SLIDES. BY. John Loucks. St. Edward s University

Size: px
Start display at page:

Download "SLIDES. BY. John Loucks. St. Edward s University"

Transcription

1 . SLIDES. BY John Loucks St. Edward s University 1

2 Chapter 10, Part A Inference About Means and Proportions with Two Populations n Inferences About the Difference Between Two Population Means: σ 1 and σ Known n Inferences About the Difference Between Two Population Means: σ 1 and σ Unknown n Inferences About the Difference Between Two Population Means: Matched Samples

3 Inferences About the Difference Between Two Population Means: σ 1 and σ Known n Interval Estimation of µ 1 µ n Hypothesis Tests About µ 1 µ 3

4 Estimating the Difference Between Two Population Means n Let µ 1 equal the mean of population 1 and µ equal the mean of population. n The difference between the two population means is µ 1 - µ. n To estimate µ 1 - µ, we will select a simple random sample of size n 1 from population 1 and a simple random sample of size n from population. n Let x 1 equal the mean of sample 1 and x equal the mean of sample. The point estimator of the difference between the means of the populations 1 and is. x x 1 4

5 Sampling Distribution of x n Expected Value E( x x ) = µ µ 1 1 x 1 n Standard Deviation (Standard Error) σ x σ1 σ x = + n n 1 where: σ 1 = standard deviation of population 1 σ = standard deviation of population n 1 = sample size from population 1 n = sample size from population 1 5

6 n Interval Estimate Interval Estimation of µ 1 - µ : σ 1 and σ Known σ σ x1 x ± zα / + n n 1 1 where: 1 - α is the confidence coefficient 6

7 Interval Estimation of µ 1 - µ : σ 1 and σ Known n Example: Par, Inc. Par, Inc. is a manufacturer of golf equipment and has developed a new golf ball that has been designed to provide extra distance. In a test of driving distance using a mechanical driving device, a sample of Par golf balls was compared with a sample of golf balls made by Rap, Ltd., a competitor. The sample statistics appear on the next slide. 7

8 Interval Estimation of µ 1 - µ : σ 1 and σ Known n Example: Par, Inc. Sample Size Sample Mean Sample #1 Par, Inc. Sample # Rap, Ltd. 10 balls 80 balls 75 yards 58 yards Based on data from previous driving distance tests, the two population standard deviations are known with σ 1 = 15 yards and σ = 0 yards. 8

9 Interval Estimation of µ 1 - µ : σ 1 and σ Known n Example: Par, Inc. Let us develop a 95% confidence interval estimate of the difference between the mean driving distances of the two brands of golf ball. 9

10 Estimating the Difference Between Two Population Means Population 1 Par, Inc. Golf Balls µ 1 = mean driving distance of Par golf balls m 1 µ = difference between the mean distances Population Rap, Ltd. Golf Balls µ = mean driving distance of Rap golf balls Simple random sample of n 1 Par golf balls x 1 = sample mean distance for the Par golf balls Simple random sample of n Rap golf balls x = sample mean distance for the Rap golf balls x 1 - x = Point Estimate of m 1 µ 10

11 Point Estimate of µ 1 - µ Point estimate of µ 1 µ = x where: x 1 = = 17 yards µ 1 = mean distance for the population of Par, Inc. golf balls µ = mean distance for the population of Rap, Ltd. golf balls 11

12 Interval Estimation of µ 1 - µ : σ 1 and σ Known σ1 σ ( x1 x z ) ( 0) ± α/ + = ±. + n n or yards to.14 yards We are 95% confident that the difference between the mean driving distances of Par, Inc. balls and Rap, Ltd. balls is to.14 yards. 1

13 Hypotheses Hypothesis Tests About µ 1 µ : σ 1 and σ Known H H : µ µ D : a µ 1 µ < D0 H H : µ µ D : a µ 1 µ > D0 H H : µ µ = D µ µ D : a 1 0 Left-tailed Right-tailed Two-tailed Test Statistic z = ( x x ) D 1 0 σ n σ + n

14 Hypothesis Tests About µ 1 µ : σ 1 and σ Known n Example: Par, Inc. Can we conclude, using α =.01, that the mean driving distance of Par, Inc. golf balls is greater than the mean driving distance of Rap, Ltd. golf balls? 14

