MULTIPLE CHOICE QUESTIONS

Size: px
Start display at page:

Download "MULTIPLE CHOICE QUESTIONS"

Transcription

1 Name: M375T=M396D Introduction to Actuarial Financial Mathematics Spring 2013 University of Texas at Austin Sample In-Term Exam Two: Pretest Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes Standing assumptions: No-arbitrage All options are European in style MULTIPLE CHOICE QUESTIONS 1. (5 points) Assume that the current exchange rate is $1.3 per euro. The continuously compounded interest rate for the euro is 0.03, while continuously compounded interest rate for the USD is Let the price of an at-the-money USD-denominated European call on on the euro with exercise date in 6 months be equal to What is the price of an at-the-money Euro-denominated put on the USD with the exercise date in 6 months? (a) About (b) About (c) About (d) About (e) None of the above Solution: (b) Let x denote the exchange rate from euros to dollars. We are given that x(0) = 1.3. Using the put-call duality for options on currencies, we get Solution: (a) VP Euro (0, 1/x(0)) = (1/x(0) 2 VC USD (0, x(0)) (5 points)denote the continuously compounded interest rate by r. Let V CC (0) denote the price of a cash call on the asset S with strike K and exercise date T. Let V CP (0) denote the price of a cash put on the asset S with strike K and exercise date T. Then, (a) e rt (b) 1 (c) e rt (d) F P 0,T (S) (e) None of the above V CC (0) + V CP (0) =

2 2 3. (5 points) Denote the continuously compounded interest rate by r. Let V AC (0) denote the price of an asset call on t he asset S with strike K and exercise date T. Let V AP (0) denote the price of an asset put on the asset S with strike K and exercise date T. Then, (a) Ke rt (b) S(0) (c) F 0,T (S) (d) F P 0,T (S) (e) None of the above V AC (0) + V AP (0) = Solution: (d) Answer (b) was accepted as well, since I assumed that the students circling it made the nodividend assumption (since no dividends were explicitly mentioned in the problem statement). TRUE/FALSE QUESTIONS 1. (2 pts) Consider two exchange options, one that allows you to exchange a share of asset S for a share of asset Q, and another one that allows you to forfeit a share of asset Q and obtain a share of asset S in return. Then, the prepaid forward prices of the two assets are the same if and only if the two exchange options have the same price. Solution: TRUE 2. (2 pts) Consider a gap option whose trigger price is equal to its strike price. Then, the premium for this option is the same as that for an ordinary option with the same strike, the same exercise date and the same underlying asset. Solution: TRUE 3. (2 pts) Consider a European gap put option such that its trigger price exceeds its strike price. Then, the premium of this option is decreasing with respect to the trigger price. Solution: TRUE Let us look at the payoff of this option at time T ; I am adding the trigger price K 2 in the notation to emphasise that we are considering it to be the argument of the payoff function. V GP (T, K 2 ) = (K 1 S(T ))I [S(T )<K2 ]. Since we are given that K 1 < K 2, the above payoff is negative for all the values of S(T ) such that K 1 < S(T ) < K 2. Keeping all else fixed, and increasing the value of K 2, we see that the above region becomes wider-and-wider. It is evident that for all else kept intact, i.e., temporarily fixing K 1, S(T ), and T, the function V GP is decreasing as a function of K 2. We have to conclude that this effect is reflected in the initial premium as well. 4. (2 pts) Consider two European exchange options both with exercise date T, one that allows you to exchange a share of asset S for a share of asset Q, and another one that allows you to forfeit a share of asset Q and obtain a share of asset S in return.

