Girsanov s theorem and the risk-neutral measure

Size: px
Start display at page:

Download "Girsanov s theorem and the risk-neutral measure"

Transcription

1 Chapter 7 Girsanov s theorem an the risk-neutral measure Please see Oksenal, 4th e., pp Theorem.52 Girsanov, One-imensional Let B t T, be a Brownian motion on a probability space F P. Let F t T, be the accompanying filtration, an let t T, be a process aapte to this filtration. For t T, efine t eb = u u + B t =exp ; u Bu ; 2 t 2 u u an efine a new probability measure by fip = T IP 8 2F: Uner f IP, the process e B t T, is a Brownian motion. Caveat: This theorem requires a technical conition on the size of. If everything is OK. We make the following remarks: is a matingale. In fact, IE exp 2 T 2 u u < =; B B B ; 2 2 t = ; B: 89

2 9 fip is a probability measure. Since =, we have IE = for every t. In particular fip = T IP = IET = so f IP is a probability measure. fie in terms of IE. Let f IE enote expectation uner f IP.IfX is a ranom variable, then fie = IE [T X] : To see this, consier first the case X =, where 2F. We have fiex = IP f = T IP = T IP = IE [T X] : Now use Williams stanar machine. fip an IP. The intuition behin the formula fip = is that we want to have T IP fip! =T!IP! 8 2F but since IP! =an f IP! =, this oesn t really tell us anything useful about f IP. Thus, we consier subsets of, rather than iniviual elements of. Distribution of e BT. If is constant, then T = exp ebt =T + BT : n o ;BT ; 2 2 T Uner IP, BT is normal with mean an variance T,soBT e is normal with mean T an variance T : IP BT e 2 ~ b= p exp ; ~ b ; T 2 ~ b: Removal of Drift from e BT. The change of measure from IP to f IP removes the rift from e BT. To see this, we compute fie BT e =IE [T T + BT ] h n o = IE exp ;BT ; 2 2 T i T + BT = p T + b expf;b ; 2 2 T g exp ; = p b + T 2 T + b exp ; b ; y = T + b = p =: y exp ; ; y2 2 ; b2 y Substitute y = T + b b

3 CHPTER 7. Girsanov s theorem an the risk-neutral measure 9 Because We can also see that f IE e BT =by arguing irectly from the ensity formula n o IP eb 2 ~ b = p exp ; ~ b ; T 2 T = expf;bt ; 2 2 T g ~ b: = expf; e BT ; T ; 2 2 T g = expf; e BT T g we have n o n o n o fip ebt 2 ~ b = IP ebt 2 ~ b exp ; ~ b T = p exp ; ~ b ; T 2 ; ~ b T = p exp ; ~ b 2 ~ b: ~ b: Uner f IP, e BT is normal with mean zero an variance T. Uner IP, e BT is normal with mean T an variance T. Means change, variances on t. When we use the Girsanov Theorem to change the probability measure, means change but variances o not. Martingales may be estroye or create. Volatilities, quaratic variations an cross variations are unaffecte. Check: e B e B = t + B 2 = B:B = t: 7. Conitional expectations uner f IP Lemma.53 Let t T.IfX is F-measurable, then fiex = IE[X:]: Proof: fiex = IE[X:T ] = IE [ IE[X:T jf] ] = IE [X IE[T jf] ] = IE[X:] because t T, is a martingale uner IP.

4 92 Lemma.54 Baye s Rule If X is F-measurable an s t T, then fie[xjfs] = IE[XjFs]:. s Proof: It is clear that IE[XjFs] is Fs-measurable. We check the partial averaging s property. For 2Fs, we have s IE[XjFs] f IP = IE f s IE[XjFs] = IE [ IE[XjFs]] Lemma.53 = IE [IE[ XjFs]] Taking in what is known = IE[ X] = IE[ f X] Lemma.53 again = X f IP: lthough we have prove Lemmas.53 an.54, we have not prove Girsanov s Theorem. We will not prove it completely, but here is the beginning of the proof. Lemma.55 Using the notation of Girsanov s Theorem, we have the martingale property fie[ e BjFs] = e Bs s t T: Proof: We first check that e B is a martingale uner IP. Recall Therefore, e B = t + B =; B: e B= e B + e B + e B Next we use Bayes Rule. For s t T, fie[ e BjFs] = = ; e B B + t + B; t =; e B + B: s IE[ e BjFs] = ebss s = e Bs:

