Risk-Neutral Probabilities

Size: px
Start display at page:

Download "Risk-Neutral Probabilities"

Transcription

1 Debt Instruments an Markets Risk-Neutral Probabilities Concepts Risk-Neutral Probabilities True Probabilities Risk-Neutral Pricing Risk-Neutral Probabilities

2 Debt Instruments an Markets Reaings Tuckman, Chapter 9. No Arbitrage Derivative Pricing Last lecture, we price a erivative by constructing a replicating portfolio from the unerlying zeroes: We starte with a erivative with a payoff at time. The payoff epene on the time price of the zero maturing at time. We moele the ranom future price of the zero an the future payoff of the erivative. We constructe a portfolio of -year an - year zeroes with the same payoff of the erivative by solving simultaneous equations. We then set the price of the erivative equal to the value of the replicating portfolio. Risk-Neutral Probabilities 2

3 Debt Instruments an Markets General Bon Derivative Any security whose time payoff is a function of the time price of the zero maturing at time can be price by no arbitrage. Suppose its payoff is K u in the up state, an K in the own state. Time 0 Time -year zero -year zero N N General portfolio N N K u General erivative? N N K Replicating an Pricing the General Derivative ) Determine the replicating portfolio by solving the equations N N = K u N N = K for the unknown N's. (The two possible K's are known.) 2) Price the replicating portfolio as N N This is the no arbitrage price of the erivative. Risk-Neutral Probabilities 3

4 Debt Instruments an Markets Risk-Neutral Probabilities Finance: The no arbitrage price of the erivative is its replication cost. We know that s some function of the prices an payoffs of the basic unerlying assets. Math: We can use a mathematical evice, riskneutral probabilities, to compute that replication cost more irectly. That s useful when we only nee to know the price, not the other etails of the replicating portfolio. Start with the Prices an Payoffs of the Unerlying Assets In our example, the erivative payoffs were functions of the time price the zero maturing at time. So the unerlying asset is the zero maturing at time an the riskless asset is the zero maturing at time. The prices an payoffs are, in general terms: Time 0 Time u Risk-Neutral Probabilities 4

5 Debt Instruments an Markets Fin the Probabilities that Risk-Neutrally Price the Unerlying Risky Asset Fin the probabilities of the up an own states, p an -p, that make the price of the unerlying asset equal to its expecte future payoff, iscounte back at the riskless rate. I.e., fin the p that solves Price = iscounte expecte future payoff: = [ p u + ( p) ] The solution is p = u Example of p In our example, p = = 76 p = Risk-Neutral Probabilities 5

6 Debt Instruments an Markets Result: These Probabilities Price All Derivatives of this Unerlying Asset Risk-Neutrally If a erivative has payoffs K u in the up state an K in the own state, its replication cost turns out to be equal to Derivative price =. 5[ p Ku + ( p) K 0 I.e., price = iscounte expecte future payoff ] Examples of Risk-Neutral Pricing With the risk-neutral probabilities, the price of an asset is its expecte payoff multiplie by the riskless zero price, or equivalently, iscounte at the riskless rate: call option: put option: ( ) = = ( ) = = Risk-Neutral Probabilities 6

7 Debt Instruments an Markets Examples of Risk-Neutral Pricing... -year zero: ( ) = = year zero (riskless asset): ( ) = = True Probabilities The risk-neutral probabilities are not the same as the true probabilities of the future states. Notice that pricing contingent claims i not involve the true probabilities of the up or own state actually occurring. Let's suppose that the true probabilities are chance the up state occurs an chance the own state occurs. What coul we o with this information? For one, we coul compute the true expecte returns of the ifferent securities over the next 6 months. Risk-Neutral Probabilities 7

8 Debt Instruments an Markets True Expecte Returns Recall that the unannualize return on an asset over a given horizon is future value initial value For the 6-month zero the unannualize return over the next 6 months is = 2.77% with certainty. This will be the return regarless of which state occurs. That's why this asset is riskless for this horizon. Of course, the annualize semi-annually compoune ROR is 5.54%, the quote zero rate. True Expecte Returns... The return on the -year zero over the next 6 months will be either = 2.60% with probability, or = 3.00% with probability The expecte return on the -year zero over the next 6 months is 2.80%. Notice that it is higher than the return of 2.77% on the riskless asset. Risk-Neutral Probabilities 8