15 Hypothesis Tests About µ 1 µ : σ 1 and σ Known p Value and Critical Value Approaches 1. Develop the hypotheses. H 0 : µ 1 - µ < 0 H a : µ 1 - µ > 0 where: µ 1 = mean distance for the population of Par, Inc. golf balls µ = mean distance for the population of Rap, Ltd. golf balls. Specify the level of significance. α =.01 15

16 Hypothesis Tests About µ 1 µ : σ 1 and σ Known p Value and Critical Value Approaches 3. Compute the value of the test statistic. z z = ( x x ) D 1 0 σ n σ + n 1 1 (35 18) 0 17 = = = (15) (0)

17 Hypothesis Tests About µ 1 µ : σ 1 and σ Known p Value Approach 4. Compute the p value. For z = 6.49, the p value < Determine whether to reject H 0. Because p value < α =.01, we reject H 0. At the.01 level of significance, the sample evidence indicates the mean driving distance of Par, Inc. golf balls is greater than the mean driving distance of Rap, Ltd. golf balls. 17

18 Hypothesis Tests About µ 1 µ : σ 1 and σ Known Critical Value Approach 4. Determine the critical value and rejection rule. For α =.01, z.01 =.33 Reject H 0 if z > Determine whether to reject H 0. Because z = 6.49 >.33, we reject H 0. The sample evidence indicates the mean driving distance of Par, Inc. golf balls is greater than the mean driving distance of Rap, Ltd. golf balls. 18

19 Inferences About the Difference Between Two Population Means: σ 1 and σ Unknown n Interval Estimation of µ 1 µ n Hypothesis Tests About µ 1 µ 19

20 Interval Estimation of µ 1 - µ : σ 1 and σ Unknown When σ 1 and σ are unknown, we will: use the sample standard deviations s 1 and s as estimates of σ 1 and σ, and replace z α/ with t α/. 0

21 n Interval Estimate Interval Estimation of µ 1 - µ : σ 1 and σ Unknown s x1 x ± tα / + n s n 1 1 Where the degrees of freedom for t α/ are: df = s n s + n s 1 s 1 + n1 1 n1 n 1 n 1

22 n Difference Between Two Population Means: σ 1 and σ Unknown Example: Specific Motors Specific Motors of Detroit has developed a new Automobile known as the M car. 4 M cars and 8 J cars (from Japan) were road tested to compare milesper-gallon (mpg) performance. The sample statistics are shown on the next slide.

23 Difference Between Two Population Means: σ 1 and σ Unknown n Example: Specific Motors Sample #1 M Cars Sample # J Cars 4 cars 8 cars 9.8 mpg 7.3 mpg.56 mpg 1.81 mpg Sample Size Sample Mean Sample Std. Dev. 3

24 Difference Between Two Population Means: σ 1 and σ Unknown n Example: Specific Motors Let us develop a 90% confidence interval estimate of the difference between the mpg performances of the two models of automobile. 4

25 Point estimate of µ 1 µ = x where: Point Estimate of µ 1 µ x 1 = =.5 mpg µ 1 = mean miles-per-gallon for the population of M cars µ = mean miles-per-gallon for the population of J cars 5

26 Interval Estimation of µ 1 µ : σ 1 and σ Unknown The degrees of freedom for t α/ are: df (.56) (1.81) = = 4.07 = 4 1 (.56) 1 (1.81) With α/ =.05 and df = 4, t α/ =

27 Interval Estimation of µ 1 µ : σ 1 and σ Unknown s s (.56) (1.81) x1 x ± tα / + = ± n n or to mpg We are 90% confident that the difference between the miles-per-gallon performances of M cars and J cars is to mpg. 7

28 n Hypotheses H : Ha: Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown µ µ D µ µ < D H : Ha: µ µ D µ µ > D H H : µ µ = D µ µ D : a 1 0 Left-tailed Right-tailed Two-tailed n Test Statistic t = ( x x ) D 1 0 s n s n

29 Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown n Example: Specific Motors Can we conclude, using a.05 level of significance, that the miles-per-gallon (mpg) performance of M cars is greater than the miles-per-gallon performance of J cars? 9

30 Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown p Value and Critical Value Approaches 1. Develop the hypotheses. H 0 : µ 1 - µ < 0 H a : µ 1 - µ > 0 where: µ 1 = mean mpg for the population of M cars µ = mean mpg for the population of J cars 30