5 CHPTER 7. Girsanov s theorem an the risk-neutral measure 93 Definition 7. Equivalent measures Two measures on the same probability space which have the same measure-zero sets are sai to be equivalent. The probability measures IP an IP f of the Girsanov Theorem are equivalent. Recall that IP f is efine by fip = T IP 2F: If IP =, then R T IP =: Because T > for every!, we can invert the efinition of IP f to obtain IP = T f IP 2F: If f IP =, then R IP =: T 7.2 Risk-neutral measure s usual we are given the Brownian motion: B t T, with filtration F t T, efine on a probability space F P. We can then efine the following. Stock price: S = S t + S B: The processes an are aapte to the filtration. The stock price moel is completely general, subject only to the conition that the paths of the process are continuous. Interest rate: r t T. The process r is aapte. Wealth of an agent, starting with X = x. We can write the wealth process ifferential in several ways: X = S + r[x ; S] t Capital gains from Stock Interest earnings = rx t +[S ; rs t] = rx t + ; r S t +S B Risk premium 2 3 = rx t + S ; r 6 t + B Market price of risk=

6 94 Discounte processes: R e ; t ru u S R e ; t ru u X Notation: = e ; R t ru u [;rs t + S] R = e ; t ru u [;rx t + X] = e ; R t ru u S : R t =e ru u =r t R t = e; ru u = ; r t: The iscounte formulas are S X Changing the measure. Define = [;rs t + S] = [ ; rs t + S B] = S[ t + B] S = = S [ t + B]: eb = t u u + B: Then S X = S e B = S e B: Uner IP f, S X an are martingales. Definition 7.2 Risk-neutral measure risk-neutral measure sometimes calle a martingale measure is any probability measure, equivalent to the market measure IP, which makes all iscounte asset prices martingales.

7 CHPTER 7. Girsanov s theorem an the risk-neutral measure 95 For the market moel consiere here, fip = T IP where = exp ; t u Bu ; 2 2F t 2 u u is the unique risk-neutral measure. Note that because = ;r we must assume that 6=. Risk-neutral valuation. Consier a contingent claim paying an FT -measurable ranom variable V at time T. Example 7. V =ST ; K + V =K ; ST + V = T T V = max S tt Su u ; K European call European put! + Look back sian call If there is a heging portfolio, i.e., a process t T, whose corresponing wealth process satisfies XT =V, then X = IE f V : T This is because X is a martingale uner f IP,so X = X = f IE XT = IE f V : T T

Martingale Approach to Pricing and Hedging

Martingale Approach to Pricing and Hedging Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

Risk-Neutral Probabilities

Risk-Neutral Probabilities Debt Instruments an Markets Risk-Neutral Probabilities Concepts Risk-Neutral Probabilities True Probabilities Risk-Neutral Pricing Risk-Neutral Probabilities Debt Instruments an Markets Reaings Tuckman,

More information

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES Along with providing the way uncertainty is formalized in the considered economy, we establish in this chapter the

More information

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1 Chapter 9 The isk Neutral Pricing Measure for the Black-Scholes Model The discounted portfolio value of a selffinancing strategy in discrete time was given by v tk = v 0 + k δ tj (s tj s tj ) (9.) where

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Affine processes on positive semidefinite matrices

Affine processes on positive semidefinite matrices Affine processes on positive semiefinite matrices Christa Cuchiero (joint work with D. Filipović, E. Mayerhofer an J. Teichmann ) ETH Zürich One-Day Workshop on Portfolio Risk Management, TU Vienna September

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives November 4, 213 Option Analysis an Moeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis an Moeling:

