Lecture 5 - Continuous Distributions

Size: px
Start display at page:

Download "Lecture 5 - Continuous Distributions"

Transcription

1 Lecture 5 - Continuous Distributions Statistics 102 Colin Rundel January 30, 2013

2 Announcements Announcements HW1 and Lab 1 have been graded and your scores are posted in Gradebook on Sakai (it is good practice to always double check your scores). You should have picked up Lab 1 yesterday, HW1 will be passed back in class today. Any questions about grading should be directed to me and not the TAs - regrade requests need to be made in writing. I will hold on to any unclaimed assignments, come to office hours to pick them up. Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

3 Types of Distributions Discrete Probability Distributions A discrete probability distribution lists all possible events and the probabilities with which they occur. Rules for probability distributions: 1 The events listed must be disjoint 2 Each probability must be between 0 and 1 3 The probabilities must total 1 Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

4 Types of Distributions Continuous Probability Distributions A continuous probability distribution differs from a discrete probability distribution in several ways. The probability that a continuous RV will equal a specific value is zero. As such they cannot be expressed in tabular form. Instead, we use an equation or formula to describe its distribution (probability density function). We can calculate probability for ranges of values (area under the curve). Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

5 Normal distribution Normal distribution Unimodal and symmetric, bell shaped curve Most variables are nearly normal, but none are exactly normal Denoted as N(µ, σ) Normal with mean µ and standard deviation σ 1 Curve given by the equation - [ σ exp 1 ( x µ ) ] 2 2π 2 σ Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

6 Normal distribution Heights of males The male heights on OkCupid very nearly follow the expected normal distribution except the whole thing is shifted to the right of where it should be. Almost universally guys like to add a couple inches. You can also see a more subtle vanity at work: starting at roughly 5 8, the top of the dotted curve tilts even further rightward. This means that guys as they get closer to six feet round up a bit more than usual, stretching for that coveted psychological benchmark. blog.okcupid.com/ index.php/ the-biggest-lies-in-online-dating/ Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

7 Normal distribution Heights of females When we looked into the data for women, we were surprised to see height exaggeration was just as widespread, though without the lurch towards a benchmark height. blog.okcupid.com/ index.php/ the-biggest-lies-in-online-dating/ Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

8 Normal distribution Normal distribution model Normal distributions with different parameters µ: mean, σ: standard deviation N(µ = 0, σ = 1) N(µ = 19, σ = 4) Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

9 Normal distribution Rule Rule For nearly normally distributed data, about 68% falls within 1 SD of the mean, about 95% falls within 2 SD of the mean, about 99.7% falls within 3 SD of the mean. It is possible for observations to fall 4, 5, or more standard deviations away from the mean, but these occurrences are very rare if the data are nearly normal. 68% 95% 99.7% µ 3σ µ 2σ µ σ µ µ + σ µ + 2σ µ + 3σ Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

10 Normal distribution Rule Describing variability using the Rule SAT scores are distributed nearly normally with mean 1500 and standard deviation % of students score between 1200 and 1800 on the SAT. 95% of students score between 900 and 2100 on the SAT. 99.7% of students score between 600 and 2400 on the SAT. 68% 95% 99.7% Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

11 Normal distribution Rule Number of hours of sleep on school nights % 95 % 75 % Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

12 Normal distribution Standardizing with Z scores Comparing SAT and ACT SAT scores are distributed nearly normally with mean 1500 and standard deviation 300. ACT scores are distributed nearly normally with mean 21 and standard deviation 5. A college admissions officer wants to determine which of the two applicants scored better on their standardized test with respect to the other test takers: Pam, who earned an 1800 on her SAT, or Jim, who scored a 24 on his ACT? Pam Jim Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

13 Normal distribution Standardizing with Z scores Standardizing with Z scores Since we cannot just compare these two raw scores, we instead compare how many standard deviations beyond the mean each observation is. Pam s score is = 1 standard deviation above the mean. Jim s score is = 0.6 standard deviations above the mean. Jim Pam Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

14 Normal distribution Standardizing with Z scores Standardizing with Z scores (cont.) These are called standardized scores, or Z scores. Z score of an observation is the number of standard deviations it falls above or below the mean. observation mean Z = SD Z scores are defined for distributions of any shape, but only when the distribution is normal can we use Z scores to calculate percentiles. Observations that are more than 2 SD away from the mean ( Z > 2) are usually considered unusual. Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

