Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Size: px
Start display at page:

Download "Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing"

Transcription

1 Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility with u and d 6 Girsanov s Theorem

2 An one-step Bionomial model and a no-arbitrage argument Consider a stock whose price is S 0 and an option on the stock whose current price is f. Suppose that the option lasts for time T and that during the life of the option the stock price can either move up from S 0 to S 0 u (u >1), or down from S 0 to S 0 d (d <1). The corresponding payo s from the option are f u and f d,respectively. Figure 1: Stock and option prices in a one-step tree (Hull, 2015; Figure 13.2). Consider a portfolio consisting of a long position in short position in one option. shares and a If there is an up movement in the stock price, the value of the portfolio at the end of the life of the option is S 0 u f u.ifthereis a down movement in the stock price, the value becomes S 0 d f d. To makes the portfolio riskless, the values of the portfolio must be equal, so that S 0 u f u = S 0 d f d, or = f u f d S 0 (u d). Suppose there are no arbitrage opportunities in the market. Then the riskless portfolio must earn the risk-free interest rate.

3 If we denote the risk-free interest rate by r, the present value of the portfolio is (S 0 u f u )e rt. The sots of setting up the portfolio is f. It follows that S 0 (S 0 u f u )e rt = S 0 f or f = S 0 (1 ue rt )+f u e rt. Substituting where into f, we obtain fu f d f = S 0 (1 ue rt )+f u e rt S 0 (u d) =) f = e rt pf u +(1 p)f d, (1) p := ert d u d. (2) Equations (1) and (2) provide an option pricing formula when stock price movements are given by a one-step binomial tree. The only assumption needed for these equations is the absence of arbitrage opportunities. Risk-neutral valuation When valuing a derivative, we can make the assumption that investors are risk-neutral. Aworldwhereinvestorsarerisk-neutralis referred to as a risk-neutral world. It is natural to interpret p and 1 p as probabilities of up and down movements. Then the expected stock price E(S T ) at time T is given by E(S T )=ps 0 u +(1 p)s 0 d = S 0 e rt. (3) This shows that the stock price grows, on average, at the risk-free rate when p is the probability of an up movement. A risk-neutral world has two features that simplify the pricing of options: The expected return on a stock is the risk-free rate. The discount rate used for the expected payo on an option is the risk-free rate.

4 Real world vs. risk-neutral world We note that p is the probability of an up movement in a riskneutral world. In general, this is not the same as the probability of an up movement in the real world. When we valuate an option in terms of the price of the underlying asset, the probability of up and down movements in the real world are irrelevant. Example: A one-step Binomial model for A European call A stock price is currently $20, and it is known that at the end of 3 months it will be either $22 or $18. We are interested in valuing a European call option to buy the stock for $21 in 3 months. Figure 2: Stock and option prices in a one-step tree (Hull, 2015; Figure 13.1).

5 Example: A one-step Binomial model for A European call Note that S 0 = 20, S 0 u = 22, S 0 d = 18, i.e.u =1.1 and d =0.9. Our portfolio consists of a long position in shares of the stock and a short position in one call option, so the portfolio value at t is S t f t. To make the portfolio riskless, we have 22 1 = 18,or =0.25. That is, the value of the portfolio at the end of 3 months is = = 4.5. Riskless portfolio must, in the absence of arbitrage opportunities, earn the risk-free rate of interest. Suppose that the risk-free rate is 12% per annum. The value of the portfolio today must be the present value of 4.5, then f =4.5e /12 =) f = d or p = ert u d = f = e rt (pf u +(1 p)f d )= Example: A one-step Binomial model for A European call We can also compute the risk-neutral probability p = ert d u d = e0.12 3/ = Then the value of the option is f = e rt (pf u +(1 p)f d )=e /12 ( ) = In the risk-neutral world, E(S T )=ps 0 u +(1 p)s 0 d = S 0 e rt,so 22p + 18(1 p) = 20e /12 =) p = Suppose that, in the real world, the expected return on the stock is 16% and p is the probability of an up movement in this world. Then 22p + 18(1 p ) = 20e /12 (= p = However, it is not easy to know the correct discount rate to apply to the expected payo in the real world.

