Introduction to Financial Derivatives

Size: px
Start display at page:

Download "Introduction to Financial Derivatives"

Transcription

1 Introuction to Financial Derivatives November 4, 213 Option Analysis an Moeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis an Moeling: Binomial Tree Approach (Chapter 12, OFOD) Next Week: Weiner Process an the Ito Lemma (Chapter 13, OFOD) Last Day of Classes: December 4 th Final Exam Final: Dec 17 th ; 9:am Noon, Mergenthaler Assignment Assignment For This Week (November 4 th ) Rea: Hull Chapter 12 (Binomial Trees) Problems (Due November 4 th ): Chapter 1: 7, 14, 15, 18, 19; 23 Chapter 9(7e): 7, 14, 15, 18, 19; 23 Look at DerivaGem problems 1.21 & 1.26 (7e) 9.21 & 9.26 Problems (Due November 11 th ): Chapter 12: 1, 5, 6, 11; 2 Chapter 11(7e): 1, 5, 6, 11; For Next Week (November 11 th ) Rea: Hull Chapter 13 (Wiener Process an Ito s Lemma) Problems (Due November 11 th ): Chapter 12: 1, 5, 6, 11; 2 Chapter 11(7e): 1, 5, 6, 11; 2 Problems (Due November 18 th ) Chapter 13: 3, 5, 9, 11; 12 Chapter 12(7e): 3, 5, 9, 11;

2 The Plan for this Week The Concept of Risk-Neutral Analysis Maybe, the most important iea in financial erivative analysis. No, It IS! We introuce this through a moeling approach of Binomial Trees The Essence of the Binomial Moel Example: Euro-style 3-month Call on Stock at $21 Stock price is currently $2 In 3-months we know it will be either $22 or $18 Stock Price = $22 Stock price = $2 Stock Price = $ The Essence of the Binomial Moel The Essence of the Binomial Moel At expiration in 3-months the option is worth either $ or $1 Can we figure-out the value of the option toay? Stock price = $2 Option Price=? Stock Price = $22 Option Price = $1 Stock Price = $18 Option Price = $ Consier the Portfolio: Long shares Short 1 call option What is the value of this PF at expiration? The PF is riskless when 22 1 = 18 or =.25 That is, irrespective of the future, the PF has a single value at expiration; therefore the PF shoul return the risk-free rate

3 The Essence of the Binomial Moel In Summary, with =.25 an a risk-free rate of 12% per annum with continuous compouning The riskless portfolio is: Long.25 shares Short 1 call option The value of the portfolio in 3 months is 22 x.25 1 = 4.5 or 18 x.25 = 4.5 An the value of the portfolio toay is 4.5e.12x.25 = The Essence of the Binomial Moel The portfolio that is long.25 shares short 1 option is worth toay Toay s value of the shares in the portfolio 5. (=.25 x 2 ) Therefore, the value of the option is.633 (= ) Generalization of the Binomial Moel Consier a stock at price S, an an option on the stock, with expiration T, who s current price is f During the option s life, the stock can move up or own Up from S to a new level at T, S u ; u>, an with option value f u or Down from S to a new level at T, S ; >, an with option value f S u S ƒ ƒ u S ƒ 9.11 Generalization of the Binomial Moel Consier the portfolio that is Long shares an Short 1 option S ƒ The portfolio is riskless when S u ƒ u = S ƒ or f ƒ u S u S S u ƒ u S ƒ

