and K = 10 The volatility a in our model describes the amount of random noise in the stock price. Y{x,t) = -J-{t,x) = xy/t- t<pn{d+{t-t,x))

Size: px
Start display at page:

Download "and K = 10 The volatility a in our model describes the amount of random noise in the stock price. Y{x,t) = -J-{t,x) = xy/t- t<pn{d+{t-t,x))"

Transcription

1 -5b THE GREEKS Theta #(t, x) of a call option with T = 0.75 and K = 10 Rho g{t,x) of a call option with T = 0.75 and K = 10 The volatility a in our model describes the amount of random noise in the stock price. The derivative Y{x,t) = -J-{t,x) = xy/t- t<pn{d+{t-t,x)) is called Vega of the European call option. Because the Vega is positive the price of a European call option is an increasing function of the volatility. The economical reason is that a bigger value of the volatility yields a higher probability for a larger possible profit in the positive case. Another important consequence in the next section is that the function a i-> f(t,x) is strictly increasing and therefore invertible. Vega y(t, x) of a call option with T = 0.75 and K = 10 Example (Hedging by the Greeks) Theoretically, by trading according to the hedging strategy one has no reason to take into account any other thoughts. But in practice this is not possible because it requires rebalancing the portfolio continuously. But if a trader zero out the delta say once a day there might occur a big difference between the value of the option and the hedging portfolio, see Example We consider a portfolio consisting of maybe several different contingent claims on a single risky-asset, the asset itself and a risk-free asset. The Delta and Gamma of such

2 CHAPTER 3. BLACK-SCHOLES MODEL a portfolio is defined analogously as the derivatives of its value. Trading according the hedging strategy implies that the Delta of the portfolio should be zero. The Gamma of a portfolio is the rate of change of the Delta with respect to the price of the share. Small values of Gamma indicates that the Delta changes slowly and adjustment of the portfolio to keep it Delta neutral need to be made only occasionally. But if the Gamma is large the portfolio is highly sensitive to the price of the underlying asset. Thus, a trader aims to keep his portfolio Gamma neutral, which means the Gamma should be zero. This can be achieved by including another traded contingent claim on the same share. Assume that this additional contingent claim has a Gamma Vc and the Gamma of the portfolio is rp. Including a units of the new contingent claim to the portfolio results in Gamma of the portfolio orc + Fp and therefore one set* -si- rf- The additional position in the new contingent claim is likely to change the Delta of the portfolio. Therefore, the position in the share itself has to rearrange in order to guarantee Delta-neutrality. In the Black-Scholes model the volatility is assumed to be constant which can be seen easily not to be in accordance with the real world. The Vega of a portfolio is the rate of change of the value of the portfolio with respect to the volatility of the underlying risky asset. If the value of the Vega is very large, the value of the portfolio is very sensitive to changes in the volatility. This risk can be reduced to keep a portfolio Vega-neutral. 3.4 Volatility To determine the price of a European call option by formula (3.2.7) following parameters: we need to know the the strike price K; the time T of maturity; the interest rate r; the current share price 5(0); the volatility a. All of them are part of the contract (K and T) or directly observable on the market (r and S(0)) - except the volatility a Historical Volatility One can estimate empirically the volatility of the stock price by observing data of the share price in the past. We assume that we have observed the share prices (S(t) : t [0,T]) at equidistant times t\,...,tn with r := U - U-\. Let sj,...,sn denote our observations. If we set Z, := log S(ti)/S(U-i) it follows by Lemma that the random variables Z\,..., Zn are independent and identically distributed with