More information

4 Risk-neutral pricing

4 Risk-neutral pricing 4 Risk-neutral pricing We start by discussing the idea of risk-neutral pricing in the framework of the elementary one-stepbinomialmodel. Supposetherearetwotimest = andt = 1. Attimethestock has value S()

More information

An investment strategy with optimal sharpe ratio

An investment strategy with optimal sharpe ratio The 22 n Annual Meeting in Mathematics (AMM 2017) Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai, Thailan An investment strategy with optimal sharpe ratio S. Jansai a,

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

THE MARTINGALE METHOD DEMYSTIFIED

THE MARTINGALE METHOD DEMYSTIFIED THE MARTINGALE METHOD DEMYSTIFIED SIMON ELLERSGAARD NIELSEN Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk s Arbitrage Theory

More information

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson Funeral by funeral, theory advances Paul Samuelson Economics is extremely useful as a form of employment

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

and K = 10 The volatility a in our model describes the amount of random noise in the stock price. Y{x,t) = -J-{t,x) = xy/t- t<pn{d+{t-t,x))

and K = 10 The volatility a in our model describes the amount of random noise in the stock price. Y{x,t) = -J-{t,x) = xy/t- t<pn{d+{t-t,x)) -5b- 3.3. THE GREEKS Theta #(t, x) of a call option with T = 0.75 and K = 10 Rho g{t,x) of a call option with T = 0.75 and K = 10 The volatility a in our model describes the amount of random noise in the

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli 6 Martingales in continuous time Just as in discrete time, the notion of a martingale will play a key r^ole in our continuous time models. Recall that in discrete time, a sequence ; 1 ;::: ; n for which

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

Option Pricing under Delay Geometric Brownian Motion with Regime Switching Science Journal of Applied Mathematics and Statistics 2016; 4(6): 263-268 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20160406.13 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December 3 r, he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

Risk Neutral Modelling Exercises

Risk Neutral Modelling Exercises Risk Neutral Modelling Exercises Geneviève Gauthier Exercise.. Assume that the rice evolution of a given asset satis es dx t = t X t dt + X t dw t where t = ( + sin (t)) and W = fw t : t g is a (; F; P)

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December n, 3 he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

Interest rate models in continuous time

Interest rate models in continuous time slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part IV József Gáll University of Debrecen Nov. 2012 Jan. 2013, Ljubljana Continuous time markets General assumptions, notations

More information

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models Advanced Topics in Derivative Pricing Models Topic 3 - Derivatives with averaging style payoffs 3.1 Pricing models of Asian options Partial differential approach for continuous models Closed form pricing

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) =

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) = ACSC/STAT 373, Actuarial Moels I Further Probability with Applications to Actuarial Science WINTER 5 Toby Kenney Sample Final Eamination Moel Solutions This Sample eamination has more questions than the

More information

A note on the existence of unique equivalent martingale measures in a Markovian setting

A note on the existence of unique equivalent martingale measures in a Markovian setting Finance Stochast. 1, 251 257 1997 c Springer-Verlag 1997 A note on the existence of unique equivalent martingale measures in a Markovian setting Tina Hviid Rydberg University of Aarhus, Department of Theoretical

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Arbitrage, Martingales, and Pricing Kernels

Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels 1/ 36 Introduction A contingent claim s price process can be transformed into a martingale process by 1 Adjusting

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as:

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as: Continuous Time Finance Notes, Spring 2004 Section 1. 1/21/04 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connection with the NYU course Continuous Time Finance. This

More information

Hedging Basket Credit Derivatives with CDS

Hedging Basket Credit Derivatives with CDS Hedging Basket Credit Derivatives with CDS Wolfgang M. Schmidt HfB - Business School of Finance & Management Center of Practical Quantitative Finance schmidt@hfb.de Frankfurt MathFinance Workshop, April

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Modes of Convergence

Modes of Convergence Moes of Convergence Electrical Engineering 126 (UC Berkeley Spring 2018 There is only one sense in which a sequence of real numbers (a n n N is sai to converge to a limit. Namely, a n a if for every ε