6 Two-step Binomial trees We extend the analysis above to a two-step binomial tree. Assume that the stock price is initially S 0.Duringeachtime step, it either moves up to us 0 or moves down to ds 0. Suppose that the risk-free interest rate is r and the length of the time step is t years. The notation for the value of the option is shown on the tree. Figure 3: Stock and option prices in aone-steptree(hull,2015;figure 13.6). Two-step Binomial trees Since the length of a time step is now t rather than T, equations (1) and (2) become f = e r t pf u +(1 p)f d (4) p = er t d u d Repeated application of equation (4) yields f u = e r t pf uu +(1 p)f ud f d = e r t pf ud +(1 p)f dd Substituting from equations (6) and (7) into (4), we obtain (5) (6) (7) f = e 2r t p 2 f uu +2p(1 p)f ud +(1 p) 2 f dd. (8) This is consistent iwth the principle of risk-neutral valuation discussed earlier.

7 Example: Two-step Binomial trees for a Eurpean call Consider the example in the one-step Bionomial model. Here S 0 = $20, u = d =0.1, r = 12% per annum. Each time step is 3 months long. We consider a 6-month option with K = $21 (Hull, 2015, Figure 13.4). Example: Two-step Binomial trees for a Eurpean call We first have S B = 22, S C = 18, S D = 24.2, S E = 19.8, and S F = The values of the option at the maturity are f D =3.2, f E = f F =0. The risk neutral probability is p =(e r t d)/(u d) = Hence f B = e 12% 3/12 (pf D +(1 p)f E )=2.0257, The f C = e 12% 3/12 (pf E +(1 p)f F )=0. f A = e 12% 3/12 (pf B +(1 p)f C )= s in di erent branches are di erent. S D B f D = S E B f E =) B =(f D f E )/(S D S E )= S E C f E = S F C f F =) B =(f E f F )/(S E S F )=0 S B A f B = S C A f C =) A =(f B f C )/(S B S C )=0.5064

8 Example: Two-step Binomial trees for a Eurpean put Consider a 2-year European put with a strike price of $52 on a stock whose current price is $50. We suppose that there are two steps of 1 year, and in each step, u 1=1 d = 20%. Wealsoassumethatthe risk-free interest rate is 5% (Hull, 2015, Figure 13.7). Example: Two-step Binomial trees for a Eurpean put As shown in the figure, u =1.2, d =0.8, t =1,andr =0.05. The risk-neutral probability p is given by p =(e ) ( ) = The possible final stock prices are S uu = 72,S ud = 48, and S dd = 32. The corresponding option values are f uu =0, f ud =4, and f dd = 20. Then the option value today is f = e ( ) =

9 Example: Two-step Binomial trees for an American put Consider a corresponding 2-year American put with a strike price of $52 on a stock whose current price is $50. We suppose that there are two steps of 1 year, and in each step, u 1=1 d = 20%. Wealsoassume that the risk-free interest rate is 5% (Hull, 2015, Figure 13.8). Example: Two-step Binomial trees for an American put Note that the value of the American option at earlier nodes is the greater of The value given by f = e r t (pf u +(1 p)f d ). The payo from early exercise. At node B, e r t (pf uu +(1 p)f ud )=1.4147, andearlyexerciseis not optimal, hence f B = At node C, e r t (pf ud +(1 p)f dd )=9.4636, andthepayo from the early exercise is = 12, hencef C = 12. At node A, the value of the option is f A = e r t (pf B +(1 p)f C )=e ( ) =

10 Delta Shares of stocks in the Binomial tree model: = f u f d S 0 (u d) The delta ( ) of a stock option is the ratio of the change in the price of the stock option to the change in the price of the underlying stock. The construction of a riskless portfolio is sometimes referred to as delta hedging. The value of varies from node to node. Matching volatility with u and d The three parameters necessary to construct a binomial tree with time step t are u, d and p. Given u and d, tomaketheexpectedreturnistherisk-freerater, p must be chosen as p =(e r t d) (u d). The parameters u and d should be chosen to match the volatility of the stock,, which is defined so that the p standard deviation of its return in a short period of time t is t. During a time step of length t, the stock will provide a return of u 1 with probability p and a return of d 1 with probability 1 p, respectively. It follows that volatility is matched if p(u 1) 2 +(1 p)(d 1) 2 p(u 1)+(1 p)(d 1) 2 = 2 t. (9) Substituting for p =(e r t d) (u d), thissimplifiesto e r t (u + d) ud e 2r t = 2 t. (10)

11 When terms in ( t) 2 and higher powers of t are ignored, a solution to equation (10) is u = e p t and d = e p t. These are the values of u and d used by Cox, Ross, and Rubinstein (1979). What happens if instead we match volatility in the real world? Define µ as the expected return in the real world. We must have p u +(1 p )d = e µ t or p = e µ t d (u d). The equation matching the variance is the same as equation (9) except that p is replaced by p. We then obtain an equation that is the same as equation (10) except that r is replaced by µ. Ignoring terms in ( t) 2 and higher powers of t, we obtain the same solution as equation (10). Girsanov s Theorem When we move from the risk-neutral world to the real world, the expected return from the stock price changes, but its volatility remains the same. Moving from one set of risk preferences to another is referred to as changing the measure. The real-world measure is sometimes referred to as the P -measure, while the risk-neutral world measure is referred to as Q-measure.