3 -sz CRITICISM Thus, to obtain an estimate for a it is sufficient to estimate the variance a2r of Zi by the obervations Zi := Sj/si-i. This can be done in the standard way by the empirical variance 1 n i n v := > [Zi z), where z > Zi. n - 1 *-f nff Then \Jv2}t is an estimate for ct which exhibits several appreciated statistical properties. This method depends on the choice of n. One can argue that the more date are uesed the better is the estimate. But on the other hand, it has to be assumed that the volatility changes over time so that too old date might distort the estimate. There are many more sophisticated methods to estimate cr, for example linear models, see [10, Chp. 15] Implied Volatility Alternatively, one can estimate the volatility for the stock price S by using the market price data for another option written on the same underlying share. Typically, if we want to price a European call option the other option C is also a European call option but with a different strike price K' and expiration time T'. In the Black-Scholes model the price function /' : [0, T] x R,+ > R,+ of the other call option C is given at time t = 0 by - K'e~rT'FN (]J}^LE where s = S(0) is the current stock price. The price /'(0, s) today is the observed market price and thus, the only unknown parameter in this equation is a. Thus, solving for a gives an estimate for u which is called implied volatility. In practice this has to be done by a numerical scheme because one can not solve explicitly for a. If the Black-Scholes model would represent perfectly well the real world the implied volatility values calculated based on different options, say call options with different strike prices and time to expiration, would coincide. But in practice however, the im plied volatilities differ significantly depending upon the strike price. The typical pattern of implied volatilities as a function of the strike price forms a "smile" shape. This phe nomena is called volatility smile or volatility skew. In practice one has to choose carefully the observed prices which serve as the basis for the calculation of the implied volatility. 3.5 Criticism Despite its popularity there is a lot of criticism on the Black-Scholes model. In the following we mention shortly some problems with the Black-Scholes model. Many of them can be confirmed statistically and are subject of empirical tests, see for example the cited literature in [16, 6.3]. The assumption of the geometric Brownian motion as a model for the share price is not in accordance with statistical data. For example, one can show by statistical methods that for many data the log returns log f,.s J for some s, t > 0

4 -S3- CHAPTER 3. BLACK-SCHOLES MODEL are not normally distributed as it is the case in the Black-Scholes model. The already discussed volatility smiles (see Section 3.4.2) indicates this imperfection. As one solution out of this dilemma it is very popular nowadays to consider stochas tic volatility models, in which the volatility itself is modeled by a stochastic process. For example: ) for all t 6 [0,T], d$(t) = g{t, *(*)) dt + h{t% $(0) dw*{t) for all t <E [0,T], where //. H, g, h : [0, T\ x 1R -» R are deterministic functions and W\ and W2 are one-dimensional Wiener processes. Thus, the volatility is here modeled by a stochastic process ($(0 : t G [0,T]) which is assumed to be a solution of another stochastic differential equation. The investigation of such kind of models requires more sophisticated tools from probability theory which we will introduce in the next section. In the later chapter on risk-neutral pricing we will include these models. As the financial crisis in 2007 demonstrated the stock prices might be subject to large jumps. One can find many other evidences that due to some extraordinary incidences the share prices do not behave as regular as it is indicated by a lognormally distributed stochastic process. In particular, discontinuities can not be modeled by a geometric Brownian motion as it has continuous trajectories, see Theorem In order to model possible jumps of the underlying share prices the driving Brownian motion is replaced by a Levy processes, see for example [4]. The interest rate r is not constant in time and it differs for borrowing and lending. In a later chapter we will consider different models for the interest rate depending on time and on the market performance. there are transaction costs on the market. However, as every parametric model in finance, statistics or applied mathematics, the Black-Scholes model is only intended to give a simplified description of the reality. If one draws conclusion out of this model one should bear this in mind!