9 Debt Instruments an Markets True Expecte Returns... Why might the longer zero have a higher expecte return? Investors have short-term horizons, an islike the price risk of the longer zero Investors require a premium to hol securities that covary positively with long bons (bullish securities) because government bons are in positive net supply Sometimes the reverse coul be true. In general, assets with ifferent risk characteristics have ifferent expecte returns. Their expecte returns also epen on how their payoffs covary with other assets. True Expecte Returns... What is the expecte rate of return on the call over the next 6 months? The possible returns are: 0 = 00% with probability, or = 42% with probability The expecte return on the call is 2%. Risk-Neutral Probabilities 9

10 Debt Instruments an Markets True Expecte Returns... What is the expecte rate of return on the put over the next 6 months? The possible returns are: 2.7 = 78% with probability, or.52 0 = 00% with probability..52 The expecte return on the put is -%. The put is bearish--it insures (heges) the risk of bullish positions. By no arbitrage, if bullish assets have positive risk premia, bearish assets must have negative risk premia. Intuitively, investors must pay up for this insurance. Expecte Returns with Risk- Neutral Probabilities Note that we can rearrange the erivative pricing equation, price = iscounte expecte payoff, as V = V = [ p K u + ( p) K p Ku + ( p) K + r / 2 p Ku + ( p) K V = + r I.e., Expecte return = the riskless rate. (Here return are unnannualize. )Thus, with the riskneutral probabilities, all assets have the same expecte return, equal to the riskless rate. Because of this interpretation, we call them "risk-neutral" probabilities. ], or / 2 Risk-Neutral Probabilities 0

11 Debt Instruments an Markets Risk-Neutral Expecte Returns Using the risk-neutral probabilities to compute expecte (unannualize) returns sets all expecte returns equal to the riskless rate. Asset Unannualize Up Return ("prob"=76) Unannualize Down Payoff ("prob"=0.424) "Expecte" Unannualize Return -Year Zero / = 2.77% -Year Zero / = 2.60% Call 0/ = -00% Put 2.703/.59 - = 78.42% / = 2.77% / = 3.00%.0859/ = 42.39% 0/.59 - = -00% 2.77% 2.77% 2.77% 2.77% Why Does the p that Works for the Unerlying Asset Also Work for All Its Derivatives? ) The expecte return on a portfolio is the average of the expecte returns of the iniviual assets. 2) The risk-neutral probabilities are constructe to make the expecte return on the unerlying risky asset equal to the riskless asset return. (See slie 9.) 3) So uner the risk-neutral probabilities, the expecte return on every portfolio of the unerlying an riskless assets is also that same riskless return. 4) Every erivative of the unerlying can be viewe as a portfolio of the unerlying asset an the riskless asset. (See last lecture.) 5) So the erivative s expecte return must also equal the riskless return uner the risk-neutral probabilities. 6) So the erivative s price must equal its expecte payoff, using the risk-neutral probabilities, iscounte back at the riskless rate. (See slie 20.) Risk-Neutral Probabilities

Chapter 21: Option Valuation

Chapter 21: Option Valuation Chapter 21: Option Valuation-1 Chapter 21: Option Valuation I. The Binomial Option Pricing Moel Intro: 1. Goal: to be able to value options 2. Basic approach: 3. Law of One Price: 4. How it will help:

More information

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation.

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation. . Lattice Methos. One-step binomial tree moel (Hull, Chap., page 4) Math69 S8, HM Zhu Outline. No-Arbitrage Evaluation. Its relationship to risk-neutral valuation. A Simple Binomial Moel A stock price

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives November 4, 213 Option Analysis an Moeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis an Moeling:

More information

Help Session 7. David Sovich. Washington University in St. Louis

Help Session 7. David Sovich. Washington University in St. Louis Help Session 7 Davi Sovich Washington University in St. Louis TODAY S AGENDA Toay we will learn how to price using Arrow securities We will then erive Q using Arrow securities ARROW SECURITIES IN THE BINOMIAL

More information

No Arbitrage Pricing of Derivatives

No Arbitrage Pricing of Derivatives No Arbitrage Pricing of Derivatives Concepts and Buzzwords!!Replicating Payoffs!!No Arbitrage Pricing Derivative, contingent claim, redundant asset, underlying asset, riskless asset, call, put, expiration

