Independent-Samples t Test

Size: px
Start display at page:

Download "Independent-Samples t Test"

Transcription

1 Chapter 14 Aplia week 8 (Two independent samples) Testing hypotheses about means of two populations naturally occurring populations introverts vs. extroverts neuroticism experimentally defined (random assignment) neutral vs. aggressive model child s aggression level 1

2 Testing hypotheses about means of two independent populations Hypotheses about population means H 0 : µ 1 = µ H 1 : µ 1 µ (H 1 : µ 1 > µ H 1 : µ 1 < µ ) random sampling from two populations real or hypothetical Draw a sample from each population and compare the means of the two samples Build a model of all possible outcomes, assuming the null hypothesis is true

3 Sampling from each population is described by a distribution of sample means Population 1 Population H 0 is true Distributions of raw scores X µ 1 = µ Distributions of sample means M Distribution of differences between sample means M 1 M All random samples of size n 1 or n All pairs of sample means σ M1 M µ M1 = µ M σ M1 = σ 1 n 1 µ M1 M = 0 σ M = σ 1 + σ n 1 n = σ n 3

4 Use the distribution of differences between means to determine whether observed difference between sample means implies rejection of H 0 Distribuiton of differences between means Need to know σ M1 M.05 0 M 1 M.05 Must estimate from s 1 and assumption of equal population variance ( = ) s 1 treat and as independent estimates and average them to get pooled estimate, s p s s σ 1 σ 4

5 Recall the variance of the distribution of differences between means So the standard deviation is σ M1 M = σ 1 + σ n 1 σ M1 M = σ 1 + σ n 1 Replace σ 1 and σ with the estimate s p n n yielding an estimate of σ M1 M Standard deviation of difference between means s M1 M = s p + s p n 1 n 5

6 Implications of using estimated standard error of difference between means Experimental Control M n s M 1 M = = 10! " # = %&'(%'' # s M1 M = s p + s p n 1 n = 30 = = 4 What is the model of possible outcomes? 6

7 Distribution of differences between means normal, with mean = 0 if H 0 is true But where is a difference of 10 points in this distribution? M1 M Standardize the values in the distribution of differences by dividing each one by its own s M 1 M This produces a t distribution with df = n 1 + n 7

8 Experimental Control M n s Independent-Samples t Test M 1 M = = 10 s M1 M = 4 Standardize the observed difference between means t = M 1 M s M1 M = 10/4 =.50 Relevant t distribution:

9 What if unequal n? recall how to compute sample variance s = Σ( X M ) N 1 = SS df Pooling two sample estimates of variance combine SS from each sample and divide by combined df s p = SS 1 + SS s p = ( n 1 1)s 1 +( n 1)s df 1 + df n 1 + n weighted average 9

10 Full numerical example of t test two random samples: introverts and extroverts scores on a neuroticism self-report scale Introverts X X-M M = 7.0 Σ(X M) = 16.0 s = 4.0 Extroverts X X-M M = 6.4 Σ(X M) = 17. s = 4.3 s p = SS 1 + SS df 1 + df s p = = =

11 Compute s M1 M for the previous example Introverts X X-M M = 7.0 Σ(X M) = 16.0 s = 4.0 Extroverts X X-M M = 6.4 Σ(X M) = 17. s = 4.3 s M1 M = s p + s p = 4.15 n 1 n s p = = = 4.15 = =

12 Continuing the example to compute a t test Introverts X X-M M = 7.0 Σ(X M) = 16.0 s = 4.0 t = M 1 M s M1 M = Extroverts X X-M s p = s M = 6.4 M1 = 1.9 M Σ(X M) = 17. s = 4.3 = = = 4.15 df = 8 α =.05 critical t =?? (nondirectional) 1

13 13

14 Continuing the example to compute a t test Introverts X X-M M = 7.0 Σ(X M) = 16.0 s = 4.0 t = M 1 M s M1 M = Extroverts X X-M s p = s M = 6.4 M1 = 1.9 M Σ(X M) = 17. s = 4.3 = = = 4.15 df = 8 α =.05 critical t =.306 (nondirectional) 14

15 Summary of steps for computing an independentsamples t test 1. Obtain SS for each group from given information Introverts Extroverts M = 7.0 s = SS M = 6.4 s = SS n = 5 df n = 5 df s = 4.0 SS = s (df ) s = 4.3 SS = s (df ) SS = 4.0(4) = 16.0 SS = 4.3(4) = 17. s Pool SS and df from each p = group to obtain pooled estimate of σ = =

16 3. Use pooled variance estimate to obtain estimated standard deviation of difference between means s M1 M = s p + s p = 4.15 n 1 n = = Form the t ratio by dividing the difference between means by the estimated standard deviation of difference between means (also called the standard error of difference) t = M 1 M s M1 M = = 0.47 t (df = 8)