3 3 On the other hand, consider the maximum option with the payoff V max (T ) = max(s(t ), Q(T )), and the minimum option with the payoff V min (T ) = min(s(t ), Q(T )). (1) Then, in our usual notation, V EC (S(0), Q(0), 0) + V EC (Q(0), S(0), 0) = V max (0) + V min (0). Solution: FALSE If S(T ) Q(T ), the payoff of a long exchange option allowing you to give up a unit of Q and receive a unit of S is V EC (S(T ), Q(T ), T ) = (S(T ) Q(T )) + = 0, i.e., the option goes unexercised. On the other hand, the payoff of a long exchange option allowing you to give up a unit of S and receive a unit of Q is V EC (Q(T ), S(T ), T ) = (Q(T ) S(T )) + = Q(T ) S(T ). So, the payoff of the portfolio whose price is on the left-hand side of (1) is simply Q(T ) S(T ). The payoff of the portfolio whose initial cost is on the right-hand side of (1) is always S(T ) + Q(T ). So, it is impossible for the proposed equality in prices to always be true. 5. (2 points) Let the continuously compounded interest rate be denoted by r. Consider a futures contract for delivery at time T of a market index with the continuous dividend yield δ. As a function of time, the price of this contract at time t is denoted by F t,t. Denote the time t price of a European call on the futures contract with strike K and exercise date T < T by V C (t), and denote the time t price of a European put on the same futures contract with the same strike price and the same exercise date by V P (t). Then, the following equality is always true V C (t) V P (t) = F t,t e δ(t t) Ke rt. Solution: FALSE There are many things amiss with the right-hand side of the above expression. The correct put-call parity for options on futures reads as V C (t) V P (t) = e r(t t) (F t,t K). FREE RESPONSE PROBLEMS 1. (10 points) The price of a 6 month dollar denominated call option on the euro with a $0.90 strike is $ The price of an otherwise equivalent put option is $ Assume that for the dollar we have r = 5%. a. (5 pts) What is the 6 month dollar-euro forward price? b. (5 pts) If the euro-denominated annual continuously compounded interest rate is 3.5%, what is the spot exchange rate?

4 4 Solution: a. We can use put-call-parity to determine the forward price: V C (0) V P (0) = e rt F 0,T (x) Ke rt F 0,T (x) = e rt [ V C (0) V P (0) + Ke rt ] = e [ $ $ $0.9e ] F 0,T (x) = $ b. Given the forward price from above and the pricing formula for the forward price, we can find the current spot rate: F 0,T (x) = x(0)e (r r f)t x 0 = F 0,T (x)e (r r f)t = $ e ( )0.5 = $ (12 points) Suppose that the exchange rate is 0.95$/e, and that the euro-denominated continuously compounded interest rate is 4%, while the dollar-denominated continuously compounded interest rate is 6%. The price of a 1-year 0.93-strike European call on the euro is $ What is the price of the corresponding European put? Solution: Note: See Problem 9.4. in the textbook! We can make use of the put-call parity for currency options: V P (0) = e r f T x(0) + V C (0) + e rt K V P (0) = e e = = A $0.93 strike European put option has a value of $ (5 points) An investor wants to hold 200 euros two years from today. The spot exchange rate is $1.31 per euro. If the euro denominated annual interest rate is 3.0% what is the price of a currency prepaid forward? Solution: F P 0,T (x) = 200e = (20 points) The current price of a share of stock S is $100. The stock is assumed to be paying a continuous dividend with the dividend yield of Assume that the continuously compounded interest rate equals 0.05 Consider the following European gap options with the same exercise date in one year and the same underlying asset S. I Gap call with strike price 100 and trigger price 100 II Gap put with strike price 100 and trigger price 100 III Gap call with strike price 100 and trigger price 110 IV Gap call with strike price 110 and trigger price 100 V Gap call with strike price 100 and trigger price 80. Which one of the above options has the highest price? Solution: Let us try compare the prices of options I and II, first. Since for the both of them the trigger and the strike prices are the same, we are in fact dealing with just plain vanilla options. The regular put-call parity applies, and in our usual notation, we have V I (0) V II (0) = F P 0,T (S) 100e rt = 100e e 0.05 = 100(e 0.04 e 0.05 ) > 0 Option III has a lower price than option I since the payoff curve for option I dominates the payoff of option III.