4 Generalization of the Binomial Moel Value of the portfolio at time T is S u ƒ u = S ƒ Value of the portfolio toay is S f = (S u ƒ u )e rt = (S ƒ )e rt Hence the value of the option is ƒ = S (S u ƒ u )e rt = S (S ƒ )e rt = S (1 ue rt )+ ƒ u e rt = S (1 e rt )+ ƒ e rt Generalization of the Binomial Moel Substituting for where We obtain Where we efine p as f u f S u S ƒ = [ pƒ u + (1 p)ƒ ]e rt rt e p u For the Generalize Binomial Moel of Option Valuation Risk-neutral Valuation In our main result we tease with nomenclature, p It is natural to want to interpret p an 1 p as the probabilities of an up an own movement with pƒ u + (1 p)ƒ = E[f T ] as the expecte payoff from the option With this interpretation, the option value is the present value of the expecte future payoff S u Remember p has nothing to o with real probability; it is merely a consequence of the risk neutral assumption on the PF resulting from elta heging S ƒ ƒ u S ƒ 9.15 Risk-neutral Valuation When the probability of an up an own movements are p an 1 - p the expecte stock price at time T, E(S T ) is ES T ps u ( 1 p) S ps ( u ) S rt e An substituting for p from our main result p gives E(S T ) = S e rt u This shows that the stock price earns the risk-free rate Binomial trees illustrate the general result that to value an option, assume that the expecte return on the unerlying asset is the risk-free rate an iscount at the risk-free rate This is known as Risk-Neutral Valuation We may always make the risk-neutral assumption an etermine correct option values, even when markets are not risk-neutral (as we shall see later); the analytic perfection of elta heging a portfolio

5 Risk-neutral Valuation Irrelevance of Stock s Expecte Return When we are valuing an option in terms of the price of the unerlying asset (but assume a perfect elta hege), the probability of up an own movements of the asset in the real worl are irrelevant This is an example of a more general result stating that the expecte return on the unerlying asset in the real worl is irrelevant to option pricing We come back to this, but first 9.17 Essence Example - Again S ƒ Since p is the probability that gives a return on the stock equal to the risk-free rate. We can fin it from 2e.12 x.25 = 22p + 18(1 p ) = 2.61 which gives p =.6523 Alternatively, we can use the formula rt e p u S u = 22 ƒ u = 1 S = 18 ƒ = e Essence Example - Again S ƒ S u = 22 ƒ u = 1 S = 18 ƒ = The value of the option is ƒ = [ pƒ u + (1 p)ƒ ]e rt = e.12x.25 (.6523x x) =.633 as we foun earlier when we took the PV of the riskless PF an solve for the option value What About the Real Worl? When we interprete p (efine earlier) as a probability for an up-own movement in the stock price, we establishe the conition for a risk-neutral worl where investors are inifferent towar risk & all securities return the risk-free rate The real worl is not risk-neutral Investors eman higher return for higher risk Assume in our essence example, investors eman 16% return on the stock where otherwise, the risk-free rate r=12% Then 2e.16 x.25 = 22p * + 18(1 p * ) = E(S T ) = (vs 2.61) An the probability of an up movement, p * =.741 (not.6523 = p as foun before)

6 What About the Real Worl? The real worl is not risk-neutral The expecte payoff from the option in the real worl is 1 x p * + x (1 p * ) =.741 = E[f T ] An we on t know what iscount rate to use to PV this payoff We think the rate shoul be higher than the stock s return as a call option is thought to be more risky than the stock In fact since we know the correct value for the call option.633 =.74e -Rx.25, R=42.58% gives the iscount rate we require If all we are trying to o is value a erivative-option, we shoul live in the easiest worl we can fin, even if it isn t real; as long as it is vali for what we are trying to o Risk-Neutral = perfect elta heging 9.21 A Two-Step Binomial Example Consier the stock price outcomes Where each time step is 3 months w/ 1% up/own We will value a 6-month Euro-style call option with strike, K=21 an a risk free rate, r=12% 9.22 A Two-Step Binomial Example 6-month Euro-style Call K=21, r=12% (p=.6523, again) 22 B A C F. Move out the tree to expiration an look at the option values, then transverse backwar towar toay Value at noe B = e.12x.25 (.6523 x x ) = Value at noe A = e.12x.25 (.6523 x x ) = D E 9.23 A Two-Step Binomial Example 2-year Euro-style Put K = 52, time step = 1yr, u/ : +2%/-2%, an r = 5% rt.51 e e.8 p.6282 u A 6 B C E D F