More information

1 The multi period model

1 The multi period model The mlti perio moel. The moel setp In the mlti perio moel time rns in iscrete steps from t = to t = T, where T is a fixe time horizon. As before we will assme that there are two assets on the market, a

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December n, 3 he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) =

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) = ACSC/STAT 373, Actuarial Moels I Further Probability with Applications to Actuarial Science WINTER 5 Toby Kenney Sample Final Eamination Moel Solutions This Sample eamination has more questions than the

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College February 19, 2019 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

An investment strategy with optimal sharpe ratio

An investment strategy with optimal sharpe ratio The 22 n Annual Meeting in Mathematics (AMM 2017) Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai, Thailan An investment strategy with optimal sharpe ratio S. Jansai a,

More information

Girsanov s theorem and the risk-neutral measure

Girsanov s theorem and the risk-neutral measure Chapter 7 Girsanov s theorem an the risk-neutral measure Please see Oksenal, 4th e., pp 45 5. Theorem.52 Girsanov, One-imensional Let B t T, be a Brownian motion on a probability space F P. Let F t T,

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

Lecture Notes on Rate of Return

Lecture Notes on Rate of Return New York University Stern School of Business Professor Jennifer N. Carpenter Debt Instruments and Markets Lecture Notes on Rate of Return De nition Consider an investment over a holding period from time

More information

REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY

REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY Harriet Black Nembhar Davi A. Nembhar Ayse P. Gurses Department of Inustrial Engineering University of Wisconsin-Maison 53 University Avenue Maison,

More information

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +...

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +... No-Arbitrage Pricing Theory Single-Period odel There are N securities denoted ( S,S,...,S N ), they can be stocks, bonds, or any securities, we assume they are all traded, and have prices available. Ω

More information

CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE LHP. Abstract

CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE LHP. Abstract CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE ASSUMPTION German Bernhart XAIA Investment GmbH Sonnenstraße 9, 833 München, Germany german.bernhart@xaia.com First Version: July 26,

More information

B6302 Sample Placement Exam Academic Year

B6302 Sample Placement Exam Academic Year Revised June 011 B630 Sample Placement Exam Academic Year 011-01 Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized units). Fund

More information

Appendix B: Yields and Yield Curves

Appendix B: Yields and Yield Curves Pension Finance By Davi Blake Copyright 006 Davi Blake Appenix B: Yiels an Yiel Curves Bons, with their regular an generally reliable stream of payments, are often consiere to be natural assets for pension

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010 Problem set 5 Asset pricing Markus Roth Chair for Macroeconomics Johannes Gutenberg Universität Mainz Juli 5, 200 Markus Roth (Macroeconomics 2) Problem set 5 Juli 5, 200 / 40 Contents Problem 5 of problem

More information

Problem Set. Solutions to the problems appear at the end of this document.

Problem Set. Solutions to the problems appear at the end of this document. Problem Set Solutions to the problems appear at the end of this document. Unless otherwise stated, any coupon payments, cash dividends, or other cash payouts delivered by a security in the following problems

More information

Optimal Portfolio Selection

Optimal Portfolio Selection Optimal Portfolio Selection We have geometrically described characteristics of the optimal portfolio. Now we turn our attention to a methodology for exactly identifying the optimal portfolio given a set

More information

Finance: A Quantitative Introduction Chapter 7 - part 2 Option Pricing Foundations

Finance: A Quantitative Introduction Chapter 7 - part 2 Option Pricing Foundations Finance: A Quantitative Introduction Chapter 7 - part 2 Option Pricing Foundations Nico van der Wijst 1 Finance: A Quantitative Introduction c Cambridge University Press 1 The setting 2 3 4 2 Finance:

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December 3 r, he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

Lecture 1 Definitions from finance

Lecture 1 Definitions from finance Lecture 1 s from finance Financial market instruments can be divided into two types. There are the underlying stocks shares, bonds, commodities, foreign currencies; and their derivatives, claims that promise

More information

University of Texas at Austin. HW Assignment 5. Exchange options. Bull/Bear spreads. Properties of European call/put prices.