5 Using the same type of comparison, we see that the value of option I is greater than the value of option IV (again, the payoff curve for option I is always above or at the same level as the payoff curve for option IV Option I has the higher price than option V (again, its payoff curve is always above or at the same level as the payoff curve for option V). So, the price for option I is higher than the price of option V We conclude that the option with the highest price of the ones offered is option I.

6 (20 points) Consider a two-period binomial model for the stock price with both periods of length one year. Let the initial stock price be S(0) = 100 and assume that the stock pays no dividends. Let the up and down factors be u = 1.25 and d = 0.75, respectively. Let the continuously compounded interest rate be r = 0.05 per annum. Roger is interested in purchasing a chooser option with the provision that he can choose if the option is a put or a call after one year. The strike for this option is $100 and the expiry date is two years. Using the above binomial tree, find the price of the chooser option. Solution: With the fiven u and d, we get the following tree modeling the stock price The risk-neutral probability of the stock price going up is p = e = 2(e ) We can price the chooser option in question in two ways.

7 Method I. One way is to consider all of the possible payoffs for both the put and the call and see which one the rational investor would choose at time one depending on whether he is in the up or the down node. In the up node, the value of the call is In the same node, the value of the put is e 0.05 [ ] = e 0.05 [( ) 6.25] = So, a prudent investor would choose for his option to become a call if he/she is in the up node and the value of his chooser option at this node is Similarly, at the down node, the value of the call is zero, while the value of the put is e 0.05 [ ( ) 43.75] = So, at this node, the rational investor chooses for the option to become a put and, thus, chooser option is worth Finally, the time-0 value of the chooser option is e 0.05 [ ( ) 20.12] = Method II. The alternative method involves the pricing formula for chooser options we developed and used in class. Here, the time-0 price of a chooser option can be written as V C (0, T, K) + V P (0, t, Ke r(t t ) ) where V C (0, T, K) stands for the time-0 price of a European call where K denotes the strike and T is the expiration date and where V P (0, t, Ke r(t t ) ) stands for the time-0 price of a European put where Ke r(t t ) is the strike and t is the expiration date. In the current problem, and V C (0, 2, 100) = e = 18.48, V P (0, 1, 95.12) = e ( ) = So, the price of the chooser option is = The difference in cents between these two answers is due to rounding errors. 6. (25 points) Consider a two-period binomial model for a non-dividend paying asset S with S(0) = 50 and u = 1/d = 2. Let i = 0.25 denote the effective interest rate per period. You need to price a European put option on S which expires at the end of the two periods and has the strike K = 70. (i) (10 pts) Find the values of the given option at all the nodes in the binomial tree. In particular, find the fair price at time 0 of this option. (ii) (10 pts) Find the number of shares one needs to invest in at every node in the tree in order to replicate the option. (iii) (5 pts) If the option were American, would there be early exercise? 7

8 8 Solution: Is is easy to construct the binomial tree with the given parameters and to get the risk-neutral probability p = 1/2. Since the option is European, we could evaluate its price directly as V P (0) = ( (K Suu ) + + 2(K S ud ) + + (K S dd ) +) 4 = ( (70 200) + + 2(70 50) + + ( ) +) 4 = = However, we need to find the value of the put at the other nodes of the tree as well. Evidently, the values at the leaves (notes uu, ud and dd) are precisely the payoffs of the put depending on the stock price, i.e., V uu = 0, V ud = 20 and V dd = At node u, we have At node d, the value is As for the s, V u = (0 + 20) = 8. 2 V d = ( ) = u = = d = = 1 0 = 8 31 = As for early exercise, at node d, the payoff of immediate exercise would be 3 2 (70 25) + = 45 > V d. So, one would create a higher profit by exercising early.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information

= e S u S(0) From the other component of the call s replicating portfolio, we get. = e 0.015