15 Normal distribution Standardizing with Z scores Z distribution Another reason we use Z scores is if the distribution of X is nearly normal then the Z scores of X will have a Z distribution. Z distribution is a special case of the normal distribution where µ = 0 and σ = 1 (unit normal distribution) Given that a linear transformation of a normally distributed random variable will also be normally distributed then we can easily show that Z N(0, 1) ( ) X µ E(Z) = E = E(X /σ) µ/σ = µ/σ µ/σ = 0 σ ( ) X µ Var(Z) = Var = Var(X /σ) = 1 σ σ 2 Var(X ) = 1 Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

16 Normal distribution Standardizing with Z scores Percentiles Percentile is the percentage of observations that fall below a given data point. Graphically, percentile is the area below the probability distribution curve to the left of that observation Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

17 Normal distribution Standardizing with Z scores Example - SAT Approximately what percent of students score below 1800 on the SAT? Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

18 Normal distribution Calculating percentiles and probabilities Calculating percentiles There are many ways to compute percentiles/areas under the curve: R: pnorm(1800, mean = 1500, sd = 300)) Applet: htmls/ SOCR Distributions.html Calculus: [ P(X 1800) = 300 2π exp 1 ( ) ] 2 x 1500 dx Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

19 Normal distribution Calculating percentiles and probabilities Calculating Exact Percentiles Second decimal place of Z Z Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

20 Evaluating nearly normalness Normal probability plot A histogram and normal probability plot of a sample of 100 male heights. Male heights (inches) Theoretical Quantiles male heights (in.) Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

21 Evaluating nearly normalness Anatomy of a normal probability plot Data are plotted on the y-axis of a normal probability plot, and theoretical quantiles (following a normal distribution) on the x-axis. If there is a one-to-one relationship between the data and the theoretical quantiles, then the data follow a nearly normal distribution. Since a one-to-one relationship would appear as a straight line on a scatter plot, the closer the points are to a perfect straight line, the more confident we can be that the data follow the normal model. Constructing a normal probability plot requires calculating percentiles and corresponding z-scores for each observation, which is tedious. Therefore we generally rely on software when making these plots. Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

22 Evaluating nearly normalness Constructing a normal probability plot 2.2 Constructing a normal probability plot (special topic) e construct a normal probability plot for the heights of a sample of 100 men as follows We construct a normal probability plot for the heights of a sample of 100 1) men Order asthe follows: observations. 2) Determine 1 Order the percentile observations. of each observation in the ordered data set. 2 3) Identify Determine the Z score the percentile corresponding of each to each observation percentile. in the ordered data set. 3 4) Create Identify a scatterplot the Z score of thecorresponding observations (vertical) to each against percentile. the Z scores (horizontal) 4 Create a scatterplot of the observations (vertical) against the Z scores the observations (horizontal) are normally distributed, then their Z scores will approximately corr ond to their percentiles and thus to the z i in Table Observation i x i Percentile 0.99% 1.98% 2.97% 99.01% z i Table 3.16: Construction details for a normal probability plot of 100 men s heights. The first observation is assumed to be at the 0.99 th percentile, and the z i corresponding to a lower tail of is To create the plot Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

23 Evaluating nearly normalness Example - NBA Height Below is a histogram and normal probability plot for the heights of NBA from the season. Do these data appear to follow a normal distribution? Height (inches) Theoretical quantiles Why do the points on the normal probability have jumps? Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

24 Evaluating nearly normalness Normal probability plot and skewness Right Skew - If the plotted points appear to bend up and to the left of the normal line that indicates a long tail to the right. Left Skew - If the plotted points bend down and to the right of the normal line that indicates a long tail to the left. Short Tails - An S shaped-curve indicates shorter than normal tails, i.e. narrower than expected. Long Tails - A curve which starts below the normal line, bends to follow it, and ends above it indicates long tails. That is, you are seeing more variance than you would expect in a normal distribution, i.e. wider than expected. Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

25 Examples Normal probability and Quality control Six sigma The term six sigma process comes from the notion that if one has six standard deviations between the process mean and the nearest specification limit, as shown in the graph, practically no items will fail to meet specifications. en.wikipedia.org/ wiki/ Six Sigma Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