31 Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown p Value and Critical Value Approaches. Specify the level of significance. α = Compute the value of the test statistic. t ( x x ) D ( ) = = = s1 s (.56) (1.81) n + + n

32 Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown p Value Approach 4. Compute the p value. The degrees of freedom for t α are: df (.56) (1.81) = = = 41 1 (.56) 1 (1.81) Because t = > t.005 = 1.683, the p value <

33 Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown p Value Approach 5. Determine whether to reject H 0. Because p value < α =.05, we reject H 0. We are at least 95% confident that the miles-pergallon (mpg) performance of M cars is greater than the miles-per-gallon performance of J cars?. 33

34 Hypothesis Tests About µ 1 µ : σ 1 and σ Unknown Critical Value Approach 4. Determine the critical value and rejection rule. For α =.05 and df = 41, t.05 = Reject H 0 if t > Determine whether to reject H 0. Because > 1.683, we reject H 0. We are at least 95% confident that the miles-pergallon (mpg) performance of M cars is greater than the miles-per-gallon performance of J cars?. 34

35 Inferences About the Difference Between Two Population Means: Matched Samples With a matched-sample design each sampled item provides a pair of data values. This design often leads to a smaller sampling error than the independent-sample design because variation between sampled items is eliminated as a source of sampling error. 35

36 Inferences About the Difference Between Two Population Means: Matched Samples n Example: Express Deliveries A Chicago-based firm has documents that must be quickly distributed to district offices throughout the U.S. The firm must decide between two delivery services, UPX (United Parcel Express) and INTEX (International Express), to transport its documents. 36

37 Inferences About the Difference Between Two Population Means: Matched Samples n Example: Express Deliveries In testing the delivery times of the two services, the firm sent two reports to a random sample of its district offices with one report carried by UPX and the other report carried by INTEX. Do the data on the next slide indicate a difference in mean delivery times for the two services? Use a.05 level of significance. 37

38 Inferences About the Difference Between Two Population Means: Matched Samples District Office Seattle Los Angeles Boston Cleveland New York Houston Atlanta St. Louis Milwaukee Denver Delivery Time (Hours) UPX INTEX Difference

39 Inferences About the Difference Between Two Population Means: Matched Samples p Value and Critical Value Approaches 1. Develop the hypotheses. H 0 : µ d = 0 H a : µ d 0 Let µ d = the mean of the difference values for the two delivery services for the population of district offices 39

40 Inferences About the Difference Between Two Population Means: Matched Samples p Value and Critical Value Approaches. Specify the level of significance. α = Compute the value of the test statistic. d di = = n ( ) = s d = ( di d ) = = n 1 9 d µ d.7 0 t = = = s n.9 10 d

41 Inferences About the Difference Between Two Population Means: Matched Samples p Value Approach 4. Compute the p value. For t =.94 and df = 9, the p value is between.0 and.01. (This is a two-tailed test, so we double the upper-tail areas of.01 and.005.) 5. Determine whether to reject H 0. Because p value < α =.05, we reject H 0. We are at least 95% confident that there is a difference in mean delivery times for the two services? 41

42 Inferences About the Difference Between Two Population Means: Matched Samples Critical Value Approach 4. Determine the critical value and rejection rule. For α =.05 and df = 9, t.05 =.6. Reject H 0 if t >.6 5. Determine whether to reject H 0. Because t =.94 >.6, we reject H 0. We are at least 95% confident that there is a difference in mean delivery times for the two services? 4

43 End of Chapter 10 Part A 43

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Two Populations Hypothesis Testing

Two Populations Hypothesis Testing Two Populations Hypothesis Testing Two Proportions (Large Independent Samples) Two samples are said to be independent if the data from the first sample is not connected to the data from the second sample.

More information

Chapter 10 Statistical Inference About Means and Proportions With Two Populations. Learning objectives

Chapter 10 Statistical Inference About Means and Proportions With Two Populations. Learning objectives Chater 0 Statistical Iferece About Meas ad Proortios With Two Poulatios Slide Learig objectives. Uderstad ifereces About the Differece Betwee Two Poulatio Meas: σ ad σ Kow. Uderstad Ifereces About the

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD MAJOR POINTS Sampling distribution of the mean revisited Testing hypotheses: sigma known An example Testing hypotheses:

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

A point estimate is a single value (statistic) used to estimate a population value (parameter).