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Objective Binomial Model What is and what is not mortgage insurance in Mexico? 3 times model (Black and Scholes) Correlated brownian motion Other

Objective Binomial Model What is and what is not mortgage insurance in Mexico? 3 times model (Black and Scholes) Correlated brownian motion Other Oscar Pérez Objective Binomial Model What is and what is not mortgage insurance in Mexico? 3 times model (Black and Scholes) Correlated brownian motion Other concepts Conclusions To explain some technical

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

1 The multi period model

1 The multi period model The mlti perio moel. The moel setp In the mlti perio moel time rns in iscrete steps from t = to t = T, where T is a fixe time horizon. As before we will assme that there are two assets on the market, a

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

Exchange Rate Risk Sharing Contract with Risk-averse Firms

Exchange Rate Risk Sharing Contract with Risk-averse Firms 03 International Conference on Avances in Social Science, Humanities, an anagement ASSH 03 Exchange ate isk Sharing Contract with isk-averse Firms LIU Yang, A Yong-kai, FU Hong School of anagement an Economics,

More information

6 Stopping times and the first passage

6 Stopping times and the first passage 6 Stopping times and the first passage Definition 6.1. Let (F t,t 0) be a filtration of σ-algebras. Stopping time is a random variable τ with values in [0, ] and such that {τ t} F t for t 0. We can think

More information

6: MULTI-PERIOD MARKET MODELS

6: MULTI-PERIOD MARKET MODELS 6: MULTI-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) 6: Multi-Period Market Models 1 / 55 Outline We will examine

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Numerical solution of conservation laws applied to the Shallow Water Wave Equations

Numerical solution of conservation laws applied to the Shallow Water Wave Equations Numerical solution of conservation laws applie to the Shallow Water Wave Equations Stephen G Roberts Mathematical Sciences Institute, Australian National University Upate January 17, 2013 (base on notes

More information

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics t r t r2 r t SCHOOL OF MATHEMATICS AND STATISTICS Stochastic Processes and Financial Mathematics Spring Semester 2017 2018 3 hours t s s tt t q st s 1 r s r t r s rts t q st s r t r r t Please leave this

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE LHP. Abstract

CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE LHP. Abstract CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE ASSUMPTION German Bernhart XAIA Investment GmbH Sonnenstraße 9, 833 München, Germany german.bernhart@xaia.com First Version: July 26,

More information

PAPER 211 ADVANCED FINANCIAL MODELS

PAPER 211 ADVANCED FINANCIAL MODELS MATHEMATICAL TRIPOS Part III Friday, 27 May, 2016 1:30 pm to 4:30 pm PAPER 211 ADVANCED FINANCIAL MODELS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

Robust Hedging of Options on a Leveraged Exchange Traded Fund

Robust Hedging of Options on a Leveraged Exchange Traded Fund Robust Hedging of Options on a Leveraged Exchange Traded Fund Alexander M. G. Cox Sam M. Kinsley University of Bath Recent Advances in Financial Mathematics, Paris, 10th January, 2017 A. M. G. Cox, S.

More information

3 Arbitrage pricing theory in discrete time.

3 Arbitrage pricing theory in discrete time. 3 Arbitrage pricing theory in discrete time. Orientation. In the examples studied in Chapter 1, we worked with a single period model and Gaussian returns; in this Chapter, we shall drop these assumptions

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

Pricing Exotic Options Under a Higher-order Hidden Markov Model

Pricing Exotic Options Under a Higher-order Hidden Markov Model Pricing Exotic Options Under a Higher-order Hidden Markov Model Wai-Ki Ching Tak-Kuen Siu Li-min Li 26 Jan. 2007 Abstract In this paper, we consider the pricing of exotic options when the price dynamic

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

V. Reznik and U. Spreitzer Dr. Dr. Heissmann GmbH, Abraham-Lincoln-Str. 22, Wiesbaden.

V. Reznik and U. Spreitzer Dr. Dr. Heissmann GmbH, Abraham-Lincoln-Str. 22, Wiesbaden. n investigation of a portfolio-loss uner the CPM V. eznik an U. Spreitzer Dr. Dr. Heissmann GmbH, braham-incoln-str., 6589 Wiesbaen. bstract: We consier a portfolio built accoring to the Capital Market

