( ) 2 ( ) 2 where s 1 > s 2

Size: px
Start display at page:

Download "( ) 2 ( ) 2 where s 1 > s 2"

Transcription

1 Section 9 4: Testing a Claim about the Difference in 2 Population Standard Deviations Test H 0 : σ 1 =σ 2 there is no difference in Population Standard Deviations σ 1 σ 2 = 0 against H 1 : σ 1 >σ 2 or H 1 : σ 1 σ 2 where s 1 > at a significance level of α 1. Both populations are normal. Requirements 2. An independent random sample of each population is taken. The sample with the larger sample standard deviation will be labeled Sample 1. The sample with the smaller sample standard deviation will be labeled Sample 2. Notation for the Samples of Two Population Standard Deviations The sample with the larger sample The sample with the smaller sample σ 1 = Population Standard Deviation σ 2 = Population Standard Deviation n 1 = sample size n 2 = sample size s 1 = Sample Standard Deviation = Sample Standard Deviation from Population 1 from Population 2 Testing a Claim about the Difference in 2 Population Standard Deviations with H 0 : σ 1 =σ 2 Test Statistic: F = s 1 where s 1 > with the Numerators DF = n 1 1 and the Denominators DF = n 2 1 Note: By selecting s 1 > we can always use a right tail test. Find the right tail critical value of the F distribution and compare it against the F test statistic. If the F test statistic is greater than the right tail critical value of the F distribution then reject H 0 : σ 1 =σ 2 If the F test statistic is less than the right tail critical value of the F distribution then do not reject H 0 : σ 1 =σ 2 Section 9 4 Lecture Page 1 of Eitel

2 Testing a Claim about the Difference in 2 Population Standard Deviations Example 1 (Right Tail Test) A study of the amount of variance in the amount of caffeine in Bayer Aspirin Excedrin was conducted by a local hospital. A random sample of 41 tablets of 500 mg. Bayer Aspirin found that they contained an average of 20 mg. of caffeine and had a standard deviation of.32 mg of caffeine. A random sample of 61 tablets of 500 mg. of Excedrin found that they contained an average of 20 mg. of caffeine had a standard deviation of.29 mg. of caffeine. Use a α =.01 significant level to test the claim that 500 mg. tablets of Bayer Aspirin have a larger standard deviation in caffeine than 500 mg. tablets of Excedrin. The sample with the larger sample The sample with the smaller sample Bayer Aspirin Excedrin s 1 =.32 mg. =.29 mg. n 1 = 41 Numerator DF = 40 n 2 = 61 Denominator DF = 60 Ho: σ 1 = σ 2 H1: σ 1 > σ 2 Right Tail Test of H 0 : σ 1 = σ 2 α =.01 Numerator DXF = 40 Denominator DXF = 60 Test Statistic: F = s 1 where s 1 > Do Not F = α =.01 F F = F = Conclusion based on H 0 : Do not Conclusion based on the problem: There is not sufficient evidence at the α =.01 level to reject the hypothesis that 500 mg. tablets of Bayer Aspirin have the same standard deviation in the amount of caffeine as 500 mg. Excedrin tablets. Section 9 4 Lecture Page 2 of Eitel

3 F Distribution: Critical Values for a Right Tail with Area.01 DXF Inf. DXF Section 9 4 Lecture Page 3 of Eitel

4 Example 2 (Left Tail Question converted into a Right Tail Test) A local weather station reported stated both Redding and Sacramento have an average yearly rainfall of 28 inches. A viewer from Redding called in and said that it seemed like Redding had a lot more variation in rainfall from year to year than Sacramento did. A random sample of 61 years of rainfall in Redding had an average yearly rainfall of 28 inches a year with a sample standard deviation of 4 inches a year. A random sample of 121 years of rainfall in Sacramento had an average yearly rainfall of 28 inches a year with a sample standard deviation of 6 inches a year. Use a α =.05 significant level to test the claim that Redding has a lower standard deviation in yearly rainfall than Sacramento. The sample with the larger sample The sample with the smaller sample Sacramento Redding s 1 = 6 in. = 4 in. n 1 =121 Numerator DF = 120 n 2 = 61 Denominator DF = 60 Note: If =1 (Redding) is lower than s 1 = 6 (Sacramento) then H1 could be σ 2 < σ 1 but we want a right tail test so we test H1 as σ 1 > σ 2 Ho: σ 1 = σ 2 H1: σ 1 > σ 2 Graph of Critical information: α =.05 Numerator DXF = 120 Denominator DXF = 60 Test Statistic: F = s 1 where s 1 > Do Not F = α =.05 F F = F = 2.25 Conclusion based on H 0 : Conclusion based on the problem: There is sufficient evidence at the α =.05 level to reject the hypothesis that Sacramento and Redding have the same standard deviation in annual rainfall. Sacramento's yearly rainfall varies more than Redding's yearly rainfall. Section 9 4 Lecture Page 4 of Eitel