A point estimate is a single value (statistic) used to estimate a population value (parameter). Shahzad Bashir. 1 Chapter 9 Estimation & Confidence Interval Interval Estimation for Population Mean: σ Known Interval Estimation for Population Mean: σ Unknown Determining the Sample Size 2 A point estimate

More information

7.1 Comparing Two Population Means: Independent Sampling

7.1 Comparing Two Population Means: Independent Sampling University of California, Davis Department of Statistics Summer Session II Statistics 13 September 4, 01 Lecture 7: Comparing Population Means Date of latest update: August 9 7.1 Comparing Two Population

More information

CIVL Confidence Intervals

CIVL Confidence Intervals CIVL 3103 Confidence Intervals Learning Objectives - Confidence Intervals Define confidence intervals, and explain their significance to point estimates. Identify and apply the appropriate confidence interval

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Problem Set 4 Answer Key

Problem Set 4 Answer Key Economics 31 Menzie D. Chinn Fall 4 Social Sciences 7418 University of Wisconsin-Madison Problem Set 4 Answer Key This problem set is due in lecture on Wednesday, December 1st. No late problem sets will

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Section 7.2. Estimating a Population Proportion

Section 7.2. Estimating a Population Proportion Section 7.2 Estimating a Population Proportion Overview Section 7.2 Estimating a Population Proportion Section 7.3 Estimating a Population Mean Section 7.4 Estimating a Population Standard Deviation or

More information

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means Chapter 11: Inference for Distributions 11.1 Inference for Means of a Population 11.2 Comparing Two Means 1 Population Standard Deviation In the previous chapter, we computed confidence intervals and performed

More information

Lecture 39 Section 11.5

Lecture 39 Section 11.5 on Lecture 39 Section 11.5 Hampden-Sydney College Mon, Nov 10, 2008 Outline 1 on 2 3 on 4 on Exercise 11.27, page 715. A researcher was interested in comparing body weights for two strains of laboratory

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

Top Incorrect Problems

Top Incorrect Problems What is the z-score for scores in the bottom 5%? a) -1.645 b) 1.645 c).4801 d) The score is not listed in the table. A professor grades 120 research papers and reports that the average score was an 80%.

More information

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name 7.1 p. 379 # 7, 9, 18, 0, 1, 3, 5, 6 Name 7. Find each. (a) z α Step 1 Step Shade the desired percent under the mean statistics calculator to 99% confidence interval 3 1 0 1 3 µ 3σ µ σ µ σ µ µ+σ µ+σ µ+3σ

More information

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions:

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: (1) Our data (observations)

More information

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 42

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 42 STA258H5 Al Nosedal and Alison Weir Winter 2017 Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 42 CONFIDENCE INTERVALS FOR σ 2 Al Nosedal and Alison Weir STA258H5 Winter 2017 2 / 42 Background We

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 7.4-1

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 7.4-1 Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Section 7.4-1 Chapter 7 Estimates and Sample Sizes 7-1 Review and Preview 7- Estimating a Population

More information

Lecture 35 Section Wed, Mar 26, 2008

Lecture 35 Section Wed, Mar 26, 2008 on Lecture 35 Section 10.2 Hampden-Sydney College Wed, Mar 26, 2008 Outline on 1 2 3 4 5 on 6 7 on We will familiarize ourselves with the t distribution. Then we will see how to use it to test a hypothesis

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

Section 7-2 Estimating a Population Proportion

Section 7-2 Estimating a Population Proportion Section 7- Estimating a Population Proportion 1 Key Concept In this section we present methods for using a sample proportion to estimate the value of a population proportion. The sample proportion is the

More information

Refer to Ex 3-18 on page Record the info for Brand A in a column. Allow 3 adjacent other columns to be added. Do the same for Brand B.

Refer to Ex 3-18 on page Record the info for Brand A in a column. Allow 3 adjacent other columns to be added. Do the same for Brand B. Refer to Ex 3-18 on page 123-124 Record the info for Brand A in a column. Allow 3 adjacent other columns to be added. Do the same for Brand B. Test on Chapter 3 Friday Sept 27 th. You are expected to provide

More information

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate.