University of Texas at Austin. HW Assignment 5. Exchange options. Bull/Bear spreads. Properties of European call/put prices. HW: 5 Course: M339D/M389D - Intro to Financial Math Page: 1 of 5 University of Texas at Austin HW Assignment 5 Exchange options. Bull/Bear spreads. Properties of European call/put prices. 5.1. Exchange

More information

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures Lecture 3 Fundamental Theorems of Asset Pricing 3.1 Arbitrage and risk neutral probability measures Several important concepts were illustrated in the example in Lecture 2: arbitrage; risk neutral probability

More information

Project operating cash flow (nominal) 54, ,676 2,474,749 1,049,947 1,076,195

Project operating cash flow (nominal) 54, ,676 2,474,749 1,049,947 1,076,195 Answers Professional Level Options Moule, Paper P4 (SGP) Avance Financial Management (Singapore) December 2008 Answers Tutorial note: These moel answers are consierably longer an more etaile than woul

More information

Chapter 7. Chapter Outline. Asset Market Equilibrium. Money and Other Assets. The Functions of Money. What is Money?

Chapter 7. Chapter Outline. Asset Market Equilibrium. Money and Other Assets. The Functions of Money. What is Money? Chapter Outline Chapter 7 The Asset arket, oney, an Prices oney an acroeconomics What Is oney? The Supply of oney Portfolio Allocation an the Deman for oney Asset arket Equilibrium oney Growth an Inflation

More information

Model Calibration and Hedging

Model Calibration and Hedging Model Calibration and Hedging Concepts and Buzzwords Choosing the Model Parameters Choosing the Drift Terms to Match the Current Term Structure Hedging the Rate Risk in the Binomial Model Term structure

More information

Introduction to Financial Mathematics and Engineering. A guide, based on lecture notes by Professor Chjan Lim. Julienne LaChance

Introduction to Financial Mathematics and Engineering. A guide, based on lecture notes by Professor Chjan Lim. Julienne LaChance Introduction to Financial Mathematics and Engineering A guide, based on lecture notes by Professor Chjan Lim Julienne LaChance Lecture 1. The Basics risk- involves an unknown outcome, but a known probability

More information

Arbitrage is a trading strategy that exploits any profit opportunities arising from price differences.

Arbitrage is a trading strategy that exploits any profit opportunities arising from price differences. 5. ARBITRAGE AND SPOT EXCHANGE RATES 5 Arbitrage and Spot Exchange Rates Arbitrage is a trading strategy that exploits any profit opportunities arising from price differences. Arbitrage is the most basic

More information

Global Financial Management

Global Financial Management Global Financial Management Bond Valuation Copyright 24. All Worldwide Rights Reserved. See Credits for permissions. Latest Revision: August 23, 24. Bonds Bonds are securities that establish a creditor

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

Lecture 7: Trading Strategies Involve Options ( ) 11.2 Strategies Involving A Single Option and A Stock

Lecture 7: Trading Strategies Involve Options ( ) 11.2 Strategies Involving A Single Option and A Stock 11.2 Strategies Involving A Single Option and A Stock In Figure 11.1a, the portfolio consists of a long position in a stock plus a short position in a European call option à writing a covered call o The

More information

Lecture 16. Options and option pricing. Lecture 16 1 / 22

Lecture 16. Options and option pricing. Lecture 16 1 / 22 Lecture 16 Options and option pricing Lecture 16 1 / 22 Introduction One of the most, perhaps the most, important family of derivatives are the options. Lecture 16 2 / 22 Introduction One of the most,

More information

One-Period Valuation Theory

One-Period Valuation Theory One-Period Valuation Theory Part 1: Basic Framework Chris Telmer March, 2013 Develop a simple framework for understanding what the pricing kernel is and how it s related to the economics of risk, return

More information

Introduction to Options Pricing Theory

Introduction to Options Pricing Theory Introuction to Options Pricing Theory Simone Calogero Chalmers University of Technology Preface This text presents a self-containe introuction to the binomial moel an the Black-Scholes moel in options

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College April 10, 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Expected utility theory; Expected Utility Theory; risk aversion and utility functions

Expected utility theory; Expected Utility Theory; risk aversion and utility functions ; Expected Utility Theory; risk aversion and utility functions Prof. Massimo Guidolin Portfolio Management Spring 2016 Outline and objectives Utility functions The expected utility theorem and the axioms

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Foundations of Finance

Foundations of Finance Lecture 7: Bond Pricing, Forward Rates and the Yield Curve. I. Reading. II. Discount Bond Yields and Prices. III. Fixed-income Prices and No Arbitrage. IV. The Yield Curve. V. Other Bond Pricing Issues.