7 American-Style Options 2-year American-style Put K = 52, time step = 1yr, u/ : +2%/-2%, an r = 5% D 6 B A E C Since American-style, exercise 12. at any noe when early exercise is optimal F When intrinsic option value is more than PV of pƒ u + (1 p)ƒ At noe C, option is worth 12 (if exercise) vs Delta Delta () is the ratio of the change in the price of a stock option to the change in the price of the unerlying stock the key to risk-neutral analysis Example on last slie, Noes B & C give us a elta of ( )/(6-4)= -.77 Noes D-E: (-4)/(72-48)= Noes E-F: (4-2)/(48-32)= -1. The value of varies from noe to noe, by time an level of unerlying One Last Detail One Last Detail In all of our analysis of options with binomial trees, we ve always been given (assume) the lattice of stock prices Now we look at how to construct that lattice We nee to etermine u & to replicate observations of the stock price in the market, summarize by the volatility measure, σ Volatility, σ, is efine so that σ t is the stanar eviation of the return on the stock price over t Assume the stock price starts at S an over some uniform time increment t the stock price moves either up to S u or own to S The stock price at the en of the first time step is * * * t EST p Su (1 p ) S p S ( u ) S Se where μ is the expecte return on the stock t An the probability, p * * e, can be foun as p u The volatility σ of price is efine so that t = st ev (stock price return; Δt) There are two points in our space, S u an S Making use of the probability result for p * then Variance mean of the squares minus the square of the mean The probability of an up movement (real worl) is p * * Su * S * Su * S p (1 p ) p (1 p ) S S S S

8 One Last Detail So the variance of the stock price return is * 2 * 2 * * 2 2 p u ( 1 p ) [ p u (1 p ) ] t Substituting for p * from above, we get e 2t ( u ) u e t t 2 an one solution for u an is: u e e t t where is the volatility an t is the length of the time step (an when terms in t 2 an higher powers of t are 2 x x ignore) an as t gets small (use e 1 x... ) 2! This is the approach use by Cox, Ross, an Rubinstein Stanar practice for constructing the lattice 9.31 Girsanov s Worl We have seen that a lattice with real-worl probabilities p * (base on e μδt ) or risk-neutral probabilities p (base on e rδt ) give equally vali moels for options analysis Though the risk-neutral moel has preferences ue to the uniformity of using the risk free rate for iscounting 9.32 Girsanov s Worl We have NOW foun how to construct a lattice in the real-worl with u & to replicate observe volatility t e a We have previously shown that if we use p, where a = e rδt u ; that this is the risk-neutral probability of an up move an the expecte stock price at the en of the time step is rt ES ps u (1 p) S ps ( u S S e T u e t ) 9.33 Girsanov s Worl The variance of this stock price return moel is (1 ) [ (1 ) ] [ r t rt pu p pu p e ( u) u e ] t t An when substituting u e t e from before, we fin this too equals σ 2 t (when terms in t 2 an higher powers of t are ignore)! Hence, we see that when moving from the real worl to the risk-neutral worl, the expecte return on the stock changes, from μ to r, but the stock price volatility remains the same (at least in the limit as the time step becomes arbitrarily small) Girsanov s Theorem Use u & to replicate observe volatility for the riskneutral approach

9 The General Case with Other Assets Use u & to replicate observe volatility for the asset prices to for the lattice a For up probabilities, use p u Where a = e rδt for a non-ivien paying stock Where a = e (r-q)δt for a ivien yieling stock or for a stock inex where q is the yiel on the inex t ( rq) t ( rq) t Inee, S Se Se psu(1 p) S Se ( rq) t e An p u ( rrf ) t Where a e for a currency where r f is the foreign risk-free rate Where a = 1 for a futures contract

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives November 5, 212 Option Analysis and Modeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis and Modeling:

More information

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation.