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

BUSM 411: Derivatives and Fixed Income

BUSM 411: Derivatives and Fixed Income BUSM 411: Derivatives and Fixed Income 12. Binomial Option Pricing Binomial option pricing enables us to determine the price of an option, given the characteristics of the stock other underlying asset

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

Lecture 16: Delta Hedging

Lecture 16: Delta Hedging Lecture 16: Delta Hedging We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way. These techniques were first proposed in: J.C.

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 Fundamentals of Futures and Options Markets, 8th Ed, Ch 12, Copyright John C. Hull 2013 1 A Simple Binomial Model A stock price is currently $20. In three months

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 1 A Simple Binomial Model l A stock price is currently $20 l In three months it will be either $22 or $18 Stock Price = $22 Stock price = $20 Stock Price = $18

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives November 5, 212 Option Analysis and Modeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis and Modeling:

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives November 4, 213 Option Analysis an Moeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis an Moeling:

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II - Solutions This problem set is aimed at making up the lost

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

Basics of Derivative Pricing

Basics of Derivative Pricing Basics o Derivative Pricing 1/ 25 Introduction Derivative securities have cash ows that derive rom another underlying variable, such as an asset price, interest rate, or exchange rate. The absence o arbitrage

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

Fixed Income and Risk Management

Fixed Income and Risk Management Fixed Income and Risk Management Fall 2003, Term 2 Michael W. Brandt, 2003 All rights reserved without exception Agenda and key issues Pricing with binomial trees Replication Risk-neutral pricing Interest

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

The Binomial Model. Chapter 3

The Binomial Model. Chapter 3 Chapter 3 The Binomial Model In Chapter 1 the linear derivatives were considered. They were priced with static replication and payo tables. For the non-linear derivatives in Chapter 2 this will not work

More information

Binomial Option Pricing

Binomial Option Pricing Binomial Option Pricing The wonderful Cox Ross Rubinstein model Nico van der Wijst 1 D. van der Wijst Finance for science and technology students 1 Introduction 2 3 4 2 D. van der Wijst Finance for science

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

B8.3 Week 2 summary 2018

B8.3 Week 2 summary 2018 S p VT u = f(su ) S T = S u V t =? S t S t e r(t t) 1 p VT d = f(sd ) S T = S d t T time Figure 1: Underlying asset price in a one-step binomial model B8.3 Week 2 summary 2018 The simplesodel for a random

More information

Binomial Trees. Liuren Wu. Options Markets. Zicklin School of Business, Baruch College. Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22

Binomial Trees. Liuren Wu. Options Markets. Zicklin School of Business, Baruch College. Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22 Binomial Trees Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22 A simple binomial model Observation: The current stock price

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II Post-test Instructor: Milica Čudina Notes: This is a closed

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 Option Pricing Models c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 If the world of sense does not fit mathematics, so much the worse for the world of sense. Bertrand Russell (1872 1970)

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS Name: M375T=M396D Introduction to Actuarial Financial Mathematics Spring 2013 University of Texas at Austin Sample In-Term Exam Two: Pretest Instructor: Milica Čudina Notes: This is a closed book and closed

More information

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science

More information

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold)

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized

More information

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences.

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Futures, and options on futures. Martingales and their role in option pricing. A brief introduction

More information

(atm) Option (time) value by discounted risk-neutral expected value

(atm) Option (time) value by discounted risk-neutral expected value (atm) Option (time) value by discounted risk-neutral expected value Model-based option Optional - risk-adjusted inputs P-risk neutral S-future C-Call value value S*Q-true underlying (not Current Spot (S0)

More information

Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71

Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71 Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71 Note: corrections highlighted in bold in the text. To value options using the binomial lattice

More information

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2.

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2. Derivative Securities Multiperiod Binomial Trees. We turn to the valuation of derivative securities in a time-dependent setting. We focus for now on multi-period binomial models, i.e. binomial trees. This

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes

More information

Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Binomial Trees. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets

Binomial Trees. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets Binomial Trees Liuren Wu Zicklin School of Business, Baruch College Options Markets Binomial tree represents a simple and yet universal method to price options. I am still searching for a numerically efficient,

More information

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE.