= e S u S(0) From the other component of the call s replicating portfolio, we get. = e 0.015 Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Extra problems Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M339D/M389D Introduction to Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam II - Solutions Instructor: Milica Čudina Notes: This is a closed book and

More information

Name: T/F 2.13 M.C. Σ

Name: T/F 2.13 M.C. Σ Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The maximal

More information

MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. 4 (5) a b c d e 3 (2) TRUE FALSE

MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. 4 (5) a b c d e 3 (2) TRUE FALSE Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information

University of Texas at Austin. HW Assignment 5. Exchange options. Bull/Bear spreads. Properties of European call/put prices.

University of Texas at Austin. HW Assignment 5. Exchange options. Bull/Bear spreads. Properties of European call/put prices. HW: 5 Course: M339D/M389D - Intro to Financial Math Page: 1 of 5 University of Texas at Austin HW Assignment 5 Exchange options. Bull/Bear spreads. Properties of European call/put prices. 5.1. Exchange

More information

Name: 2.2. MULTIPLE CHOICE QUESTIONS. Please, circle the correct answer on the front page of this exam.

Name: 2.2. MULTIPLE CHOICE QUESTIONS. Please, circle the correct answer on the front page of this exam. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Extra problems Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II - Solutions This problem set is aimed at making up the lost

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II Post-test Instructor: Milica Čudina Notes: This is a closed

More information

TRUE/FALSE 1 (2) TRUE FALSE 2 (2) TRUE FALSE. MULTIPLE CHOICE 1 (5) a b c d e 3 (2) TRUE FALSE 4 (2) TRUE FALSE. 2 (5) a b c d e 5 (2) TRUE FALSE

TRUE/FALSE 1 (2) TRUE FALSE 2 (2) TRUE FALSE. MULTIPLE CHOICE 1 (5) a b c d e 3 (2) TRUE FALSE 4 (2) TRUE FALSE. 2 (5) a b c d e 5 (2) TRUE FALSE Tuesday, February 26th M339W/389W Financial Mathematics for Actuarial Applications Spring 2013, University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed

More information

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

More information

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes

More information

1.15 (5) a b c d e. ?? (5) a b c d e. ?? (5) a b c d e. ?? (5) a b c d e FOR GRADER S USE ONLY: DEF T/F ?? M.C.

1.15 (5) a b c d e. ?? (5) a b c d e. ?? (5) a b c d e. ?? (5) a b c d e FOR GRADER S USE ONLY: DEF T/F ?? M.C. Name: M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin The Prerequisite In-Term Exam Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample Midterm Exam - Solutions Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

Name: Def n T/F?? 1.17 M.C. Σ

Name: Def n T/F?? 1.17 M.C. Σ Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The maximal

More information

.5 M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam 2.5 Instructor: Milica Čudina

.5 M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam 2.5 Instructor: Milica Čudina .5 M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam 2.5 Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time:

More information

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG MATH 476/567 ACTUARIAL RISK THEORY FALL 206 PROFESSOR WANG Homework 5 (max. points = 00) Due at the beginning of class on Tuesday, November 8, 206 You are encouraged to work on these problems in groups

More information

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold)

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized

More information

Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

BUSM 411: Derivatives and Fixed Income

BUSM 411: Derivatives and Fixed Income BUSM 411: Derivatives and Fixed Income 12. Binomial Option Pricing Binomial option pricing enables us to determine the price of an option, given the characteristics of the stock other underlying asset

More information

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 1 st edition

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 1 st edition ActuarialBrew.com Exam MFE / 3F Actuarial Models Financial Economics Segment Solutions 04, st edition www.actuarialbrew.com Brewing Better Actuarial Exam Preparation Materials ActuarialBrew.com 04 Please

More information

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 2nd edition

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 2nd edition ActuarialBrew.com Exam MFE / 3F Actuarial Models Financial Economics Segment Solutions 04, nd edition www.actuarialbrew.com Brewing Better Actuarial Exam Preparation Materials ActuarialBrew.com 04 Please