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation. . Lattice Methos. One-step binomial tree moel (Hull, Chap., page 4) Math69 S8, HM Zhu Outline. No-Arbitrage Evaluation. Its relationship to risk-neutral valuation. A Simple Binomial Moel A stock price

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December n, 3 he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December 3 r, he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 1 A Simple Binomial Model l A stock price is currently $20 l In three months it will be either $22 or $18 Stock Price = $22 Stock price = $20 Stock Price = $18

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 Fundamentals of Futures and Options Markets, 8th Ed, Ch 12, Copyright John C. Hull 2013 1 A Simple Binomial Model A stock price is currently $20. In three months

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY

REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY Harriet Black Nembhar Davi A. Nembhar Ayse P. Gurses Department of Inustrial Engineering University of Wisconsin-Maison 53 University Avenue Maison,

More information

Chapter 21: Option Valuation

Chapter 21: Option Valuation Chapter 21: Option Valuation-1 Chapter 21: Option Valuation I. The Binomial Option Pricing Moel Intro: 1. Goal: to be able to value options 2. Basic approach: 3. Law of One Price: 4. How it will help:

More information

Risk-Neutral Probabilities

Risk-Neutral Probabilities Debt Instruments an Markets Risk-Neutral Probabilities Concepts Risk-Neutral Probabilities True Probabilities Risk-Neutral Pricing Risk-Neutral Probabilities Debt Instruments an Markets Reaings Tuckman,

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Week of October 28, 213 Options Where we are Previously: Swaps (Chapter 7, OFOD) This Week: Option Markets and Stock Options (Chapter 9 1, OFOD) Next Week :

More information

BUSM 411: Derivatives and Fixed Income

BUSM 411: Derivatives and Fixed Income BUSM 411: Derivatives and Fixed Income 12. Binomial Option Pricing Binomial option pricing enables us to determine the price of an option, given the characteristics of the stock other underlying asset

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 18 & 5 th, 13 he Black-Scholes-Merton Model for Options plus Applications 11.1 Where we are Last Week: Modeling the Stochastic Process for

More information

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) =

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) = ACSC/STAT 373, Actuarial Moels I Further Probability with Applications to Actuarial Science WINTER 5 Toby Kenney Sample Final Eamination Moel Solutions This Sample eamination has more questions than the

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 19 & 6 th, 1 he Black-Scholes-Merton Model for Options plus Applications Where we are Previously: Modeling the Stochastic Process for Derivative

More information

Ch 10. Arithmetic Average Options and Asian Opitons

Ch 10. Arithmetic Average Options and Asian Opitons Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Options an Their Analytic Pricing Formulas II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

Help Session 7. David Sovich. Washington University in St. Louis

Help Session 7. David Sovich. Washington University in St. Louis Help Session 7 Davi Sovich Washington University in St. Louis TODAY S AGENDA Toay we will learn how to price using Arrow securities We will then erive Q using Arrow securities ARROW SECURITIES IN THE BINOMIAL

More information

Hull, Options, Futures, and Other Derivatives, 9 th Edition

Hull, Options, Futures, and Other Derivatives, 9 th Edition P1.T4. Valuation & Risk Models Hull, Options, Futures, and Other Derivatives, 9 th Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM and Deepa Sounder www.bionicturtle.com Hull, Chapter

More information

Lecture 16: Delta Hedging

Lecture 16: Delta Hedging Lecture 16: Delta Hedging We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way. These techniques were first proposed in: J.C.

More information

University of Windsor Faculty of Business Administration Winter 2001 Mid Term Examination: units.

University of Windsor Faculty of Business Administration Winter 2001 Mid Term Examination: units. Time: 1 hour 20 minutes University of Winsor Faculty of Business Aministration Winter 2001 Mi Term Examination: 73-320 Instructors: Dr. Y. Aneja NAME: LAST (PLEASE PRINT) FIRST Stuent ID Number: Signature:

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M339D/M389D Introduction to Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam II - Solutions Instructor: Milica Čudina Notes: This is a closed book and

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

Binomial Option Pricing

Binomial Option Pricing Binomial Option Pricing The wonderful Cox Ross Rubinstein model Nico van der Wijst 1 D. van der Wijst Finance for science and technology students 1 Introduction 2 3 4 2 D. van der Wijst Finance for science

More information

An investment strategy with optimal sharpe ratio

An investment strategy with optimal sharpe ratio The 22 n Annual Meeting in Mathematics (AMM 2017) Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai, Thailan An investment strategy with optimal sharpe ratio S. Jansai a,