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. 1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. Previously we treated binomial models as a pure theoretical toy model for our complete economy. We turn to the issue of how

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M339D/M389D Introduction to Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam II - Solutions Instructor: Milica Čudina Notes: This is a closed book and

More information

Properties of Stock Options

Properties of Stock Options Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 Factors a ecting option prices 2 Upper and lower bounds for option prices 3 Put-call parity 4 E ect of dividends Assumptions There

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

Hull, Options, Futures, and Other Derivatives, 9 th Edition

Hull, Options, Futures, and Other Derivatives, 9 th Edition P1.T4. Valuation & Risk Models Hull, Options, Futures, and Other Derivatives, 9 th Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM and Deepa Sounder www.bionicturtle.com Hull, Chapter

More information

Model Calibration and Hedging

Model Calibration and Hedging Model Calibration and Hedging Concepts and Buzzwords Choosing the Model Parameters Choosing the Drift Terms to Match the Current Term Structure Hedging the Rate Risk in the Binomial Model Term structure

More information

Dynamic Hedging and PDE Valuation

Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation 1/ 36 Introduction Asset prices are modeled as following di usion processes, permitting the possibility of continuous trading. This environment

More information

One Period Binomial Model: The risk-neutral probability measure assumption and the state price deflator approach

One Period Binomial Model: The risk-neutral probability measure assumption and the state price deflator approach One Period Binomial Model: The risk-neutral probability measure assumption and the state price deflator approach Amir Ahmad Dar Department of Mathematics and Actuarial Science B S AbdurRahmanCrescent University

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model.

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model. Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model Henrik Brunlid September 16, 2005 Abstract When we introduce transaction costs

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation.

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation. . Lattice Methos. One-step binomial tree moel (Hull, Chap., page 4) Math69 S8, HM Zhu Outline. No-Arbitrage Evaluation. Its relationship to risk-neutral valuation. A Simple Binomial Moel A stock price

More information

Energy and public Policies

Energy and public Policies Energy and public Policies Decision making under uncertainty Contents of class #1 Page 1 1. Decision Criteria a. Dominated decisions b. Maxmin Criterion c. Maximax Criterion d. Minimax Regret Criterion

More information

Real Option Valuation. Entrepreneurial Finance (15.431) - Spring Antoinette Schoar

Real Option Valuation. Entrepreneurial Finance (15.431) - Spring Antoinette Schoar Real Option Valuation Spotting Real (Strategic) Options Strategic options are a central in valuing new ventures o Option to expand o Option to delay o Option to abandon o Option to get into related businesses

More information

Chapter 24 Interest Rate Models

Chapter 24 Interest Rate Models Chapter 4 Interest Rate Models Question 4.1. a F = P (0, /P (0, 1 =.8495/.959 =.91749. b Using Black s Formula, BSCall (.8495,.9009.959,.1, 0, 1, 0 = $0.0418. (1 c Using put call parity for futures options,

More information

Fixed-Income Options

Fixed-Income Options Fixed-Income Options Consider a two-year 99 European call on the three-year, 5% Treasury. Assume the Treasury pays annual interest. From p. 852 the three-year Treasury s price minus the $5 interest could

More information

Trading Strategies Involving Options

Trading Strategies Involving Options Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 Strategies to be considered 2 Principal-protected notes 3 Trading an option and the underlying asset 4 Spreads 5 Combinations Strategies

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Degree project. Pricing American and European options under the binomial tree model and its Black-Scholes limit model

Degree project. Pricing American and European options under the binomial tree model and its Black-Scholes limit model Degree project Pricing American and European options under the binomial tree model and its Black-Scholes limit model Author: Yuankai Yang Supervisor: Roger Pettersson Examiner: Astrid Hilbert Date: 2017-09-28

More information

B6302 Sample Placement Exam Academic Year

B6302 Sample Placement Exam Academic Year Revised June 011 B630 Sample Placement Exam Academic Year 011-01 Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized units). Fund

More information

Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods

Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods Registration number 65 Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods Supervised by Dr Christopher Greenman University of East Anglia Faculty of Science School of Computing

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 OPTION RISK Introduction In these notes we consider the risk of an option and relate it to the standard capital asset pricing model. If we are simply interested

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 19 & 6 th, 1 he Black-Scholes-Merton Model for Options plus Applications Where we are Previously: Modeling the Stochastic Process for Derivative

More information

Optimal Portfolios under a Value at Risk Constraint

Optimal Portfolios under a Value at Risk Constraint Optimal Portfolios under a Value at Risk Constraint Ton Vorst Abstract. Recently, financial institutions discovered that portfolios with a limited Value at Risk often showed returns that were close to