17 5. Compare the obtained t ratio with the critical t ratio and reject the null hypothesis if the obtained value is more extreme α =.05, nondirectional df = 8 critical t =.306 (observed t = 0.47) Do not reject H 0 t (df = 8)

18 Another example: attitude toward water conservation Treatment Control M n 17 5 s 10 1 s p = ( n 1 1)s 1 +( n 1)s n 1 + n s M1 M = s p + s p n 1 n 18

19 Assumptions Independent-Samples t Test random (independent) sampling normal distribution of differences between sample means usually by assuming normal distributions of raw scores equal variance in populations of raw scores (homogeneity of variance) violation of this assumption (heterogeneity of variance) if sample variances differ by approx. a ratio of 4:1 or more if unequal variance: compute t ratio without pooling variance estimates; test t ratio using df from the smaller of the two samples 19

20 Example with heterogeneity of variance drug therapy improves concentration ability of children with ADHD Placebo group Drug group M =.5 M = 6.6 n = 1 n = 8 s = 8.8 s =.1 H 0 : µ 1 = µ H 1 : µ 1 < µ s M1 M = s 1 + s = n 1 n t = M 1 M s M1 M = = 1.55 = =.65 df = 7, α =.05 critical t = Do not reject H 0 0

21 Application example Independent-Samples t Test certain type of amnesic patients (e.g., HM) suffer impaired conscious recollection free recall of list of words hypothesize more words recalled in control group versus amnesic group 1

22 Hypothetical data for free recall test Control Amnesic X X M (X M) X X M (X M) M=10 Σ(X M) =40 M=5 Σ(X M) =44 s p = SS 1 + SS df 1 + df s p = = 4.67 s s p M1 M = + s p n 1 n = = 0.97

23 Hypothetical data for free recall test H 0 : µ 1 = µ H 1 : µ 1 > µ α =.05 df = = 18 critical t = s M1 M = 0.97 t = = 5.15 Reporting results of the t test: t(18) = 5.15, p <.05 H 0 is rejected, conclude that amnesic subjects are impaired on a test of conscious recollection 3

24 t.test function in R Independent-Samples Design > data= read.table(file.choose(new=f),header=t) > describe(data) > t.test(data$control,data$amnesic, var.equal=t) Two Sample t-test data: dat$control and dat$amnesic t = , df = 18, p-value = 6.36e-05 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y

25 Effect size Independent-Samples t Test standard method of quantifying the size of an effect particularly useful when considering statistical power d = M 1 M s p From example with amnesia and recall: s p = 4.67 s p = 4.67 =.16 d = =.31 Try plotting two normal population distributions of raw scores representing this effect size 5

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means Chapter 11: Inference for Distributions 11.1 Inference for Means of a Population 11.2 Comparing Two Means 1 Population Standard Deviation In the previous chapter, we computed confidence intervals and performed

More information

Lecture 8: Single Sample t test

Lecture 8: Single Sample t test Lecture 8: Single Sample t test Review: single sample z-test Compares the sample (after treatment) to the population (before treatment) You HAVE to know the populational mean & standard deviation to use

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether.

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether. : : Lecture 37 Sections 11.1, 11.2, 11.4 Hampden-Sydney College Mon, Mar 31, 2008 Outline : 1 2 3 4 5 : When two samples are taken from two different populations, they may be taken independently or not

More information

7.1 Comparing Two Population Means: Independent Sampling

7.1 Comparing Two Population Means: Independent Sampling University of California, Davis Department of Statistics Summer Session II Statistics 13 September 4, 01 Lecture 7: Comparing Population Means Date of latest update: August 9 7.1 Comparing Two Population

More information

Lecture 39 Section 11.5

Lecture 39 Section 11.5 on Lecture 39 Section 11.5 Hampden-Sydney College Mon, Nov 10, 2008 Outline 1 on 2 3 on 4 on Exercise 11.27, page 715. A researcher was interested in comparing body weights for two strains of laboratory

More information

The Two-Sample Independent Sample t Test

The Two-Sample Independent Sample t Test Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 The General Formula The Equal-n Formula 4 5 6 Independence Normality Homogeneity of Variances 7 Non-Normality Unequal

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD MAJOR POINTS Sampling distribution of the mean revisited Testing hypotheses: sigma known An example Testing hypotheses:

More information

Two Populations Hypothesis Testing

Two Populations Hypothesis Testing Two Populations Hypothesis Testing Two Proportions (Large Independent Samples) Two samples are said to be independent if the data from the first sample is not connected to the data from the second sample.