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Fixed-Income Analysis. Assignment 5

Fixed-Income Analysis. Assignment 5 FIN 684 Professor Robert B.H. Hauswald Fixed-Income Analysis Kogod School of Business, AU Assignment 5 Please be reminded that you are expected to use contemporary computer software to solve the following

More information

Math 147 Section 6.4. Application Example

Math 147 Section 6.4. Application Example Math 147 Section 6.4 Present Value of Annuities 1 Application Example Suppose an individual makes an initial investment of $1500 in an account that earns 8.4%, compounded monthly, and makes additional

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

Ch 10. Arithmetic Average Options and Asian Opitons

Ch 10. Arithmetic Average Options and Asian Opitons Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Options an Their Analytic Pricing Formulas II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options

More information

Pricing Multi-Dimensional Options by Grid Stretching and High Order Finite Differences

Pricing Multi-Dimensional Options by Grid Stretching and High Order Finite Differences Pricing Multi-Dimensional Options by Gri Stretching an High Orer Finite Differences Kees Oosterlee Numerical Analysis Group, Delft University of Technology Joint work with Coen Leentvaar Southern Ontario

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Fixed Income Financial Engineering

Fixed Income Financial Engineering Fixed Income Financial Engineering Concepts and Buzzwords From short rates to bond prices The simple Black, Derman, Toy model Calibration to current the term structure Nonnegativity Proportional volatility

More information

Hedging and Pricing in the Binomial Model

Hedging and Pricing in the Binomial Model Hedging and Pricing in the Binomial Model Peter Carr Bloomberg LP and Courant Institute, NYU Continuous Time Finance Lecture 2 Wednesday, January 26th, 2005 One Period Model Initial Setup: 0 risk-free

More information

1 Asset Pricing: Replicating portfolios

1 Asset Pricing: Replicating portfolios Alberto Bisin Corporate Finance: Lecture Notes Class 1: Valuation updated November 17th, 2002 1 Asset Pricing: Replicating portfolios Consider an economy with two states of nature {s 1, s 2 } and with

More information

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options Real Options for Engineering Systems Session 4: Valuation of financial options Stefan Scholtes Judge Institute of Management, CU Slide 1 Financial Options Option: Right (but not obligation) to buy ( call

More information

UNIVERSITY OF TORONTO Joseph L. Rotman School of Management SOLUTIONS. C (1 + r 2. 1 (1 + r. PV = C r. we have that C = PV r = $40,000(0.10) = $4,000.

UNIVERSITY OF TORONTO Joseph L. Rotman School of Management SOLUTIONS. C (1 + r 2. 1 (1 + r. PV = C r. we have that C = PV r = $40,000(0.10) = $4,000. UNIVERSITY OF TORONTO Joseph L. Rotman School of Management RSM332 PROBLEM SET #2 SOLUTIONS 1. (a) The present value of a single cash flow: PV = C (1 + r 2 $60,000 = = $25,474.86. )2T (1.055) 16 (b) The

More information

Numerical solution of conservation laws applied to the Shallow Water Wave Equations

Numerical solution of conservation laws applied to the Shallow Water Wave Equations Numerical solution of conservation laws applie to the Shallow Water Wave Equations Stephen G Roberts Mathematical Sciences Institute, Australian National University Upate January 17, 2013 (base on notes

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold)

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized

More information

Math 5760/6890 Introduction to Mathematical Finance

Math 5760/6890 Introduction to Mathematical Finance Math 5760/6890 Introduction to Mathematical Finance Instructor: Jingyi Zhu Office: LCB 335 Telephone:581-3236 E-mail: zhu@math.utah.edu Class web page: www.math.utah.edu/~zhu/5760_12f.html What you should

More information

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk Günter Franke 1, Richar C. Stapleton 2, an Marti G. Subrahmanyam. 3 November 2000 1 Fakultät für Wirtschaftswissenschaften

More information

Appendix A Financial Calculations

Appendix A Financial Calculations Derivatives Demystified: A Step-by-Step Guide to Forwards, Futures, Swaps and Options, Second Edition By Andrew M. Chisholm 010 John Wiley & Sons, Ltd. Appendix A Financial Calculations TIME VALUE OF MONEY