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

************************

************************ Derivative Securities Options on interest-based instruments: pricing of bond options, caps, floors, and swaptions. The most widely-used approach to pricing options on caps, floors, swaptions, and similar

More information

Practice of Finance: Advanced Corporate Risk Management

Practice of Finance: Advanced Corporate Risk Management MIT OpenCourseWare http://ocw.mit.edu 15.997 Practice of Finance: Advanced Corporate Risk Management Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Option pricing models

Option pricing models Option pricing models Objective Learn to estimate the market value of option contracts. Outline The Binomial Model The Black-Scholes pricing model The Binomial Model A very simple to use and understand

More information

MATH 425 EXERCISES G. BERKOLAIKO

MATH 425 EXERCISES G. BERKOLAIKO MATH 425 EXERCISES G. BERKOLAIKO 1. Definitions and basic properties of options and other derivatives 1.1. Summary. Definition of European call and put options, American call and put option, forward (futures)

More information

IAPM June 2012 Second Semester Solutions

IAPM June 2012 Second Semester Solutions IAPM June 202 Second Semester Solutions The calculations are given below. A good answer requires both the correct calculations and an explanation of the calculations. Marks are lost if explanation is absent.

More information

Binomial Option Pricing and the Conditions for Early Exercise: An Example using Foreign Exchange Options

Binomial Option Pricing and the Conditions for Early Exercise: An Example using Foreign Exchange Options The Economic and Social Review, Vol. 21, No. 2, January, 1990, pp. 151-161 Binomial Option Pricing and the Conditions for Early Exercise: An Example using Foreign Exchange Options RICHARD BREEN The Economic

More information

Consequences of Put-Call Parity

Consequences of Put-Call Parity Consequences of Put-Call Parity There is only one kind of European option. The other can be replicated from it in combination with stock and riskless lending or borrowing. Combinations such as this create

More information

A NOVEL BINOMIAL TREE APPROACH TO CALCULATE COLLATERAL AMOUNT FOR AN OPTION WITH CREDIT RISK

A NOVEL BINOMIAL TREE APPROACH TO CALCULATE COLLATERAL AMOUNT FOR AN OPTION WITH CREDIT RISK A NOVEL BINOMIAL TREE APPROACH TO CALCULATE COLLATERAL AMOUNT FOR AN OPTION WITH CREDIT RISK SASTRY KR JAMMALAMADAKA 1. KVNM RAMESH 2, JVR MURTHY 2 Department of Electronics and Computer Engineering, Computer

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 18 & 5 th, 13 he Black-Scholes-Merton Model for Options plus Applications 11.1 Where we are Last Week: Modeling the Stochastic Process for

More information

Fixed-Income Securities Lecture 5: Tools from Option Pricing

Fixed-Income Securities Lecture 5: Tools from Option Pricing Fixed-Income Securities Lecture 5: Tools from Option Pricing Philip H. Dybvig Washington University in Saint Louis Review of binomial option pricing Interest rates and option pricing Effective duration

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: Monday, December 14, 2015. Examination

More information

Derivative Securities

Derivative Securities Derivative Securities he Black-Scholes formula and its applications. his Section deduces the Black- Scholes formula for a European call or put, as a consequence of risk-neutral valuation in the continuous

More information

Derivatives and Asset Pricing in a Discrete-Time Setting: Basic Concepts and Strategies

Derivatives and Asset Pricing in a Discrete-Time Setting: Basic Concepts and Strategies Chapter 1 Derivatives and Asset Pricing in a Discrete-Time Setting: Basic Concepts and Strategies This chapter is organized as follows: 1. Section 2 develops the basic strategies using calls and puts.

More information

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options Real Options for Engineering Systems Session 4: Valuation of financial options Stefan Scholtes Judge Institute of Management, CU Slide 1 Financial Options Option: Right (but not obligation) to buy ( call

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

Evaluating the Black-Scholes option pricing model using hedging simulations

Evaluating the Black-Scholes option pricing model using hedging simulations Bachelor Informatica Informatica Universiteit van Amsterdam Evaluating the Black-Scholes option pricing model using hedging simulations Wendy Günther CKN : 6052088 Wendy.Gunther@student.uva.nl June 24,

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Multi-Period Binomial Option Pricing - Outline

Multi-Period Binomial Option Pricing - Outline Multi-Period Binomial Option - Outline 1 Multi-Period Binomial Basics Multi-Period Binomial Option European Options American Options 1 / 12 Multi-Period Binomials To allow for more possible stock prices,

More information