5 F Distribution: Critical Values for a Right Tail with Area.05 DXF Inf. DXF Section 9 4 Lecture Page 5 of Eitel

6 Testing a Claim about the Difference in 2 Population Standard Deviations Example 3 (Two Tail Test) A quality control study of the daly production of 1% milk at the local bottling plant was made. A sample of 41 gallon containers of 1% milk was taken from Production Line A showed that the average grams of fat wa.3 grams with a standard deviation of.92 grams. A sample of 25 gallon containers of 1% milk was taken from Production Line B showed that the average grams of fat wa.4 grams with a standard deviation of.52 grams. Assume that both populations are normally distributed. Use a α =.02 significant level to test the claim that the two populations have different Standard Deviations. The sample with the larger The sample with the smaller Production Line A Production Line B s 1 =.92 =.52 n 1 = 41 Numerator DF = 40 n 2 = 25 Denominator DF = 24 Ho: σ 1 = σ 2 H1: σ 1 σ 2 Graph of Critical information: α =.02 so α 2 =.01 Numerator DXF = 40 Denominator DXF = 24 Test Statistic: F = s 1 where s 1 > Do Not F = α 2 =.01 F F = F = Conclusion based on H 0 : Conclusion based on the problem: There is sufficient evidence at the α =.02 level to support the claim that that production Line A and production Line B population have different standard deviations. Section 9 4 Lecture Page 6 of Eitel

7 F Distribution: Critical Values for a Right Tail with Area.01 DXF Inf. DXF Section 9 4 Lecture Page 7 of Eitel

( ) 2 ( ) 2 where s 1 > s 2

( ) 2 ( ) 2 where s 1 > s 2 Section 9 3: Testing a Claim about the Difference in! 2 Population Standard Deviations Test H 0 : σ 1 = σ 2 there is no difference in Population Standard Deviations σ 1 σ 2 = 0 against H 1 : σ 1 > σ 2

More information

Two Populations Hypothesis Testing

Two Populations Hypothesis Testing Two Populations Hypothesis Testing Two Proportions (Large Independent Samples) Two samples are said to be independent if the data from the first sample is not connected to the data from the second sample.

More information

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range February 19, 2004 EXAM 1 : Page 1 All sections : Geaghan Read Carefully. Give an answer in the form of a number or numeric expression where possible. Show all calculations. Use a value of 0.05 for any

More information

Problem Set 4 Answer Key

Problem Set 4 Answer Key Economics 31 Menzie D. Chinn Fall 4 Social Sciences 7418 University of Wisconsin-Madison Problem Set 4 Answer Key This problem set is due in lecture on Wednesday, December 1st. No late problem sets will

More information

Graphing a Binomial Probability Distribution Histogram

Graphing a Binomial Probability Distribution Histogram Chapter 6 8A: Using a Normal Distribution to Approximate a Binomial Probability Distribution Graphing a Binomial Probability Distribution Histogram Lower and Upper Class Boundaries are used to graph the

More information

Lecture 8: Single Sample t test

Lecture 8: Single Sample t test Lecture 8: Single Sample t test Review: single sample z-test Compares the sample (after treatment) to the population (before treatment) You HAVE to know the populational mean & standard deviation to use

More information

SLIDES. BY. John Loucks. St. Edward s University

SLIDES. BY. John Loucks. St. Edward s University . SLIDES. BY John Loucks St. Edward s University 1 Chapter 10, Part A Inference About Means and Proportions with Two Populations n Inferences About the Difference Between Two Population Means: σ 1 and

More information

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD MAJOR POINTS Sampling distribution of the mean revisited Testing hypotheses: sigma known An example Testing hypotheses:

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

Mean GMM. Standard error

Mean GMM. Standard error Table 1 Simple Wavelet Analysis for stocks in the S&P 500 Index as of December 31 st 1998 ^ Shapiro- GMM Normality 6 0.9664 0.00281 11.36 4.14 55 7 0.9790 0.00300 56.58 31.69 45 8 0.9689 0.00319 403.49