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate. Chapter 7 Confidence Intervals and Sample Sizes 7. Estimating a Proportion p 7.3 Estimating a Mean µ (σ known) 7.4 Estimating a Mean µ (σ unknown) 7.5 Estimating a Standard Deviation σ In a recent poll,

More information

( ) 2 ( ) 2 where s 1 > s 2

( ) 2 ( ) 2 where s 1 > s 2 Section 9 3: Testing a Claim about the Difference in! 2 Population Standard Deviations Test H 0 : σ 1 = σ 2 there is no difference in Population Standard Deviations σ 1 σ 2 = 0 against H 1 : σ 1 > σ 2

More information

STA258 Analysis of Variance

STA258 Analysis of Variance STA258 Analysis of Variance Al Nosedal. University of Toronto. Winter 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into a matrix format

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

STA218 Analysis of Variance

STA218 Analysis of Variance STA218 Analysis of Variance Al Nosedal. University of Toronto. Fall 2017 November 27, 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Chapter 9-1/2 McGraw-Hill/Irwin Copyright 2011 by the McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO1. Define a point estimate. LO2. Define

More information

( ) 2 ( ) 2 where s 1 > s 2

( ) 2 ( ) 2 where s 1 > s 2 Section 9 4: Testing a Claim about the Difference in 2 Population Standard Deviations Test H 0 : σ 1 =σ 2 there is no difference in Population Standard Deviations σ 1 σ 2 = 0 against H 1 : σ 1 >σ 2 or

More information

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different 22S:105 Statistical Methods and Computing Two independent-sample t-tests Lecture 17 Apr. 5, 2013 1 2 Two independent sample problems Goal of inference: to compare the characteristics of two different populations

More information

Chapter Seven: Confidence Intervals and Sample Size

Chapter Seven: Confidence Intervals and Sample Size Chapter Seven: Confidence Intervals and Sample Size A point estimate is: The best point estimate of the population mean µ is the sample mean X. Three Properties of a Good Estimator 1. Unbiased 2. Consistent

More information

If the distribution of a random variable x is approximately normal, then

If the distribution of a random variable x is approximately normal, then Confidence Intervals for the Mean (σ unknown) In many real life situations, the standard deviation is unknown. In order to construct a confidence interval for a random variable that is normally distributed

More information

σ e, which will be large when prediction errors are Linear regression model

σ e, which will be large when prediction errors are Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the population of (x, y) pairs are related by an ideal population regression line y = α + βx +

More information

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Chapter 510 Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Introduction This procedure computes power and sample size for non-inferiority tests in 2x2 cross-over designs

More information

Mean GMM. Standard error

Mean GMM. Standard error Table 1 Simple Wavelet Analysis for stocks in the S&P 500 Index as of December 31 st 1998 ^ Shapiro- GMM Normality 6 0.9664 0.00281 11.36 4.14 55 7 0.9790 0.00300 56.58 31.69 45 8 0.9689 0.00319 403.49

More information

The Normal Distribution. (Ch 4.3)

The Normal Distribution. (Ch 4.3) 5 The Normal Distribution (Ch 4.3) The Normal Distribution The normal distribution is probably the most important distribution in all of probability and statistics. Many populations have distributions

More information

Dr. Allen Back. Oct. 28, 2016

Dr. Allen Back. Oct. 28, 2016 Dr. Allen Back Oct. 28, 2016 A coffee vending machine dispenses coffee into a paper cup. You re supposed to get 10 ounces of coffee., but the amount varies slightly from cup to cup. The amounts measured

More information

AP 9.2 Notes WEB.notebook February 04, Bellwork

AP 9.2 Notes WEB.notebook February 04, Bellwork Bellwork A contract between a manufacturer and a consumer of light bulbs specifies that with an SRS of 100 bulbs. (a) Describe what a Type I error would be in this context. (b) Describe what a Type II

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Study Ch. 11.2, #51, 63 69, 73

Study Ch. 11.2, #51, 63 69, 73 May 05, 014 11. Inferences for σ's, Populations Study Ch. 11., #51, 63 69, 73 Statistics Home Page Gertrude Battaly, 014 11. Inferences for σ's, Populations Procedures that assume = σ's 1. Pooled t test.