26 Examples Normal probability and Quality control Example - Dosage At a pharmaceutical factory the amount of the active ingredient which is added to each pill is supposed to be 36 mg. The amount of the active ingredient added follows a nearly normal distribution with a standard deviation of 0.11 mg. Once every 30 minutes a pill is selected from the production line, and its composition is measured precisely. If the amount of the active ingredient in the pill is below 35.8 mg or above 36.2 mg, then that production run of pills fails the quality control inspection. What percent of pills have less than 35.8 mg of the active ingredient? Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

27 Examples Normal probability and Quality control Finding the exact probability Second decimal place of Z Z Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

28 Examples Normal probability and Quality control Example - Dosage pt. 2 At the same pharmaceutical factory (µ = 36 oz and σ = 0.11 oz). What percent of production runs pass the quality control inspection (between 35.8 and 36.2 mg of active ingredient in the tested pill)? Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

29 Examples Finding cutoff points Example - Body Temperature Body temperatures of healthy humans are distributed nearly normally with mean 98.2 F and standard deviation 0.73 F. What is the cutoff for the lowest 3% of human body temperatures? Z ? 98.2 P(X < x) = 0.03 P(Z < -1.88) = 0.03 obs mean Z = x 98.2 = 1.88 SD 0.73 x = ( ) = 96.8 Mackowiak, Wasserman, and Levine (1992) Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

30 Examples Finding cutoff points Example - Body Temperature pt. 2 What is the cutoff for the highest 10% of human body temperatures? Statistics 102 (Colin Rundel) Lec 5 January 30, / 30

Announcements. Unit 2: Probability and distributions Lecture 3: Normal distribution. Normal distribution. Heights of males

Announcements. Unit 2: Probability and distributions Lecture 3: Normal distribution. Normal distribution. Heights of males Announcements Announcements Unit 2: Probability and distributions Lecture 3: Statistics 101 Mine Çetinkaya-Rundel First peer eval due Tues. PS3 posted - will be adding one more question that you need to

More information

Lecture 6: Normal distribution

Lecture 6: Normal distribution Lecture 6: Normal distribution Statistics 101 Mine Çetinkaya-Rundel February 2, 2012 Announcements Announcements HW 1 due now. Due: OQ 2 by Monday morning 8am. Statistics 101 (Mine Çetinkaya-Rundel) L6:

More information

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet...

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet... Recap Review of commonly missed questions on the online quiz Lecture 7: ] Statistics 101 Mine Çetinkaya-Rundel OpenIntro quiz 2: questions 4 and 5 September 20, 2011 Statistics 101 (Mine Çetinkaya-Rundel)

More information

Unit2: Probabilityanddistributions. 3. Normal distribution

Unit2: Probabilityanddistributions. 3. Normal distribution Announcements Unit: Probabilityanddistributions 3 Normal distribution Sta 101 - Spring 015 Duke University, Department of Statistical Science February, 015 Peer evaluation 1 by Friday 11:59pm Office hours:

More information

Chapter 3: Distributions of Random Variables

Chapter 3: Distributions of Random Variables Chapter 3: Distributions of Random Variables OpenIntro Statistics, 3rd Edition Slides modified for UU ICS Research Methods Sept-Nov/2018. Slides developed by Mine C etinkaya-rundel of OpenIntro. The slides

More information

Chapter 3: Distributions of Random Variables

Chapter 3: Distributions of Random Variables Chapter 3: Distributions of Random Variables OpenIntro Statistics, 3rd Edition Slides developed by Mine C etinkaya-rundel of OpenIntro. The slides may be copied, edited, and/or shared via the CC BY-SA

More information

LECTURE 6 DISTRIBUTIONS

LECTURE 6 DISTRIBUTIONS LECTURE 6 DISTRIBUTIONS OVERVIEW Uniform Distribution Normal Distribution Random Variables Continuous Distributions MOST OF THE SLIDES ADOPTED FROM OPENINTRO STATS BOOK. NORMAL DISTRIBUTION Unimodal and

More information

Announcements. Data resources: Data and GIS Services. Project. Lab 3a due tomorrow at 6 PM Project Proposal. Nicole Dalzell.