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

7.1 Comparing Two Population Means: Independent Sampling

7.1 Comparing Two Population Means: Independent Sampling University of California, Davis Department of Statistics Summer Session II Statistics 13 September 4, 01 Lecture 7: Comparing Population Means Date of latest update: August 9 7.1 Comparing Two Population

More information

Tests for Two Variances

Tests for Two Variances Chapter 655 Tests for Two Variances Introduction Occasionally, researchers are interested in comparing the variances (or standard deviations) of two groups rather than their means. This module calculates

More information

Lecture 35 Section Wed, Mar 26, 2008

Lecture 35 Section Wed, Mar 26, 2008 on Lecture 35 Section 10.2 Hampden-Sydney College Wed, Mar 26, 2008 Outline on 1 2 3 4 5 on 6 7 on We will familiarize ourselves with the t distribution. Then we will see how to use it to test a hypothesis

More information

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA)

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA) Lecture note 8 Analysis of Variance (ANOVA) 1 Overview of ANOVA Analysis of variance (ANOVA) is a comparison of means. ANOVA allows you to compare more than two means simultaneously. Proper experimental

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 7.4-1

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 7.4-1 Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Section 7.4-1 Chapter 7 Estimates and Sample Sizes 7-1 Review and Preview 7- Estimating a Population

More information

Study Ch. 11.2, #51, 63 69, 73

Study Ch. 11.2, #51, 63 69, 73 May 05, 014 11. Inferences for σ's, Populations Study Ch. 11., #51, 63 69, 73 Statistics Home Page Gertrude Battaly, 014 11. Inferences for σ's, Populations Procedures that assume = σ's 1. Pooled t test.

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Discrete Random Variables In this section, we introduce the concept of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can be thought

More information

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 42

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 42 STA258H5 Al Nosedal and Alison Weir Winter 2017 Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 42 CONFIDENCE INTERVALS FOR σ 2 Al Nosedal and Alison Weir STA258H5 Winter 2017 2 / 42 Background We

More information

Tests for One Variance

Tests for One Variance Chapter 65 Introduction Occasionally, researchers are interested in the estimation of the variance (or standard deviation) rather than the mean. This module calculates the sample size and performs power

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. Midterm Exam ٩(^ᴗ^)۶ In class, next week, Thursday, 26 April. 1 hour, 45 minutes. 5 questions of varying lengths.

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Study of one-way ANOVA with a fixed-effect factor

Study of one-way ANOVA with a fixed-effect factor Study of one-way ANOVA with a fixed-effect factor In the last blog on Introduction to ANOVA, we mentioned that in the oneway ANOVA study, the factor contributing to a possible source of variation that

More information

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011 The t Test Lecture 35 Section 10.2 Robb T. Koether Hampden-Sydney College Mon, Oct 31, 2011 Robb T. Koether (Hampden-Sydney College) The t Test Mon, Oct 31, 2011 1 / 38 Outline 1 Introduction 2 Hypothesis

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

Lecture 39 Section 11.5

Lecture 39 Section 11.5 on Lecture 39 Section 11.5 Hampden-Sydney College Mon, Nov 10, 2008 Outline 1 on 2 3 on 4 on Exercise 11.27, page 715. A researcher was interested in comparing body weights for two strains of laboratory

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name 7.1 p. 379 # 7, 9, 18, 0, 1, 3, 5, 6 Name 7. Find each. (a) z α Step 1 Step Shade the desired percent under the mean statistics calculator to 99% confidence interval 3 1 0 1 3 µ 3σ µ σ µ σ µ µ+σ µ+σ µ+3σ

More information

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I?

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I? Bayes s Rule Example A company manufactures MP3 players at two factories. Factory I produces 60% of the MP3 players and Factory II produces 40%. Two percent of the MP3 players produced at Factory I are

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Chapter 510 Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Introduction This procedure computes power and sample size for non-inferiority tests in 2x2 cross-over designs

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different 22S:105 Statistical Methods and Computing Two independent-sample t-tests Lecture 17 Apr. 5, 2013 1 2 Two independent sample problems Goal of inference: to compare the characteristics of two different populations

More information

The Mathematics of Normality

The Mathematics of Normality MATH 110 Week 9 Chapter 17 Worksheet The Mathematics of Normality NAME Normal (bell-shaped) distributions play an important role in the world of statistics. One reason the normal distribution is important

More information

1 Small Sample CI for a Population Mean µ

1 Small Sample CI for a Population Mean µ Lecture 7: Small Sample Confidence Intervals Based on a Normal Population Distribution Readings: Sections 7.4-7.5 1 Small Sample CI for a Population Mean µ The large sample CI x ± z α/2 s n was constructed

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether.