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Chapter 3 Descriptive Statistics: Numerical Measures Part A Slides Prepared by JOHN S. LOUCKS St. Edward s University Slide 1 Chapter 3 Descriptive Statistics: Numerical Measures Part A Measures of Location Measures of Variability Slide Measures of Location Mean

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

Estimation Y 3. Confidence intervals I, Feb 11,

Estimation Y 3. Confidence intervals I, Feb 11, Estimation Example: Cholesterol levels of heart-attack patients Data: Observational study at a Pennsylvania medical center blood cholesterol levels patients treated for heart attacks measurements 2, 4,

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

Chapter 4: Estimation

Chapter 4: Estimation Slide 4.1 Chapter 4: Estimation Estimation is the process of using sample data to draw inferences about the population Sample information x, s Inferences Population parameters µ,σ Slide 4. Point and interval

More information

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA)

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA) Lecture note 8 Analysis of Variance (ANOVA) 1 Overview of ANOVA Analysis of variance (ANOVA) is a comparison of means. ANOVA allows you to compare more than two means simultaneously. Proper experimental

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Mean Note: Weights were measured to the nearest 0.1 kg.

Mean Note: Weights were measured to the nearest 0.1 kg. Purpose of the Sign Test Supplement 16A: Sign Test The sign test is a simple and versatile test that requires few assumptions. It is based on the binomial distribution. The test involves simply counting

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Tests for One Variance

Tests for One Variance Chapter 65 Introduction Occasionally, researchers are interested in the estimation of the variance (or standard deviation) rather than the mean. This module calculates the sample size and performs power

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

Confidence Intervals for the Difference Between Two Means with Tolerance Probability

Confidence Intervals for the Difference Between Two Means with Tolerance Probability Chapter 47 Confidence Intervals for the Difference Between Two Means with Tolerance Probability Introduction This procedure calculates the sample size necessary to achieve a specified distance from the

More information

6.1 Graphs of Normal Probability Distributions:

6.1 Graphs of Normal Probability Distributions: 6.1 Graphs of Normal Probability Distributions: Normal Distribution one of the most important examples of a continuous probability distribution, studied by Abraham de Moivre (1667 1754) and Carl Friedrich

More information

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011 The t Test Lecture 35 Section 10.2 Robb T. Koether Hampden-Sydney College Mon, Oct 31, 2011 Robb T. Koether (Hampden-Sydney College) The t Test Mon, Oct 31, 2011 1 / 38 Outline 1 Introduction 2 Hypothesis

More information

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers Diploma Part 2 Quantitative Methods Examiner s Suggested Answers Question 1 (a) The binomial distribution may be used in an experiment in which there are only two defined outcomes in any particular trial

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION In Inferential Statistic, ESTIMATION (i) (ii) is called the True Population Mean and is called the True Population Proportion. You must also remember that are not the only population parameters. There

More information

Lecture 8: Single Sample t test

Lecture 8: Single Sample t test Lecture 8: Single Sample t test Review: single sample z-test Compares the sample (after treatment) to the population (before treatment) You HAVE to know the populational mean & standard deviation to use

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether.

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether. : : Lecture 37 Sections 11.1, 11.2, 11.4 Hampden-Sydney College Mon, Mar 31, 2008 Outline : 1 2 3 4 5 : When two samples are taken from two different populations, they may be taken independently or not

More information

Independent-Samples t Test

Independent-Samples t Test Chapter 14 Aplia week 8 (Two independent samples) Testing hypotheses about means of two populations naturally occurring populations introverts vs. extroverts neuroticism experimentally defined (random

More information

Tests for Two Means in a Cluster-Randomized Design

Tests for Two Means in a Cluster-Randomized Design Chapter 482 Tests for Two Means in a Cluster-Randomized Design Introduction Cluster-randomized designs are those in which whole clusters of subjects (classes, hospitals, communities, etc.) are put into

More information

Data Analysis. BCF106 Fundamentals of Cost Analysis

Data Analysis. BCF106 Fundamentals of Cost Analysis Data Analysis BCF106 Fundamentals of Cost Analysis June 009 Chapter 5 Data Analysis 5.0 Introduction... 3 5.1 Terminology... 3 5. Measures of Central Tendency... 5 5.3 Measures of Dispersion... 7 5.4 Frequency

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

C.10 Exercises. Y* =!1 + Yz

C.10 Exercises. Y* =!1 + Yz C.10 Exercises C.I Suppose Y I, Y,, Y N is a random sample from a population with mean fj. and variance 0'. Rather than using all N observations consider an easy estimator of fj. that uses only the first

More information

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority Chapter 235 Analysis of 2x2 Cross-Over Designs using -ests for Non-Inferiority Introduction his procedure analyzes data from a two-treatment, two-period (2x2) cross-over design where the goal is to demonstrate

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or Solve the problem. 1. Find forα=0.01. A. 1.96 B. 2.575 C. 1.645 D. 2.33 2.Whatistheconfidencelevelofthefolowingconfidenceintervalforμ?