More information

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

B8.3 Week 2 summary 2018

B8.3 Week 2 summary 2018 S p VT u = f(su ) S T = S u V t =? S t S t e r(t t) 1 p VT d = f(sd ) S T = S d t T time Figure 1: Underlying asset price in a one-step binomial model B8.3 Week 2 summary 2018 The simplesodel for a random

More information

B6302 Sample Placement Exam Academic Year

B6302 Sample Placement Exam Academic Year Revised June 011 B630 Sample Placement Exam Academic Year 011-01 Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized units). Fund

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

A&J Flashcards for Exam MFE/3F Spring Alvin Soh

A&J Flashcards for Exam MFE/3F Spring Alvin Soh A&J Flashcards for Exam MFE/3F Spring 2010 Alvin Soh Outline DM chapter 9 DM chapter 10&11 DM chapter 12 DM chapter 13 DM chapter 14&22 DM chapter 18 DM chapter 19 DM chapter 20&21 DM chapter 24 Parity

More information

CHAPTER 9. Solutions. Exercise The payoff diagrams will look as in the figure below.

CHAPTER 9. Solutions. Exercise The payoff diagrams will look as in the figure below. CHAPTER 9 Solutions Exercise 1 1. The payoff diagrams will look as in the figure below. 2. Gross payoff at expiry will be: P(T) = min[(1.23 S T ), 0] + min[(1.10 S T ), 0] where S T is the EUR/USD exchange

More information

Chapter 14. Exotic Options: I. Question Question Question Question The geometric averages for stocks will always be lower.

Chapter 14. Exotic Options: I. Question Question Question Question The geometric averages for stocks will always be lower. Chapter 14 Exotic Options: I Question 14.1 The geometric averages for stocks will always be lower. Question 14.2 The arithmetic average is 5 (three 5s, one 4, and one 6) and the geometric average is (5

More information

Solutions of Exercises on Black Scholes model and pricing financial derivatives MQF: ACTU. 468 S you can also use d 2 = d 1 σ T

Solutions of Exercises on Black Scholes model and pricing financial derivatives MQF: ACTU. 468 S you can also use d 2 = d 1 σ T 1 KING SAUD UNIVERSITY Academic year 2016/2017 College of Sciences, Mathematics Department Module: QMF Actu. 468 Bachelor AFM, Riyadh Mhamed Eddahbi Solutions of Exercises on Black Scholes model and pricing

More information

Option Properties Liuren Wu

Option Properties Liuren Wu Option Properties Liuren Wu Options Markets (Hull chapter: 9) Liuren Wu ( c ) Option Properties Options Markets 1 / 17 Notation c: European call option price. C American call price. p: European put option

More information

Solutions FINAL EXAM 2002 SPRING Sridhar Seshadri B

Solutions FINAL EXAM 2002 SPRING Sridhar Seshadri B Solutions FINAL EXAM 22 SPRING Sridhar Seshadri B9.238. Answer all questions. Answer questions and 2 before attempting question 3. The exam is closed book and closed notes (except for 4 pages of notes).

More information

Fixed-Income Analysis. Assignment 7

Fixed-Income Analysis. Assignment 7 FIN 684 Professor Robert B.H. Hauswald Fixed-Income Analysis Kogod School of Business, AU Assignment 7 Please be reminded that you are expected to use contemporary computer software to solve the following

More information

Actuarial Models : Financial Economics

Actuarial Models : Financial Economics ` Actuarial Models : Financial Economics An Introductory Guide for Actuaries and other Business Professionals First Edition BPP Professional Education Phoenix, AZ Copyright 2010 by BPP Professional Education,

More information

Chapter 14 Exotic Options: I

Chapter 14 Exotic Options: I Chapter 14 Exotic Options: I Question 14.1. The geometric averages for stocks will always be lower. Question 14.2. The arithmetic average is 5 (three 5 s, one 4, and one 6) and the geometric average is