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether. : : Lecture 37 Sections 11.1, 11.2, 11.4 Hampden-Sydney College Mon, Mar 31, 2008 Outline : 1 2 3 4 5 : When two samples are taken from two different populations, they may be taken independently or not

More information

Top Incorrect Problems

Top Incorrect Problems What is the z-score for scores in the bottom 5%? a) -1.645 b) 1.645 c).4801 d) The score is not listed in the table. A professor grades 120 research papers and reports that the average score was an 80%.

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Confidence Interval and Hypothesis Testing: Exercises and Solutions

Confidence Interval and Hypothesis Testing: Exercises and Solutions Confidence Interval and Hypothesis Testing: Exercises and Solutions You can use the graphical representation of the normal distribution to solve the problems. Exercise 1: Confidence Interval A sample of

More information

Tests for Intraclass Correlation

Tests for Intraclass Correlation Chapter 810 Tests for Intraclass Correlation Introduction The intraclass correlation coefficient is often used as an index of reliability in a measurement study. In these studies, there are K observations

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Ramesh Yapalparvi Week 3 Chapter 5 Probability Chapter 7 Normal Distribution Chapter 8 Advanced Graphs Chapter 9 Sampling Distributions ß today s lecture Sampling distributions

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

expected value of X, and describes the long-run average outcome. It is a weighted average.

expected value of X, and describes the long-run average outcome. It is a weighted average. X The mean of a set of observations is their ordinary average, whereas the mean of a random variable X is an average of the possible values of X The mean of a random variable X is often called the expected

More information

X = x p(x) 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6. x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 values for the random variable X

X = x p(x) 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6. x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 values for the random variable X Calculus II MAT 146 Integration Applications: Probability Calculating probabilities for discrete cases typically involves comparing the number of ways a chosen event can occur to the number of ways all

More information

Independent-Samples t Test

Independent-Samples t Test Chapter 14 Aplia week 8 (Two independent samples) Testing hypotheses about means of two populations naturally occurring populations introverts vs. extroverts neuroticism experimentally defined (random

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

One sample z-test and t-test

One sample z-test and t-test One sample z-test and t-test January 30, 2017 psych10.stanford.edu Announcements / Action Items Install ISI package (instructions in Getting Started with R) Assessment Problem Set #3 due Tu 1/31 at 7 PM

More information

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5)

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) Fall 2011 Lecture 10 (Fall 2011) Estimation Lecture 10 1 / 23 Review: Sampling Distributions Sample

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Lecture # 24. Prof. John W. Sutherland. Oct. 21, 2005

Lecture # 24. Prof. John W. Sutherland. Oct. 21, 2005 Lecture # 24 Prof. John W. Sutherland Oct. 21, 2005 Process Capability The extent to which a process produces parts that meet design intent. Most often, how well the process meets the engineering specifications.

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics. Normal distribution University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Parameter Estimation II

Parameter Estimation II Parameter Estimation II ELEC 41 PROF. SIRIPONG POTISUK Estimating μ With Unnown σ This is often true in practice. When the sample is large and σ is unnown, the sampling distribution is approimately normal

More information

STAT Chapter 6: Sampling Distributions

STAT Chapter 6: Sampling Distributions STAT 515 -- Chapter 6: Sampling Distributions Definition: Parameter = a number that characterizes a population (example: population mean ) it s typically unknown. Statistic = a number that characterizes

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

I. Standard Error II. Standard Error III. Standard Error 2.54

I. Standard Error II. Standard Error III. Standard Error 2.54 1) Original Population: Match the standard error (I, II, or III) with the correct sampling distribution (A, B, or C) and the correct sample size (1, 5, or 10) I. Standard Error 1.03 II. Standard Error

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name The bar graph shows the number of tickets sold each week by the garden club for their annual flower show. ) During which week was the most number of tickets sold? ) A) Week B) Week C) Week 5

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

1.017/1.010 Class 19 Analysis of Variance

1.017/1.010 Class 19 Analysis of Variance .07/.00 Class 9 Analysis of Variance Concepts and Definitions Objective: dentify factors responsible for variability in observed data Specify one or more factors that could account for variability (e.g.