Announcements. Data resources: Data and GIS Services. Project. Lab 3a due tomorrow at 6 PM Project Proposal. Nicole Dalzell. Announcements UNIT 2: PROBABILITY AND DISTRIBUTIONS LECTURE 3: NORMAL DISTRIBUTION PRACTICE STATISTICS 101 Nicole Dalzell Lab 3a due tomorrow at 6 PM Proposal May 21, 2015 Statistics 101 (Nicole Dalzell)

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Lecture 9 - Sampling Distributions and the CLT

Lecture 9 - Sampling Distributions and the CLT Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel September 23, 2015 1 Variability of Estimates Activity Sampling distributions - via simulation Sampling distributions - via CLT

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

The Normal Distribution

The Normal Distribution Stat 6 Introduction to Business Statistics I Spring 009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:300:50 a.m. Chapter, Section.3 The Normal Distribution Density Curves So far we

More information

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1 8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions For Example: On August 8, 2011, the Dow dropped 634.8 points, sending shock waves through the financial community.

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Nicole Dalzell. July 7, 2014

Nicole Dalzell. July 7, 2014 UNIT 2: PROBABILITY AND DISTRIBUTIONS LECTURE 2: NORMAL DISTRIBUTION STATISTICS 101 Nicole Dalzell July 7, 2014 Announcements Short Quiz Today Statistics 101 (Nicole Dalzell) U2 - L2: Normal distribution

More information

Density curves. (James Madison University) February 4, / 20

Density curves. (James Madison University) February 4, / 20 Density curves Figure 6.2 p 230. A density curve is always on or above the horizontal axis, and has area exactly 1 underneath it. A density curve describes the overall pattern of a distribution. Example

More information

Distributions of random variables

Distributions of random variables Chapter 3 Distributions of random variables 3.1 Normal distribution Among all the distributions we see in practice, one is overwhelmingly the most common. The symmetric, unimodal, bell curve is ubiquitous

More information

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics.

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics. ENM 207 Lecture 12 Some Useful Continuous Distributions Normal Distribution The most important continuous probability distribution in entire field of statistics. Its graph, called the normal curve, is

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.)

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.) Starter Ch. 6: A z-score Analysis Starter Ch. 6 Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and an 85 on test 2. You re all set to drop

More information

Distributions of random variables

Distributions of random variables Chapter 3 Distributions of random variables 3.1 Normal distribution Among all the distributions we see in practice, one is overwhelmingly the most common. The symmetric, unimodal, bell curve is ubiquitous

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions Topic 6 - Continuous Distributions I Discrete RVs Recall the discrete distributions STAT 511 Professor Bruce Craig Binomial - X= number of successes (x =, 1,...,n) Geometric - X= number of trials (x =,...)

More information

Examples of continuous probability distributions: The normal and standard normal

Examples of continuous probability distributions: The normal and standard normal Examples of continuous probability distributions: The normal and standard normal The Normal Distribution f(x) Changing μ shifts the distribution left or right. Changing σ increases or decreases the spread.

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

Shifting and rescaling data distributions

Shifting and rescaling data distributions Shifting and rescaling data distributions It is useful to consider the effect of systematic alterations of all the values in a data set. The simplest such systematic effect is a shift by a fixed constant.

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of Stat 400, section 4.3 Normal Random Variables notes prepared by Tim Pilachowski Another often-useful probability density function is the normal density function, which graphs as the familiar bell-shaped

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Statistics 511 Supplemental Materials

Statistics 511 Supplemental Materials Gaussian (or Normal) Random Variable In this section we introduce the Gaussian Random Variable, which is more commonly referred to as the Normal Random Variable. This is a random variable that has a bellshaped

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

The Normal Distribution. (Ch 4.3)

The Normal Distribution. (Ch 4.3) 5 The Normal Distribution (Ch 4.3) The Normal Distribution The normal distribution is probably the most important distribution in all of probability and statistics. Many populations have distributions

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics. Normal distribution University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

More information

Chapter 4. The Normal Distribution

Chapter 4. The Normal Distribution Chapter 4 The Normal Distribution 1 Chapter 4 Overview Introduction 4-1 Normal Distributions 4-2 Applications of the Normal Distribution 4-3 The Central Limit Theorem 4-4 The Normal Approximation to the