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA 1. Refresh the concept of no arbitrage and how to bound option prices using just the principle of no arbitrage 2. Work on applying

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

d St+ t u. With numbers e q = The price of the option in three months is

d St+ t u. With numbers e q = The price of the option in three months is Exam in SF270 Financial Mathematics. Tuesday June 3 204 8.00-3.00. Answers and brief solutions.. (a) This exercise can be solved in two ways. i. Risk-neutral valuation. The martingale measure should satisfy

More information

Hull, Options, Futures & Other Derivatives Exotic Options

Hull, Options, Futures & Other Derivatives Exotic Options P1.T3. Financial Markets & Products Hull, Options, Futures & Other Derivatives Exotic Options Bionic Turtle FRM Video Tutorials By David Harper, CFA FRM 1 Exotic Options Define and contrast exotic derivatives

More information

Forwards, Futures, Options and Swaps

Forwards, Futures, Options and Swaps Forwards, Futures, Options and Swaps A derivative asset is any asset whose payoff, price or value depends on the payoff, price or value of another asset. The underlying or primitive asset may be almost

More information

Lecture 10 An introduction to Pricing Forward Contracts.

Lecture 10 An introduction to Pricing Forward Contracts. Lecture: 10 Course: M339D/M389D - Intro to Financial Math Page: 1 of 5 University of Texas at Austin Lecture 10 An introduction to Pricing Forward Contracts 101 Different ways to buy an asset (1) Outright

More information

Fixed Income and Risk Management

Fixed Income and Risk Management Fixed Income and Risk Management Fall 2003, Term 2 Michael W. Brandt, 2003 All rights reserved without exception Agenda and key issues Pricing with binomial trees Replication Risk-neutral pricing Interest

More information

Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page.

Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page. Errata for ASM Exam MFE/3F Study Manual (Ninth Edition) Sorted by Page 1 Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page. Note the corrections to Practice Exam 6:9 (page 613) and

More information

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure:

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure: UNIVERSITY OF AGDER Faculty of Economicsand Social Sciences Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure: Exam aids: Comments: EXAM BE-411, ORDINARY EXAM Derivatives

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

Lecture 16: Delta Hedging

Lecture 16: Delta Hedging Lecture 16: Delta Hedging We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way. These techniques were first proposed in: J.C.

More information

Course MFE/3F Practice Exam 2 Solutions

Course MFE/3F Practice Exam 2 Solutions Course MFE/3F Practice Exam Solutions The chapter references below refer to the chapters of the ActuarialBrew.com Study Manual. Solution 1 A Chapter 16, Black-Scholes Equation The expressions for the value

More information

Lecture 17 Option pricing in the one-period binomial model.

Lecture 17 Option pricing in the one-period binomial model. Lecture: 17 Course: M339D/M389D - Intro to Financial Math Page: 1 of 9 University of Texas at Austin Lecture 17 Option pricing in the one-period binomial model. 17.1. Introduction. Recall the one-period

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

Financial Derivatives Section 3

Financial Derivatives Section 3 Financial Derivatives Section 3 Introduction to Option Pricing Michail Anthropelos anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos/ University of Piraeus Spring 2018 M. Anthropelos (Un.

More information

Motivating example: MCI

Motivating example: MCI Real Options - intro Real options concerns using option pricing like thinking in situations where one looks at investments in real assets. This is really a matter of creative thinking, playing the game

More information

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial

More information

Chapter 24 Interest Rate Models

Chapter 24 Interest Rate Models Chapter 4 Interest Rate Models Question 4.1. a F = P (0, /P (0, 1 =.8495/.959 =.91749. b Using Black s Formula, BSCall (.8495,.9009.959,.1, 0, 1, 0 = $0.0418. (1 c Using put call parity for futures options,

