copyright Cengage Learning. All rights reserved. Section 7.3 Estimating p in the Binomial Distribution Copyright Cengage Learning. All rights reserved. Focus Points Compute the maximal length

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

The Central Limit Theorem

The Central Limit Theorem Section 6-5 The Central Limit Theorem I. Sampling Distribution of Sample Mean ( ) Eample 1: Population Distribution Table 2 4 6 8 P() 1/4 1/4 1/4 1/4 μ (a) Find the population mean and population standard

More information

Example 1: Find the equation of the line containing points (1,2) and (2,3).

Example 1: Find the equation of the line containing points (1,2) and (2,3). Example 1: Find the equation of the line containing points (1,2) and (2,3). Example 2: The Ace Company installed a new machine in one of its factories at a cost of $20,000. The machine is depreciated linearly

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

VII The Normal Distribution

VII The Normal Distribution MATHEMATICS 360-255-LW Quantitative Methods II Martin Huard Winter 2013 1. Find the area under the normal curve a) between z = 0 and z = 1.90 b) between z = -1.75 and z = 0 c) between z = 1.25 and z =

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the following uniform density curve, answer the

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6. 6.3 Binomial and

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Probability: Week 4. Kwonsang Lee. University of Pennsylvania February 13, 2015

Probability: Week 4. Kwonsang Lee. University of Pennsylvania February 13, 2015 Probability: Week 4 Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu February 13, 2015 Kwonsang Lee STAT111 February 13, 2015 1 / 21 Probability Sample space S: the set of all possible

More information

CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS

CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, please circle the correct answer.. The weighted average of the possible

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information