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

STA258 Analysis of Variance

STA258 Analysis of Variance STA258 Analysis of Variance Al Nosedal. University of Toronto. Winter 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into a matrix format

More information

The Central Limit Theorem for Sample Means (Averages)

The Central Limit Theorem for Sample Means (Averages) The Central Limit Theorem for Sample Means (Averages) By: OpenStaxCollege Suppose X is a random variable with a distribution that may be known or unknown (it can be any distribution). Using a subscript

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution!

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

FORMULA FOR STANDARD DEVIATION:

FORMULA FOR STANDARD DEVIATION: Chapter 5 Review: Statistics Textbook p.210-282 Summary: p.238-239, p.278-279 Practice Questions p.240, p.280-282 Z- Score Table p.592 Key Concepts: Central Tendency, Standard Deviation, Graphing, Normal

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Financial Economics. Runs Test

Financial Economics. Runs Test Test A simple statistical test of the random-walk theory is a runs test. For daily data, a run is defined as a sequence of days in which the stock price changes in the same direction. For example, consider

More information

8.3 CI for μ, σ NOT known (old 8.4)

8.3 CI for μ, σ NOT known (old 8.4) GOALS: 1. Learn the properties of the student t distribution and the t curve. 2. Understand how degrees of freedom, df, relate to t curves. 3. Recognize that t curves approach the SNC as df increases.

More information

STATS DOESN T SUCK! ~ CHAPTER 4

STATS DOESN T SUCK! ~ CHAPTER 4 CHAPTER 4 QUESTION 1 The Geometric Mean Suppose you make a 2-year investment of $5,000 and it grows by 100% to $10,000 during the first year. During the second year, however, the investment suffers a 50%

More information

The Normal Distribution. (Ch 4.3)

The Normal Distribution. (Ch 4.3) 5 The Normal Distribution (Ch 4.3) The Normal Distribution The normal distribution is probably the most important distribution in all of probability and statistics. Many populations have distributions

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Quantitative Methods

Quantitative Methods THE ASSOCIATION OF BUSINESS EXECUTIVES DIPLOMA PART 2 QM Quantitative Methods afternoon 26 May 2004 1 Time allowed: 3 hours. 2 Answer any FOUR questions. 3 All questions carry 25 marks. Marks for subdivisions

More information

Hedging and Regression. Hedging and Regression

Hedging and Regression. Hedging and Regression Returns The discrete return on a stock is the percentage change: S i S i 1 S i 1. The index i can represent days, weeks, hours etc. What happens if we compute returns at infinitesimally short intervals

More information

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 5, 2015

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

SOME MOST POPULAR DISTRIBUTIONS OF RANDOM VARIABLES

SOME MOST POPULAR DISTRIBUTIONS OF RANDOM VARIABLES SOME MOST POPULAR DISTRIBUTIONS OF RANDOM VARIABLES ... OF THE DISCRETE TYPE 1.ONE-POINT (single-valued) RV: P(X = x 0 ) = 1 { 0 x x0 F (x) = 1 x > x 0 E{X} = x 0 ; VAR(X) = 0. 2.TWO-POINT (two-valued):

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or Solve the problem. 1. Find forα=0.01. A. 1.96 B. 2.575 C. 1.645 D. 2.33 2.Whatistheconfidencelevelofthefolowingconfidenceintervalforμ?

More information

Problem max points points scored Total 120. Do all 6 problems.

Problem max points points scored Total 120. Do all 6 problems. Solutions to (modified) practice exam 4 Statistics 224 Practice exam 4 FINAL Your Name Friday 12/21/07 Professor Michael Iltis (Lecture 2) Discussion section (circle yours) : section: 321 (3:30 pm M) 322

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

The Two-Sample Independent Sample t Test

The Two-Sample Independent Sample t Test Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 The General Formula The Equal-n Formula 4 5 6 Independence Normality Homogeneity of Variances 7 Non-Normality Unequal

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Invitational Mathematics Competition. Statistics Individual Test

Invitational Mathematics Competition. Statistics Individual Test Invitational Mathematics Competition Statistics Individual Test December 12, 2016 1 MULTIPLE CHOICE. If you think that the correct answer is not present, then choose 'E' for none of the above. 1) What

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why?

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? Probability Introduction Shifting our focus We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? What is Probability? Probability is used

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information