More information

1b. Write down the possible payoffs of each of the following instruments separately, and of the portfolio of all three:

1b. Write down the possible payoffs of each of the following instruments separately, and of the portfolio of all three: Fi8000 Quiz #3 - Example Part I Open Questions 1. The current price of stock ABC is $25. 1a. Write down the possible payoffs of a long position in a European put option on ABC stock, which expires in one

More information

American options and early exercise

American options and early exercise Chapter 3 American options and early exercise American options are contracts that may be exercised early, prior to expiry. These options are contrasted with European options for which exercise is only

More information

SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES

SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES These questions and solutions are based on the readings from McDonald and are identical

More information

S 0 C (30, 0.5) + P (30, 0.5) e rt 30 = PV (dividends) PV (dividends) = = $0.944.

S 0 C (30, 0.5) + P (30, 0.5) e rt 30 = PV (dividends) PV (dividends) = = $0.944. Chapter 9 Parity and Other Option Relationships Question 9.1 This problem requires the application of put-call-parity. We have: Question 9.2 P (35, 0.5) = C (35, 0.5) e δt S 0 + e rt 35 P (35, 0.5) = $2.27

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Week 5. Options: Basic Concepts

Week 5. Options: Basic Concepts Week 5 Options: Basic Concepts Definitions (1/2) Although, many different types of options, some quite exotic, have been introduced into the market, we shall only deal with the simplest plain-vanilla options

More information

Binomial Trees. Liuren Wu. Options Markets. Zicklin School of Business, Baruch College. Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22

Binomial Trees. Liuren Wu. Options Markets. Zicklin School of Business, Baruch College. Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22 Binomial Trees Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch ) Binomial Trees Options Markets 1 / 22 A simple binomial model Observation: The current stock price

More information

The Johns Hopkins Carey Business School. Derivatives. Spring Final Exam

The Johns Hopkins Carey Business School. Derivatives. Spring Final Exam The Johns Hopkins Carey Business School Derivatives Spring 2010 Instructor: Bahattin Buyuksahin Final Exam Final DUE ON WEDNESDAY, May 19th, 2010 Late submissions will not be graded. Show your calculations.

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 1 A Simple Binomial Model l A stock price is currently $20 l In three months it will be either $22 or $18 Stock Price = $22 Stock price = $20 Stock Price = $18

More information

University of Texas at Austin. Problem Set #4

University of Texas at Austin. Problem Set #4 Problem set: 4 Course: M339D/M389D - Intro to Financial Math Page: 1 of 5 University of Texas at Austin Problem Set #4 Problem 4.1. The current price of a non-dividend-paying stock is $80 per share. You

More information

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark).

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark). The University of Toronto ACT460/STA2502 Stochastic Methods for Actuarial Science Fall 2016 Midterm Test You must show your steps or no marks will be awarded 1 Name Student # 1. 2 marks each True/False:

More information

P-7. Table of Contents. Module 1: Introductory Derivatives

P-7. Table of Contents. Module 1: Introductory Derivatives Preface P-7 Table of Contents Module 1: Introductory Derivatives Lesson 1: Stock as an Underlying Asset 1.1.1 Financial Markets M1-1 1.1. Stocks and Stock Indexes M1-3 1.1.3 Derivative Securities M1-9

More information

Binomial Trees. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets

Binomial Trees. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets Binomial Trees Liuren Wu Zicklin School of Business, Baruch College Options Markets Binomial tree represents a simple and yet universal method to price options. I am still searching for a numerically efficient,

More information

Fixed-Income Options

Fixed-Income Options Fixed-Income Options Consider a two-year 99 European call on the three-year, 5% Treasury. Assume the Treasury pays annual interest. From p. 852 the three-year Treasury s price minus the $5 interest could

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 Fundamentals of Futures and Options Markets, 8th Ed, Ch 12, Copyright John C. Hull 2013 1 A Simple Binomial Model A stock price is currently $20. In three months