More information

CHAPTER 17 OPTIONS AND CORPORATE FINANCE

CHAPTER 17 OPTIONS AND CORPORATE FINANCE CHAPTER 17 OPTIONS AND CORPORATE FINANCE Answers to Concept Questions 1. A call option confers the right, without the obligation, to buy an asset at a given price on or before a given date. A put option

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Pricing Multi-Dimensional Options by Grid Stretching and High Order Finite Differences

Pricing Multi-Dimensional Options by Grid Stretching and High Order Finite Differences Pricing Multi-Dimensional Options by Gri Stretching an High Orer Finite Differences Kees Oosterlee Numerical Analysis Group, Delft University of Technology Joint work with Coen Leentvaar Southern Ontario

More information

Binomial Trees. Liuren Wu. Options Markets. Zicklin School of Business, Baruch College. Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22

Binomial Trees. Liuren Wu. Options Markets. Zicklin School of Business, Baruch College. Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22 Binomial Trees Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22 A simple binomial model Observation: The current stock price

More information

Chapter 13 Binomial Trees. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull

Chapter 13 Binomial Trees. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull Chapter 13 Biomial Trees 1 A Simple Biomial Model! A stock price is curretly $20! I 3 moths it will be either $22 or $18 Stock price $20 Stock Price $22 Stock Price $18 2 A Call Optio (Figure 13.1, page

More information

Project operating cash flow (nominal) 54, ,676 2,474,749 1,049,947 1,076,195

Project operating cash flow (nominal) 54, ,676 2,474,749 1,049,947 1,076,195 Answers Professional Level Options Moule, Paper P4 (SGP) Avance Financial Management (Singapore) December 2008 Answers Tutorial note: These moel answers are consierably longer an more etaile than woul

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

Théorie Financière. Financial Options

Théorie Financière. Financial Options Théorie Financière Financial Options Professeur André éfarber Options Objectives for this session: 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 1 The Black-Scholes-Merton Random Walk Assumption l Consider a stock whose price is S l In a short period of time of length t the return

More information

Copyright Emanuel Derman 2008

Copyright Emanuel Derman 2008 E4718 Spring 2008: Derman: Lecture 6: Extending Black-Scholes; Local Volatility Models Page 1 of 34 Lecture 6: Extending Black-Scholes; Local Volatility Models Summary of the course so far: Black-Scholes

More information

Fixed Income and Risk Management

Fixed Income and Risk Management Fixed Income and Risk Management Fall 2003, Term 2 Michael W. Brandt, 2003 All rights reserved without exception Agenda and key issues Pricing with binomial trees Replication Risk-neutral pricing Interest

More information

Pricing Options on Dividend paying stocks, FOREX, Futures, Consumption Commodities

Pricing Options on Dividend paying stocks, FOREX, Futures, Consumption Commodities Pricing Options on Dividend paying stocks, FOREX, Futures, Consumption Commodities The Black-Scoles Model The Binomial Model and Pricing American Options Pricing European Options on dividend paying stocks

More information

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 Option Pricing Models c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 If the world of sense does not fit mathematics, so much the worse for the world of sense. Bertrand Russell (1872 1970)

More information

Appendix: Basics of Options and Option Pricing Option Payoffs

Appendix: Basics of Options and Option Pricing Option Payoffs Appendix: Basics of Options and Option Pricing An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called a strike price or an exercise

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Energy and public Policies

Energy and public Policies Energy and public Policies Decision making under uncertainty Contents of class #1 Page 1 1. Decision Criteria a. Dominated decisions b. Maxmin Criterion c. Maximax Criterion d. Minimax Regret Criterion

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark).