5 -SH- Chapter 4 Stochastic Calculus II In this chapter I follow very closely section 4.5 and 4.6 in Etheridge [7]. In the following (Q,#/,P) is a probability space with a Brownian motion (W(t) : t [0,T]). The considered filtration is generated by the Brownian motion: &Y = a{w{s) : 0 s$ s < t) for all t 6 [O.T]. 4.1 Girsanov's Theorem Example We reconsider the Cox-Ross-Rubinstein model and assume that d < 1 + r < u such that the model is arbitrage-free. For simplicity we assume r = 0. Then the unique equivalent risk-neutral measure Q is given by u A specific paths of up and down jumps can be described by a vector (ii,...,?'t) for ik {0,1} and %k = 1 denotes a up-jump from time fc - 1 to /e, i.e. the value of Xk- The probability under P of the occurrence of a specific path, say (ii,...,it) for ik G {0,1}, is Then, the probability under Q of the same path is Q(X1 =»,,...,Xt = it) = 9*»+""H' (1 -,)' where it is defined by ii H hi " /i-,y \~p) In order to investigate the term It under conditional expectation, we introduce its random analogue:

6 55- CHAPTER 4. STOCHASTIC CALCULUS II and thus, L = (Lt : t = 1,...,T) can be considered as an adapted stochastic process. Moreover, we have EP[Lt\.*,_,] = Lt_x (Vq- + (1 - p)^ where {&t}t=o,...,t denotes the filtration in the Cox-Ross-Rubinstein model. Thus, L is a martingale under P with EP[Li] = EP\Lt] = 1 for all t [0,T]. Theorem (Girsanov's Theorem) Let {X(t) : t [0,T]) be an adapted stochastic process satisfying p( f X2(s)ds <oo) =1. (4.1.1) Define forte [0,T] L{t) := exp (- I X{s)dW(s) - \ j X2{s)d^\ and a mapping Q by Q-.&-+ [0,oo], Q(A) := / L(T)dP = EP[tAL(T)\. JA If(L(t) : t G [0, T]) is a martingale under P then the mapping Q is a probability measure and the stochastic process (W( ) : t G [0,7"]) defined by W{t):=W{t)+! X{s)d& Jo is a Brownian motion under the new measure Q. Proof See Theorem in [7]. Notation: The stochastic process (L(t) : t e [0,T]) is called Radon-Nikodym derivative and is denoted by Remark (a) The condition (4.1.1) guarantees that the stochastic integral in the definition of L(t) exists. The main condition and often most difficult to verify is the requirement that {L(t) : t e [0,r]) is a martingale. (b) Since by definition of L we have P{L(t) > 0) it follows by the definition of Q by Q{A) = EP[1AL{T)) that Q(A) = 0 & P(A) = 0, that is the measures P and Q are equivalent.

7 GIRSANOV'S THEOREM Corollary Under the condition of Theorem we have we have for any adapted stochastic process (Y(t) : t 6 [OjX1]): EQ\Y(t)\&s] = EP \Y{t)=f!r\jra\ P-a.s. Proof. Follows from the definition of the measure Q. Example Let (Y(t) : t [0,T]) be given by Y{t) := fd + aw(t) for some constants fx e R and a > 0 and where {W(t) : t [0,T]) is a Brownian motion under P. Is there a measure such that Y is a martingale? For X(t) = ///<r it follows from part (b) in Theorem that L defined in Girsanov's Theorem is a martingale. Thus, Girsanov's Theorem implies that W(i) := Wit) + a defines a Brownian motion (W(t) : t 6 [0,T]) under the probability measure Q : si -> [0,1], Q(A) = EP [l^ exp (-%W{t) - g One can calculate for example EP{Y2{t)} = EP [fx2t2 + 2^<rW(t) + a2w2(t)] = a2i ^ In applying Girsanov's Theorem the most difficult part is to verify that {L{t) : t G [0,T]) is a martingale. A powerful tool for that is the following sufficient condition: Theorem (Novikov condition) Let (X(t) : t G [0,T]) be an adapted stochastic process satisfying p( f X2(s)ds <oo) =1. Define for t <= [0, T] L(t) :=exp(- / X(s)dW(s) - { I X2{s)ds\ If E T exp - / X2(s)ds < oc then the process (L(t) : t 6 [0,T]) is a martingale under P.