More information

Degree project. Pricing American and European options under the binomial tree model and its Black-Scholes limit model

Degree project. Pricing American and European options under the binomial tree model and its Black-Scholes limit model Degree project Pricing American and European options under the binomial tree model and its Black-Scholes limit model Author: Yuankai Yang Supervisor: Roger Pettersson Examiner: Astrid Hilbert Date: 2017-09-28

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Chapter 2 Questions Sample Comparing Options

Chapter 2 Questions Sample Comparing Options Chapter 2 Questions Sample Comparing Options Questions 2.16 through 2.21 from Chapter 2 are provided below as a Sample of our Questions, followed by the corresponding full Solutions. At the beginning of

More information

ECO OPTIONS AND FUTURES SPRING Options

ECO OPTIONS AND FUTURES SPRING Options ECO-30004 OPTIONS AND FUTURES SPRING 2008 Options These notes describe the payoffs to European and American put and call options the so-called plain vanilla options. We consider the payoffs to these options

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 6 (2011/12) 1 March 19, 2012 Outline: 1. Option Strategies 2. Option Pricing - Binomial Tree Approach 3. More about Option ====================================================

More information

3 + 30e 0.10(3/12) > <

3 + 30e 0.10(3/12) > < Millersville University Department of Mathematics MATH 472, Financial Mathematics, Homework 06 November 8, 2011 Please answer the following questions. Partial credit will be given as appropriate, do not

More information

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility LECTURE 12 Review Options C = S e -δt N (d1) X e it N (d2) P = X e it (1- N (d2)) S e -δt (1 - N (d1)) Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Derivative Instruments

Derivative Instruments Derivative Instruments Paris Dauphine University - Master I.E.F. (272) Autumn 2016 Jérôme MATHIS jerome.mathis@dauphine.fr (object: IEF272) http://jerome.mathis.free.fr/ief272 Slides on book: John C. Hull,

More information

Introduction to Forwards and Futures

Introduction to Forwards and Futures Introduction to Forwards and Futures Liuren Wu Options Pricing Liuren Wu ( c ) Introduction, Forwards & Futures Options Pricing 1 / 27 Outline 1 Derivatives 2 Forwards 3 Futures 4 Forward pricing 5 Interest

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 and Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 06: March 26, 2015 1 / 47 Remember and Previous chapters: introduction to the theory of options put-call parity fundamentals

More information

SOA Exam MFE Solutions: May 2007

SOA Exam MFE Solutions: May 2007 Exam MFE May 007 SOA Exam MFE Solutions: May 007 Solution 1 B Chapter 1, Put-Call Parity Let each dividend amount be D. The first dividend occurs at the end of months, and the second dividend occurs at

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives November 5, 212 Option Analysis and Modeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis and Modeling:

More information

Options. Investment Management. Fall 2005

Options. Investment Management. Fall 2005 Investment Management Fall 2005 A call option gives its holder the right to buy a security at a pre-specified price, called the strike price, before a pre-specified date, called the expiry date. A put

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Exotic Options. Chapter 19. Types of Exotics. Packages. Non-Standard American Options. Forward Start Options

Exotic Options. Chapter 19. Types of Exotics. Packages. Non-Standard American Options. Forward Start Options Exotic Options Chapter 9 9. Package Nonstandard American options Forward start options Compound options Chooser options Barrier options Types of Exotics 9.2 Binary options Lookback options Shout options

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48.

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48. Fi8000 Valuation of Financial Assets Spring Semester 00 Dr. Isabel katch Assistant rofessor of Finance Valuation of Options Arbitrage Restrictions on the Values of Options Quantitative ricing Models Binomial

More information

The Binomial Model. Chapter 3

The Binomial Model. Chapter 3 Chapter 3 The Binomial Model In Chapter 1 the linear derivatives were considered. They were priced with static replication and payo tables. For the non-linear derivatives in Chapter 2 this will not work

More information