More information

The Joint Dynamics of Electricity Spot and Forward Markets: Implications on Formulating Dynamic Hedging Strategies

The Joint Dynamics of Electricity Spot and Forward Markets: Implications on Formulating Dynamic Hedging Strategies Energy Laboratory MI EL 00-005 Massachusetts Institute of echnology he Joint Dynamics of Electricity Spot an Forwar Markets: Implications on Formulating Dynamic Heging Strategies ovember 2000 he Joint

More information

FIN 451 Exam Answers, November 8, 2007

FIN 451 Exam Answers, November 8, 2007 FIN 45 Exam Answers, November 8, 007 Phil Dybvig This is a closed-book examination. Answer all questions as directed. Mark your answers directly on the examination. On the valuation question, make sure

More information

FINANCE 402 Capital Budgeting and Corporate Objectives. Syllabus

FINANCE 402 Capital Budgeting and Corporate Objectives. Syllabus FINANCE 402 Capital Budgeting and Corporate Objectives Course Description: Syllabus The objective of this course is to provide a rigorous introduction to the fundamental principles of asset valuation and

More information

#10. Problems 1 through 10, part a). Fi8000 Practice Set #1 Check Solutions 1. Payoff. Payoff #8 Payoff S

#10. Problems 1 through 10, part a). Fi8000 Practice Set #1 Check Solutions 1. Payoff. Payoff #8 Payoff S Problems 1 through 1, part a). #1 #2 #3-1 -1-1 #4 #5 #6-1 -1-1 #7 #8 #9-1 -1-1 #1-1 Fi8 Practice et #1 Check olutions 1 Problem b) Profitable Range c) Maximum Profit c) Maximum Loss 1 < $22.8 $12.8 Unlimited

More information

Fixed Income and Risk Management

Fixed Income and Risk Management Fixed Income and Risk Management Fall 2003, Term 2 Michael W. Brandt, 2003 All rights reserved without exception Agenda and key issues Pricing with binomial trees Replication Risk-neutral pricing Interest

More information

Flipping assets for basis step-up

Flipping assets for basis step-up Smeal College of Business Taxation an Management Decisions: ACCTG 550 Pennsylvania State University Professor Huart Flipping assets for basis step-up This note escribes the analysis use to ecie whether

More information

Solutions to Midterm Exam. ECON Financial Economics Boston College, Department of Economics Spring Tuesday, March 19, 10:30-11:45am

Solutions to Midterm Exam. ECON Financial Economics Boston College, Department of Economics Spring Tuesday, March 19, 10:30-11:45am Solutions to Midterm Exam ECON 33790 - Financial Economics Peter Ireland Boston College, Department of Economics Spring 209 Tuesday, March 9, 0:30 - :5am. Profit Maximization With the production function

More information

Stochastic Models. Introduction to Derivatives. Walt Pohl. April 10, Department of Business Administration

Stochastic Models. Introduction to Derivatives. Walt Pohl. April 10, Department of Business Administration Stochastic Models Introduction to Derivatives Walt Pohl Universität Zürich Department of Business Administration April 10, 2013 Decision Making, The Easy Case There is one case where deciding between two

More information

Option Pricing for Inventory Management and Control

Option Pricing for Inventory Management and Control 29 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-12, 29 ThB7.3 Option Pricing for Inventory Management an Control Bryant Angelos, McKay Heasley, an Jeffrey Humpherys Abstract

More information

ELEMENTS OF MATRIX MATHEMATICS

ELEMENTS OF MATRIX MATHEMATICS QRMC07 9/7/0 4:45 PM Page 5 CHAPTER SEVEN ELEMENTS OF MATRIX MATHEMATICS 7. AN INTRODUCTION TO MATRICES Investors frequently encounter situations involving numerous potential outcomes, many discrete periods

More information

Practice of Finance: Advanced Corporate Risk Management

Practice of Finance: Advanced Corporate Risk Management MIT OpenCourseWare http://ocw.mit.edu 15.997 Practice of Finance: Advanced Corporate Risk Management Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Department of Mathematics. Mathematics of Financial Derivatives

Department of Mathematics. Mathematics of Financial Derivatives Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2

More information

Fin 3710 Investment Analysis Professor Rui Yao CHAPTER 5: RISK AND RETURN

Fin 3710 Investment Analysis Professor Rui Yao CHAPTER 5: RISK AND RETURN HW 3 Fin 3710 Investment Analysis Professor Rui Yao CHAPTER 5: RISK AND RETURN 1. V(12/31/2004) = V(1/1/1998) (1 + r g ) 7 = 100,000 (1.05) 7 = $140,710.04 5. a. The holding period returns for the three

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months.