More information

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel February 6, 2015 http:// pewresearch.org/ pubs/ 2191/ young-adults-workers-labor-market-pay-careers-advancement-recession Sta102/BME102

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

CHAPTER 6. ' From the table the z value corresponding to this value Z = 1.96 or Z = 1.96 (d) P(Z >?) =

CHAPTER 6. ' From the table the z value corresponding to this value Z = 1.96 or Z = 1.96 (d) P(Z >?) = Solutions to End-of-Section and Chapter Review Problems 225 CHAPTER 6 6.1 (a) P(Z < 1.20) = 0.88493 P(Z > 1.25) = 1 0.89435 = 0.10565 P(1.25 < Z < 1.70) = 0.95543 0.89435 = 0.06108 (d) P(Z < 1.25) or Z

More information

Chapter ! Bell Shaped

Chapter ! Bell Shaped Chapter 6 6-1 Business Statistics: A First Course 5 th Edition Chapter 7 Continuous Probability Distributions Learning Objectives In this chapter, you learn:! To compute probabilities from the normal distribution!

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

Prob and Stats, Nov 7

Prob and Stats, Nov 7 Prob and Stats, Nov 7 The Standard Normal Distribution Book Sections: 7.1, 7.2 Essential Questions: What is the standard normal distribution, how is it related to all other normal distributions, and how

More information

STAB22 section 1.3 and Chapter 1 exercises

STAB22 section 1.3 and Chapter 1 exercises STAB22 section 1.3 and Chapter 1 exercises 1.101 Go up and down two times the standard deviation from the mean. So 95% of scores will be between 572 (2)(51) = 470 and 572 + (2)(51) = 674. 1.102 Same idea

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2

On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2 Continuous Random Variable If I spin a spinner, what is the probability the pointer lands... On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2 )? 360 = 1 180.

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Chapter Seven. The Normal Distribution

Chapter Seven. The Normal Distribution Chapter Seven The Normal Distribution 7-1 Introduction Many continuous variables have distributions that are bellshaped and are called approximately normally distributed variables, such as the heights

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Continuous RVs (Normal); Confidence Intervals Outline Continuous random variables Normal distribution CLT Point estimation Confidence intervals http://www.isrec.isb-sib.ch/~darlene/geneve/

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

STAT 157 HW1 Solutions

STAT 157 HW1 Solutions STAT 157 HW1 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/10/spring/stats157.dir/ Problem 1. 1.a: (6 points) Determine the Relative Frequency and the Cumulative Relative Frequency (fill

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Unit2: Probabilityanddistributions. 3. Normal and binomial distributions

Unit2: Probabilityanddistributions. 3. Normal and binomial distributions Announcements Unit2: Probabilityanddistributions 3. Normal and binomial distributions Sta 101 - Summer 2017 Duke University, Department of Statistical Science PS: Explain your reasoning + show your work

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Chapter 6: Random Variables and Probability Distributions

Chapter 6: Random Variables and Probability Distributions Chapter 6: Random Variables and Distributions These notes reflect material from our text, Statistics, Learning from Data, First Edition, by Roxy Pec, published by CENGAGE Learning, 2015. Random variables

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The Normal Distribution.

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION We have examined discrete random variables, those random variables for which we can list the possible values. We will now look at continuous random variables.

More information

Module Tag PSY_P2_M 7. PAPER No.2: QUANTITATIVE METHODS MODULE No.7: NORMAL DISTRIBUTION

Module Tag PSY_P2_M 7. PAPER No.2: QUANTITATIVE METHODS MODULE No.7: NORMAL DISTRIBUTION Subject Paper No and Title Module No and Title Paper No.2: QUANTITATIVE METHODS Module No.7: NORMAL DISTRIBUTION Module Tag PSY_P2_M 7 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Properties

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 10 (MWF) Checking for normality of the data using the QQplot Suhasini Subba Rao Checking for

More information

One sample z-test and t-test

One sample z-test and t-test One sample z-test and t-test January 30, 2017 psych10.stanford.edu Announcements / Action Items Install ISI package (instructions in Getting Started with R) Assessment Problem Set #3 due Tu 1/31 at 7 PM

More information