More information

One sample z-test and t-test

One sample z-test and t-test One sample z-test and t-test January 30, 2017 psych10.stanford.edu Announcements / Action Items Install ISI package (instructions in Getting Started with R) Assessment Problem Set #3 due Tu 1/31 at 7 PM

More information

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different 22S:105 Statistical Methods and Computing Two independent-sample t-tests Lecture 17 Apr. 5, 2013 1 2 Two independent sample problems Goal of inference: to compare the characteristics of two different populations

More information

Mean GMM. Standard error

Mean GMM. Standard error Table 1 Simple Wavelet Analysis for stocks in the S&P 500 Index as of December 31 st 1998 ^ Shapiro- GMM Normality 6 0.9664 0.00281 11.36 4.14 55 7 0.9790 0.00300 56.58 31.69 45 8 0.9689 0.00319 403.49

More information

Tests for One Variance

Tests for One Variance Chapter 65 Introduction Occasionally, researchers are interested in the estimation of the variance (or standard deviation) rather than the mean. This module calculates the sample size and performs power

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

σ e, which will be large when prediction errors are Linear regression model

σ e, which will be large when prediction errors are Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the population of (x, y) pairs are related by an ideal population regression line y = α + βx +

More information

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions:

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: (1) Our data (observations)

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

Averages and Variability. Aplia (week 3 Measures of Central Tendency) Measures of central tendency (averages)

Averages and Variability. Aplia (week 3 Measures of Central Tendency) Measures of central tendency (averages) Chapter 4 Averages and Variability Aplia (week 3 Measures of Central Tendency) Chapter 5 (omit 5.2, 5.6, 5.8, 5.9) Aplia (week 4 Measures of Variability) Measures of central tendency (averages) Measures

More information

Study Ch. 11.2, #51, 63 69, 73

Study Ch. 11.2, #51, 63 69, 73 May 05, 014 11. Inferences for σ's, Populations Study Ch. 11., #51, 63 69, 73 Statistics Home Page Gertrude Battaly, 014 11. Inferences for σ's, Populations Procedures that assume = σ's 1. Pooled t test.

More information

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Chapter 510 Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Introduction This procedure computes power and sample size for non-inferiority tests in 2x2 cross-over designs

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011 The t Test Lecture 35 Section 10.2 Robb T. Koether Hampden-Sydney College Mon, Oct 31, 2011 Robb T. Koether (Hampden-Sydney College) The t Test Mon, Oct 31, 2011 1 / 38 Outline 1 Introduction 2 Hypothesis

More information

Tests for the Difference Between Two Linear Regression Intercepts

Tests for the Difference Between Two Linear Regression Intercepts Chapter 853 Tests for the Difference Between Two Linear Regression Intercepts Introduction Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression

More information

Tests for Two Variances

Tests for Two Variances Chapter 655 Tests for Two Variances Introduction Occasionally, researchers are interested in comparing the variances (or standard deviations) of two groups rather than their means. This module calculates

More information

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name

Math 14, Homework 7.1 p. 379 # 7, 9, 18, 20, 21, 23, 25, 26 Name 7.1 p. 379 # 7, 9, 18, 0, 1, 3, 5, 6 Name 7. Find each. (a) z α Step 1 Step Shade the desired percent under the mean statistics calculator to 99% confidence interval 3 1 0 1 3 µ 3σ µ σ µ σ µ µ+σ µ+σ µ+3σ

More information

TWO μs OR MEDIANS: COMPARISONS. Business Statistics

TWO μs OR MEDIANS: COMPARISONS. Business Statistics TWO μs OR MEDIANS: COMPARISONS Business Statistics CONTENTS Comparing two samples Comparing two unrelated samples Comparing the means of two unrelated samples Comparing the medians of two unrelated samples

More information

Introduction to Meta-Analysis

Introduction to Meta-Analysis Introduction to Meta-Analysis by Michael Borenstein, Larry V. Hedges, Julian P. T Higgins, and Hannah R. Rothstein PART 2 Effect Size and Precision Summary of Chapter 3: Overview Chapter 5: Effect Sizes

More information

Lecture 35 Section Wed, Mar 26, 2008

Lecture 35 Section Wed, Mar 26, 2008 on Lecture 35 Section 10.2 Hampden-Sydney College Wed, Mar 26, 2008 Outline on 1 2 3 4 5 on 6 7 on We will familiarize ourselves with the t distribution. Then we will see how to use it to test a hypothesis

More information

SLIDES. BY. John Loucks. St. Edward s University

SLIDES. BY. John Loucks. St. Edward s University . SLIDES. BY John Loucks St. Edward s University 1 Chapter 10, Part A Inference About Means and Proportions with Two Populations n Inferences About the Difference Between Two Population Means: σ 1 and

More information

Conover Test of Variances (Simulation)

Conover Test of Variances (Simulation) Chapter 561 Conover Test of Variances (Simulation) Introduction This procedure analyzes the power and significance level of the Conover homogeneity test. This test is used to test whether two or more population