To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months. A one period model To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months.. The model setup We will start simple with a one period

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Engineering Decisions

Engineering Decisions GSOE9210 vicj@cse.uns.eu.au.cse.uns.eu.au/~gs9210 Decisions uner certainty an ignorance 1 Decision problem classes 2 Decisions uner certainty 3 Outline Decision problem classes 1 Decision problem classes

More information

Hull, Options, Futures, and Other Derivatives, 9 th Edition

Hull, Options, Futures, and Other Derivatives, 9 th Edition P1.T4. Valuation & Risk Models Hull, Options, Futures, and Other Derivatives, 9 th Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM and Deepa Sounder www.bionicturtle.com Hull, Chapter

More information

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin Arbitrage Pricing What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin March 27, 2010 Introduction What is Mathematical Finance?

More information

OPTIONS. Options: Definitions. Definitions (Cont) Price of Call at Maturity and Payoff. Payoff from Holding Stock and Riskfree Bond

OPTIONS. Options: Definitions. Definitions (Cont) Price of Call at Maturity and Payoff. Payoff from Holding Stock and Riskfree Bond OPTIONS Professor Anant K. Sundaram THUNERBIR Spring 2003 Options: efinitions Contingent claim; derivative Right, not obligation when bought (but, not when sold) More general than might first appear Calls,

More information

Chapter 23: Choice under Risk

Chapter 23: Choice under Risk Chapter 23: Choice under Risk 23.1: Introduction We consider in this chapter optimal behaviour in conditions of risk. By this we mean that, when the individual takes a decision, he or she does not know

More information

I. Interest Rate Sensitivity

I. Interest Rate Sensitivity University of California, Merced ECO 163-Economics of Investments Chapter 11 Lecture otes I. Interest Rate Sensitivity Professor Jason Lee We saw in the previous chapter that there exists a negative relationship

More information

Chapter 2: BASICS OF FIXED INCOME SECURITIES

Chapter 2: BASICS OF FIXED INCOME SECURITIES Chapter 2: BASICS OF FIXED INCOME SECURITIES 2.1 DISCOUNT FACTORS 2.1.1 Discount Factors across Maturities 2.1.2 Discount Factors over Time 2.1 DISCOUNT FACTORS The discount factor between two dates, t

More information

Lecture 17 Option pricing in the one-period binomial model.

Lecture 17 Option pricing in the one-period binomial model. Lecture: 17 Course: M339D/M389D - Intro to Financial Math Page: 1 of 9 University of Texas at Austin Lecture 17 Option pricing in the one-period binomial model. 17.1. Introduction. Recall the one-period

More information

The expanded financial use of fair value measurements

The expanded financial use of fair value measurements How to Value Guarantees What are financial guarantees? What are their risk benefits, and how can risk control practices be used to help value guarantees? Gordon E. Goodman outlines multiple methods for

More information

Forward Contracts. Bjørn Eraker. January 12, Wisconsin School of Business

Forward Contracts. Bjørn Eraker. January 12, Wisconsin School of Business Wisconsin School of Business January 12, 2015 Basic definition A forward contract on some asset is an agreement today to purchase the asset at an agreed upon price (the forward price) today, for delivery

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 OPTION RISK Introduction In these notes we consider the risk of an option and relate it to the standard capital asset pricing model. If we are simply interested

More information

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES Along with providing the way uncertainty is formalized in the considered economy, we establish in this chapter the

More information

Hedge Portfolios, the No Arbitrage Condition & Arbitrage Pricing Theory

Hedge Portfolios, the No Arbitrage Condition & Arbitrage Pricing Theory Hedge Portfolios, the No Arbitrage Condition & Arbitrage Pricing Theory Hedge Portfolios A portfolio that has zero risk is said to be "perfectly hedged" or, in the jargon of Economics and Finance, is referred

More information