8 CHAPTER 4. STOCHASTIC CALCULUS II 4.2 The Brownian Martingale Representation Theo rem If (X(t) : t G [0,T]) is a stochastic process in j f*[0,t] then the stochastic integral M(t):= / X{s)dW{s) defines a martingale [M{t) : t G (0, T]) by Theorem The question arises if there are other martingales, which are not of this specific form? Before we state the answer of this question we have to define the analogue of the notion of a predictable stochastic process in continuous time: Definition A stochastic process {X(t) : t e [0,T]) is called predictable with respect to the given filtration {<&t}t [a,t] if for all t [0,T] X (t) is 3\- -measurable where &t- ' = I) & s 3<t The meaning of a predictable stochastic process in continuous time is the same as in discrete time: the possible outcome of the random variable X(t) depends only on all events which are observable till just before time t. In discrete time this is a whole step before the current time t, in continuous time this are all times s strictly less than t. Remark One can prove that a stochastic process which is adapted and continuous from the left (or from the- right) is predictable. Theorem (Brownian Martingale Representation Theorem) Assume that the filtration is generated by the Brownian motion, i.e. &t = &Y for a^ t 6 [0,T]. Let {M(t) : t G [0,T]) be an &t-adapted, continuous martingale with E[M2{t)] <oo for all te [0,T]. Then there exists a predictable stochastic process (Y(t) : t [0,T]) such that Remark M(t) = M(0) + / Y{s)dW(s) P-a.s. (4.2.2) Jo (a) The proof of Theorem is not constructive so it does not give an expression of the process Y. (b) An important condition in the Brownian martingale representation theorem is the requirement that the considered filtration is generated by the Brownian motion (as agreed in the beginning of this chapter). The need for this can be seen by the representation (4.2.2) because the only source of uncertainty or randomness is the process Y and the Brownian motion W both measurable with respect to the filtration generated by W.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

Risk-Neutral Valuation

Risk-Neutral Valuation N.H. Bingham and Rüdiger Kiesel Risk-Neutral Valuation Pricing and Hedging of Financial Derivatives W) Springer Contents 1. Derivative Background 1 1.1 Financial Markets and Instruments 2 1.1.1 Derivative

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES Along with providing the way uncertainty is formalized in the considered economy, we establish in this chapter the

More information

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

Option Pricing under Delay Geometric Brownian Motion with Regime Switching Science Journal of Applied Mathematics and Statistics 2016; 4(6): 263-268 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20160406.13 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 23 rd March 2017 Subject CT8 Financial Economics Time allowed: Three Hours (10.30 13.30 Hours) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1. Please read

More information

THE MARTINGALE METHOD DEMYSTIFIED

THE MARTINGALE METHOD DEMYSTIFIED THE MARTINGALE METHOD DEMYSTIFIED SIMON ELLERSGAARD NIELSEN Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk s Arbitrage Theory

More information

Lecture 9: Practicalities in Using Black-Scholes. Sunday, September 23, 12

Lecture 9: Practicalities in Using Black-Scholes. Sunday, September 23, 12 Lecture 9: Practicalities in Using Black-Scholes Major Complaints Most stocks and FX products don t have log-normal distribution Typically fat-tailed distributions are observed Constant volatility assumed,

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 20 Lecture 20 Implied volatility November 30, 2017

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

MSc Financial Mathematics

MSc Financial Mathematics MSc Financial Mathematics Programme Structure Week Zero Induction Week MA9010 Fundamental Tools TERM 1 Weeks 1-1 0 ST9080 MA9070 IB9110 ST9570 Probability & Numerical Asset Pricing Financial Stoch. Processes

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

MSc Financial Mathematics

MSc Financial Mathematics MSc Financial Mathematics The following information is applicable for academic year 2018-19 Programme Structure Week Zero Induction Week MA9010 Fundamental Tools TERM 1 Weeks 1-1 0 ST9080 MA9070 IB9110

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Martingale Approach to Pricing and Hedging

Martingale Approach to Pricing and Hedging Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

where W( ) := W{i) + JQ M(s)ds defines a Brownian motion (W[t) : t [0, T}) under

where W( ) := W{i) + JQ M(s)ds defines a Brownian motion (W[t) : t [0, T}) under CHAPTERS. RISK-NEUTRAL PRICING (b) the discounted stock price S is a [local] martingale with respect to Q. The condition (a) is required because under the risk-neutral measure Q the same events A should

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1.