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Confidence Interval and Hypothesis Testing: Exercises and Solutions

Confidence Interval and Hypothesis Testing: Exercises and Solutions Confidence Interval and Hypothesis Testing: Exercises and Solutions You can use the graphical representation of the normal distribution to solve the problems. Exercise 1: Confidence Interval A sample of

More information

Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion. Instructor: Elvan Ceyhan

Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion. Instructor: Elvan Ceyhan 1 Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion Instructor: Elvan Ceyhan Outline of this chapter: Large-Sample Interval for µ Confidence Intervals for Population Proportion

More information

Normal Table Gymnastics

Normal Table Gymnastics Overview Normal Table Gymnastics Dr Tom Ilvento Department of Food and Resource Economics Let s continue working with the normal table And I will show you how to do some table gymnastics to solve for:

More information

ASTM D02, Dec./ Orlando Statistics Seminar

ASTM D02, Dec./ Orlando Statistics Seminar ASTM D02, Dec./ Orlando Statistics Seminar Presented by: Alex Lau, Chairman, D02.94 This brief seminar will provide : a very simple explanation on the use of statistics to estimate population parameters

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 9 Estimating the Value of a Parameter 9.1 Estimating a Population Proportion 1 Obtain a point estimate for the population proportion. 1) When 390 junior college students were surveyed,115 said that

More information

Econometric Methods for Valuation Analysis

Econometric Methods for Valuation Analysis Econometric Methods for Valuation Analysis Margarita Genius Dept of Economics M. Genius (Univ. of Crete) Econometric Methods for Valuation Analysis Cagliari, 2017 1 / 26 Correlation Analysis Simple Regression

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

STA215 Confidence Intervals for Proportions

STA215 Confidence Intervals for Proportions STA215 Confidence Intervals for Proportions Al Nosedal. University of Toronto. Summer 2017 June 14, 2017 Pepsi problem A market research consultant hired by the Pepsi-Cola Co. is interested in determining

More information

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range February 19, 2004 EXAM 1 : Page 1 All sections : Geaghan Read Carefully. Give an answer in the form of a number or numeric expression where possible. Show all calculations. Use a value of 0.05 for any

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Topic 30: Random Effects Modeling

Topic 30: Random Effects Modeling Topic 30: Random Effects Modeling Outline One-way random effects model Data Model Inference Data for one-way random effects model Y, the response variable Factor with levels i = 1 to r Y ij is the j th

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

(# of die rolls that satisfy the criteria) (# of possible die rolls)

(# of die rolls that satisfy the criteria) (# of possible die rolls) BMI 713: Computational Statistics for Biomedical Sciences Assignment 2 1 Random variables and distributions 1. Assume that a die is fair, i.e. if the die is rolled once, the probability of getting each

More information

CONFIDENCE-BASED MEASURE OF BANK SOLVENCY

CONFIDENCE-BASED MEASURE OF BANK SOLVENCY CONFIDENCE-BASED MEASURE OF BANK SOLVENCY Davide Mare University of Edinburgh, UK Davide.Mare@ed.ac.uk Fernando Moreira University of Edinburgh, UK Fernando.Moreira@ed.ac.uk Roberto Rossi University of

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

Homework Assignment Section 3

Homework Assignment Section 3 Homework Assignment Section 3 Tengyuan Liang Business Statistics Booth School of Business Problem 1 A company sets different prices for a particular stereo system in eight different regions of the country.

More information

Fall 2004 Social Sciences 7418 University of Wisconsin-Madison Problem Set 5 Answers

Fall 2004 Social Sciences 7418 University of Wisconsin-Madison Problem Set 5 Answers Economics 310 Menzie D. Chinn Fall 2004 Social Sciences 7418 University of Wisconsin-Madison Problem Set 5 Answers This problem set is due in lecture on Wednesday, December 15th. No late problem sets will

More information

Two-Sample T-Test for Superiority by a Margin

Two-Sample T-Test for Superiority by a Margin Chapter 219 Two-Sample T-Test for Superiority by a Margin Introduction This procedure provides reports for making inference about the superiority of a treatment mean compared to a control mean from data

More information