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark). The University of Toronto ACT460/STA2502 Stochastic Methods for Actuarial Science Fall 2016 Midterm Test You must show your steps or no marks will be awarded 1 Name Student # 1. 2 marks each True/False:

More information

Course MFE/3F Practice Exam 1 Solutions

Course MFE/3F Practice Exam 1 Solutions Course MFE/3F Practice Exam 1 Solutions he chapter references below refer to the chapters of the ActuraialBrew.com Study Manual. Solution 1 C Chapter 16, Sharpe Ratio If we (incorrectly) assume that the

More information

Girsanov s theorem and the risk-neutral measure

Girsanov s theorem and the risk-neutral measure Chapter 7 Girsanov s theorem an the risk-neutral measure Please see Oksenal, 4th e., pp 45 5. Theorem.52 Girsanov, One-imensional Let B t T, be a Brownian motion on a probability space F P. Let F t T,

More information

Course MFE/3F Practice Exam 2 Solutions

Course MFE/3F Practice Exam 2 Solutions Course MFE/3F Practice Exam Solutions The chapter references below refer to the chapters of the ActuarialBrew.com Study Manual. Solution 1 A Chapter 16, Black-Scholes Equation The expressions for the value

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

A Moment Matching Approach to the Valuation of a Volume Weighted Average Price Option

A Moment Matching Approach to the Valuation of a Volume Weighted Average Price Option A Moment Matching Approach to the Valuation of a Volume Weighte Average Price Option Antony William Stace Department of Mathematics, University of Queenslan, Brisbane, Queenslan 472, Australia aws@maths.uq.eu.au

More information

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences.

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Futures, and options on futures. Martingales and their role in option pricing. A brief introduction

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model.

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model. Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model Henrik Brunlid September 16, 2005 Abstract When we introduce transaction costs

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE.

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. 1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. Previously we treated binomial models as a pure theoretical toy model for our complete economy. We turn to the issue of how

More information

Options Markets: Introduction

Options Markets: Introduction 17-2 Options Options Markets: Introduction Derivatives are securities that get their value from the price of other securities. Derivatives are contingent claims because their payoffs depend on the value

More information

Binomial Trees. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets

Binomial Trees. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets Binomial Trees Liuren Wu Zicklin School of Business, Baruch College Options Markets Binomial tree represents a simple and yet universal method to price options. I am still searching for a numerically efficient,

More information

Barrier Option Valuation with Binomial Model

Barrier Option Valuation with Binomial Model Division of Applied Mathmethics School of Education, Culture and Communication Box 833, SE-721 23 Västerås Sweden MMA 707 Analytical Finance 1 Teacher: Jan Röman Barrier Option Valuation with Binomial

More information

Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Financial Stochastic Calculus E-Book Draft 2 Posted On Actuarial Outpost 10/25/08

Financial Stochastic Calculus E-Book Draft 2 Posted On Actuarial Outpost 10/25/08 Financial Stochastic Calculus E-Book Draft Posted On Actuarial Outpost 10/5/08 Written by Colby Schaeffer Dedicated to the students who are sitting for SOA Exam MFE in Nov. 008 SOA Exam MFE Fall 008 ebook

More information

OPTIONS. Options: Definitions. Definitions (Cont) Price of Call at Maturity and Payoff. Payoff from Holding Stock and Riskfree Bond

OPTIONS. Options: Definitions. Definitions (Cont) Price of Call at Maturity and Payoff. Payoff from Holding Stock and Riskfree Bond OPTIONS Professor Anant K. Sundaram THUNERBIR Spring 2003 Options: efinitions Contingent claim; derivative Right, not obligation when bought (but, not when sold) More general than might first appear Calls,

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

A NOVEL BINOMIAL TREE APPROACH TO CALCULATE COLLATERAL AMOUNT FOR AN OPTION WITH CREDIT RISK

A NOVEL BINOMIAL TREE APPROACH TO CALCULATE COLLATERAL AMOUNT FOR AN OPTION WITH CREDIT RISK A NOVEL BINOMIAL TREE APPROACH TO CALCULATE COLLATERAL AMOUNT FOR AN OPTION WITH CREDIT RISK SASTRY KR JAMMALAMADAKA 1. KVNM RAMESH 2, JVR MURTHY 2 Department of Electronics and Computer Engineering, Computer

More information

Derivative Securities

Derivative Securities Derivative Securities he Black-Scholes formula and its applications. his Section deduces the Black- Scholes formula for a European call or put, as a consequence of risk-neutral valuation in the continuous