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1. THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** Abstract The change of numeraire gives very important computational

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

The Binomial Model. Chapter 3

The Binomial Model. Chapter 3 Chapter 3 The Binomial Model In Chapter 1 the linear derivatives were considered. They were priced with static replication and payo tables. For the non-linear derivatives in Chapter 2 this will not work

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Statistical Methods in Financial Risk Management

Statistical Methods in Financial Risk Management Statistical Methods in Financial Risk Management Lecture 1: Mapping Risks to Risk Factors Alexander J. McNeil Maxwell Institute of Mathematical Sciences Heriot-Watt University Edinburgh 2nd Workshop on

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 9 Lecture 9 9.1 The Greeks November 15, 2017 Let

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

Stochastic Volatility

Stochastic Volatility Stochastic Volatility A Gentle Introduction Fredrik Armerin Department of Mathematics Royal Institute of Technology, Stockholm, Sweden Contents 1 Introduction 2 1.1 Volatility................................

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

The Impact of Volatility Estimates in Hedging Effectiveness

The Impact of Volatility Estimates in Hedging Effectiveness EU-Workshop Series on Mathematical Optimization Models for Financial Institutions The Impact of Volatility Estimates in Hedging Effectiveness George Dotsis Financial Engineering Research Center Department

More information

Subject CT8 Financial Economics Core Technical Syllabus

Subject CT8 Financial Economics Core Technical Syllabus Subject CT8 Financial Economics Core Technical Syllabus for the 2018 exams 1 June 2017 Aim The aim of the Financial Economics subject is to develop the necessary skills to construct asset liability models

More information

Market interest-rate models

Market interest-rate models Market interest-rate models Marco Marchioro www.marchioro.org November 24 th, 2012 Market interest-rate models 1 Lecture Summary No-arbitrage models Detailed example: Hull-White Monte Carlo simulations

More information

Walter S.A. Schwaiger. Finance. A{6020 Innsbruck, Universitatsstrae 15. phone: fax:

Walter S.A. Schwaiger. Finance. A{6020 Innsbruck, Universitatsstrae 15. phone: fax: Delta hedging with stochastic volatility in discrete time Alois L.J. Geyer Department of Operations Research Wirtschaftsuniversitat Wien A{1090 Wien, Augasse 2{6 Walter S.A. Schwaiger Department of Finance

More information

Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing. 1 Introduction. Mrinal K. Ghosh Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

More information

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends.

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 224 10 Arbitrage and SDEs last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 10.1 (Calculation of Delta First and Finest

More information

A note on the existence of unique equivalent martingale measures in a Markovian setting

A note on the existence of unique equivalent martingale measures in a Markovian setting Finance Stochast. 1, 251 257 1997 c Springer-Verlag 1997 A note on the existence of unique equivalent martingale measures in a Markovian setting Tina Hviid Rydberg University of Aarhus, Department of Theoretical

More information

Continuous-Time Consumption and Portfolio Choice

Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice 1/ 57 Introduction Assuming that asset prices follow di usion processes, we derive an individual s continuous

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Finance: A Quantitative Introduction Chapter 8 Option Pricing in Continuous Time

Finance: A Quantitative Introduction Chapter 8 Option Pricing in Continuous Time Finance: A Quantitative Introduction Chapter 8 Option Pricing in Continuous Time Nico van der Wijst 1 Finance: A Quantitative Introduction c Cambridge University Press 1 Modelling stock returns in continuous