More information

A NOTE ON THE DYNAMIC ROLE OF MONOPOLISTIC COMPETITION IN THE MONETARY ECONOMY. abstract

A NOTE ON THE DYNAMIC ROLE OF MONOPOLISTIC COMPETITION IN THE MONETARY ECONOMY. abstract A NOTE ON THE DYNAMIC ROLE OF MONOPOLISTIC COMPETITION IN THE MONETARY ECONOMY abstract In the new Keynesian economics, monopolistic competition plays an important role. Much static research is base on

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Math 6810 (Probability) Fall Lecture notes

Math 6810 (Probability) Fall Lecture notes Math 6810 (Probability) Fall 2012 Lecture notes Pieter Allaart University of North Texas April 16, 2013 2 Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd edition),

More information

Brownian Motion and Ito s Lemma

Brownian Motion and Ito s Lemma Brownian Motion and Ito s Lemma 1 The Sharpe Ratio 2 The Risk-Neutral Process Brownian Motion and Ito s Lemma 1 The Sharpe Ratio 2 The Risk-Neutral Process The Sharpe Ratio Consider a portfolio of assets

More information

1 IEOR 4701: Notes on Brownian Motion

1 IEOR 4701: Notes on Brownian Motion Copyright c 26 by Karl Sigman IEOR 47: Notes on Brownian Motion We present an introduction to Brownian motion, an important continuous-time stochastic process that serves as a continuous-time analog to

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki Jena, March 29, 211 Fractional Lévy processes 1/36 Outline of the talk 1. Introduction 2. Main results 3. Methodology 4. Conclusions

More information

Mixing Di usion and Jump Processes

Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes 1/ 27 Introduction Using a mixture of jump and di usion processes can model asset prices that are subject to large, discontinuous changes,

More information

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation.

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation. . Lattice Methos. One-step binomial tree moel (Hull, Chap., page 4) Math69 S8, HM Zhu Outline. No-Arbitrage Evaluation. Its relationship to risk-neutral valuation. A Simple Binomial Moel A stock price

More information

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives Lecture 9 Forward Risk Adjusted Probability Measures and Fixed-income Derivatives 9.1 Forward risk adjusted probability measures This section is a preparation for valuation of fixed-income derivatives.

More information

Semantics with Applications 2b. Structural Operational Semantics

Semantics with Applications 2b. Structural Operational Semantics Semantics with Applications 2b. Structural Operational Semantics Hanne Riis Nielson, Flemming Nielson (thanks to Henrik Pilegaard) [SwA] Hanne Riis Nielson, Flemming Nielson Semantics with Applications:

More information

OPTIMAL DYNAMIC MECHANISM DESIGN WITH DEADLINES

OPTIMAL DYNAMIC MECHANISM DESIGN WITH DEADLINES OPTIMAL DYNAMIC MECHANISM DESIGN WITH DEADLINES KONRAD MIERENDORFF Abstract. A seller maximizes revenue from selling an object in a ynamic environment, with buyers that iffer in their patience: Each buyer

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk Günter Franke 1, Richar C. Stapleton 2, an Marti G. Subrahmanyam. 3 November 2000 1 Fakultät für Wirtschaftswissenschaften

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

ON STRONG SOLUTIONS FOR POSITIVE DEFINITE JUMP DIFFUSIONS EBERHARD MAYERHOFER, OLIVER PFAFFEL, AND ROBERT STELZER

ON STRONG SOLUTIONS FOR POSITIVE DEFINITE JUMP DIFFUSIONS EBERHARD MAYERHOFER, OLIVER PFAFFEL, AND ROBERT STELZER ON STRONG SOLUTIONS FOR POSITIVE DEFINITE JUMP DIFFUSIONS EBERHARD MAYERHOFER, OLIVER PFAFFEL, AND ROBERT STELZER Abstract. We show the existence of unique global strong solutions of a class of stochastic

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information