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

MATH 361: Financial Mathematics for Actuaries I

MATH 361: Financial Mathematics for Actuaries I MATH 361: Financial Mathematics for Actuaries I Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability C336 Wells Hall Michigan State University East

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Introduction. Financial Economics Slides

Introduction. Financial Economics Slides Introduction. Financial Economics Slides Howard C. Mahler, FCAS, MAAA These are slides that I have presented at a seminar or weekly class. The whole syllabus of Exam MFE is covered. At the end is my section

More information

Numerical solution of conservation laws applied to the Shallow Water Wave Equations

Numerical solution of conservation laws applied to the Shallow Water Wave Equations Numerical solution of conservation laws applie to the Shallow Water Wave Equations Stephen G Roberts Mathematical Sciences Institute, Australian National University Upate January 17, 2013 (base on notes

More information

Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page.

Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page. Errata for ASM Exam MFE/3F Study Manual (Ninth Edition) Sorted by Page 1 Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page. Note the corrections to Practice Exam 6:9 (page 613) and

More information

Stochastic Calculus for Finance

Stochastic Calculus for Finance Stochastic Calculus for Finance Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability A336 Wells Hall Michigan State University East Lansing MI 48823

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

SOA Exam MFE Solutions: May 2007

SOA Exam MFE Solutions: May 2007 Exam MFE May 007 SOA Exam MFE Solutions: May 007 Solution 1 B Chapter 1, Put-Call Parity Let each dividend amount be D. The first dividend occurs at the end of months, and the second dividend occurs at

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

(atm) Option (time) value by discounted risk-neutral expected value

(atm) Option (time) value by discounted risk-neutral expected value (atm) Option (time) value by discounted risk-neutral expected value Model-based option Optional - risk-adjusted inputs P-risk neutral S-future C-Call value value S*Q-true underlying (not Current Spot (S0)

More information

Modes of Convergence

Modes of Convergence Moes of Convergence Electrical Engineering 126 (UC Berkeley Spring 2018 There is only one sense in which a sequence of real numbers (a n n N is sai to converge to a limit. Namely, a n a if for every ε

More information

The Joint Dynamics of Electricity Spot and Forward Markets: Implications on Formulating Dynamic Hedging Strategies

The Joint Dynamics of Electricity Spot and Forward Markets: Implications on Formulating Dynamic Hedging Strategies Energy Laboratory MI EL 00-005 Massachusetts Institute of echnology he Joint Dynamics of Electricity Spot an Forwar Markets: Implications on Formulating Dynamic Heging Strategies ovember 2000 he Joint

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 OPTION RISK Introduction In these notes we consider the risk of an option and relate it to the standard capital asset pricing model. If we are simply interested

More information

Economic Risk and Decision Analysis for Oil and Gas Industry CE School of Engineering and Technology Asian Institute of Technology

Economic Risk and Decision Analysis for Oil and Gas Industry CE School of Engineering and Technology Asian Institute of Technology Economic Risk and Decision Analysis for Oil and Gas Industry CE81.98 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Futures Contracts vs. Forward Contracts

Futures Contracts vs. Forward Contracts Futures Contracts vs. Forward Contracts They are traded on a central exchange. A clearinghouse. Credit risk is minimized. Futures contracts are standardized instruments. Gains and losses are marked to

More information

Simple Robust Hedging with Nearby Contracts

Simple Robust Hedging with Nearby Contracts Simple Robust Heging with Nearby Contracts Liuren Wu Zicklin School of Business, Baruch College Jingyi Zhu University of Utah Abstract Most existing heging approaches are base on neutralizing risk exposures

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II Post-test Instructor: Milica Čudina Notes: This is a closed

More information

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk Günter Franke 1, Richar C. Stapleton 2, an Marti G. Subrahmanyam. 3 November 2000 1 Fakultät für Wirtschaftswissenschaften

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

Two Types of Options

Two Types of Options FIN 673 Binomial Option Pricing Professor Robert B.H. Hauswald Kogod School of Business, AU Two Types of Options An option gives the holder the right, but not the obligation, to buy or sell a given quantity

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II - Solutions This problem set is aimed at making up the lost

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information