More information

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1 Chapter 9 The isk Neutral Pricing Measure for the Black-Scholes Model The discounted portfolio value of a selffinancing strategy in discrete time was given by v tk = v 0 + k δ tj (s tj s tj ) (9.) where

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

Arbitrage, Martingales, and Pricing Kernels

Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels 1/ 36 Introduction A contingent claim s price process can be transformed into a martingale process by 1 Adjusting

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Semigroup Properties of Arbitrage Free Pricing Operators. John Heaney and Geoffrey Poitras

Semigroup Properties of Arbitrage Free Pricing Operators. John Heaney and Geoffrey Poitras 30/7/94 Semigroup Properties of Arbitrage Free Pricing Operators John Heaney and Geoffrey Poitras Faculty of Business Administration Simon Fraser University Burnaby, B.C. CANADA V5A 1S6 ABSTRACT This paper

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

International Mathematical Forum, Vol. 6, 2011, no. 5, Option on a CPPI. Marcos Escobar

International Mathematical Forum, Vol. 6, 2011, no. 5, Option on a CPPI. Marcos Escobar International Mathematical Forum, Vol. 6, 011, no. 5, 9-6 Option on a CPPI Marcos Escobar Department for Mathematics, Ryerson University, Toronto Andreas Kiechle Technische Universitaet Muenchen Luis Seco

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

Greek parameters of nonlinear Black-Scholes equation

Greek parameters of nonlinear Black-Scholes equation International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 69-74. ISSN Print : 2249-3328 ISSN Online: 2319-5215 Greek parameters of nonlinear Black-Scholes equation Purity J. Kiptum 1,

More information

Mixing Di usion and Jump Processes

Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes 1/ 27 Introduction Using a mixture of jump and di usion processes can model asset prices that are subject to large, discontinuous changes,

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model American Journal of Theoretical and Applied Statistics 2018; 7(2): 80-84 http://www.sciencepublishinggroup.com/j/ajtas doi: 10.11648/j.ajtas.20180702.14 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

Institute of Actuaries of India. Subject. ST6 Finance and Investment B. For 2018 Examinationspecialist Technical B. Syllabus

Institute of Actuaries of India. Subject. ST6 Finance and Investment B. For 2018 Examinationspecialist Technical B. Syllabus Institute of Actuaries of India Subject ST6 Finance and Investment B For 2018 Examinationspecialist Technical B Syllabus Aim The aim of the second finance and investment technical subject is to instil

More information

A Brief Review of Derivatives Pricing & Hedging

A Brief Review of Derivatives Pricing & Hedging IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh A Brief Review of Derivatives Pricing & Hedging In these notes we briefly describe the martingale approach to the pricing of

More information

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE DOI: 1.1214/ECP.v7-149 Elect. Comm. in Probab. 7 (22) 79 83 ELECTRONIC COMMUNICATIONS in PROBABILITY OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE FIMA KLEBANER Department of Mathematics & Statistics,

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Hedging Strategies : Complete and Incomplete Systems of Markets. Papayiannis, Andreas. MIMS EPrint:

Hedging Strategies : Complete and Incomplete Systems of Markets. Papayiannis, Andreas. MIMS EPrint: Hedging Strategies : Complete and Incomplete Systems of Markets Papayiannis, Andreas 010 MIMS EPrint: 01.85 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester

More information

Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser

Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser Part 1: Introduction Chapter 1: Review of discrete time finance Part 2: Stochastic analysis Chapter 2: Stochastic processes

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Steve Dunbar No Due Date: Practice Only. Find the mode (the value of the independent variable with the

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an Imprint of Elsevier

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an Imprint of Elsevier Computational Finance Using C and C# Derivatives and Valuation SECOND EDITION George Levy ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Asset-or-nothing digitals

Asset-or-nothing digitals School of Education, Culture and Communication Division of Applied Mathematics MMA707 Analytical Finance I Asset-or-nothing digitals 202-0-9 Mahamadi Ouoba Amina El Gaabiiy David Johansson Examinator:

More information