More information

Tests for Intraclass Correlation

Tests for Intraclass Correlation Chapter 810 Tests for Intraclass Correlation Introduction The intraclass correlation coefficient is often used as an index of reliability in a measurement study. In these studies, there are K observations

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range February 19, 2004 EXAM 1 : Page 1 All sections : Geaghan Read Carefully. Give an answer in the form of a number or numeric expression where possible. Show all calculations. Use a value of 0.05 for any

More information

Two-Sample Z-Tests Assuming Equal Variance

Two-Sample Z-Tests Assuming Equal Variance Chapter 426 Two-Sample Z-Tests Assuming Equal Variance Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample z-tests when the variances of the two groups

More information

INFERENTIAL STATISTICS REVISION

INFERENTIAL STATISTICS REVISION INFERENTIAL STATISTICS REVISION PREMIUM VERSION PREVIEW WWW.MATHSPOINTS.IE/SIGN-UP/ 2016 LCHL Paper 2 Question 9 (a) (i) Data on earnings were published for a particular country. The data showed that the

More information

Study of one-way ANOVA with a fixed-effect factor

Study of one-way ANOVA with a fixed-effect factor Study of one-way ANOVA with a fixed-effect factor In the last blog on Introduction to ANOVA, we mentioned that in the oneway ANOVA study, the factor contributing to a possible source of variation that

More information

1.017/1.010 Class 19 Analysis of Variance

1.017/1.010 Class 19 Analysis of Variance .07/.00 Class 9 Analysis of Variance Concepts and Definitions Objective: dentify factors responsible for variability in observed data Specify one or more factors that could account for variability (e.g.

More information

(# of die rolls that satisfy the criteria) (# of possible die rolls)

(# of die rolls that satisfy the criteria) (# of possible die rolls) BMI 713: Computational Statistics for Biomedical Sciences Assignment 2 1 Random variables and distributions 1. Assume that a die is fair, i.e. if the die is rolled once, the probability of getting each

More information

STA2601. Tutorial letter 105/2/2018. Applied Statistics II. Semester 2. Department of Statistics STA2601/105/2/2018 TRIAL EXAMINATION PAPER

STA2601. Tutorial letter 105/2/2018. Applied Statistics II. Semester 2. Department of Statistics STA2601/105/2/2018 TRIAL EXAMINATION PAPER STA2601/105/2/2018 Tutorial letter 105/2/2018 Applied Statistics II STA2601 Semester 2 Department of Statistics TRIAL EXAMINATION PAPER Define tomorrow. university of south africa Dear Student Congratulations

More information

Chapter 5-Measures of Variability

Chapter 5-Measures of Variability Chapter 5-Measures of Variability 5.1 Variability of NoPassage group: Range = 57 34 = 23 St. Dev. = 6.83 Variance = 46.62 5.3 ### Exercise 5.3 noread

More information

Two-Sample T-Test for Superiority by a Margin

Two-Sample T-Test for Superiority by a Margin Chapter 219 Two-Sample T-Test for Superiority by a Margin Introduction This procedure provides reports for making inference about the superiority of a treatment mean compared to a control mean from data

More information

Tests for Two Means in a Cluster-Randomized Design

Tests for Two Means in a Cluster-Randomized Design Chapter 482 Tests for Two Means in a Cluster-Randomized Design Introduction Cluster-randomized designs are those in which whole clusters of subjects (classes, hospitals, communities, etc.) are put into

More information

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA)

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA) Lecture note 8 Analysis of Variance (ANOVA) 1 Overview of ANOVA Analysis of variance (ANOVA) is a comparison of means. ANOVA allows you to compare more than two means simultaneously. Proper experimental

More information

Two-Sample T-Test for Non-Inferiority

Two-Sample T-Test for Non-Inferiority Chapter 198 Two-Sample T-Test for Non-Inferiority Introduction This procedure provides reports for making inference about the non-inferiority of a treatment mean compared to a control mean from data taken

More information

Final/Exam #3 Form B - Statistics 211 (Fall 1999)

Final/Exam #3 Form B - Statistics 211 (Fall 1999) Final/Exam #3 Form B - Statistics 211 (Fall 1999) This test consists of nine numbered pages. Make sure you have all 9 pages. It is your responsibility to inform me if a page is missing!!! You have at least

More information

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority Chapter 235 Analysis of 2x2 Cross-Over Designs using -ests for Non-Inferiority Introduction his procedure analyzes data from a two-treatment, two-period (2x2) cross-over design where the goal is to demonstrate

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Hypotesis testing: Two samples (Chapter 8)

Hypotesis testing: Two samples (Chapter 8) Hypotesis testing: Two samples (Chapter 8) Medical statistics 009 http://folk.ntnu.no/slyderse/medstat/medstati_h09.html 1 Two sample test (def 8.1) vs one sample test : Two sample test: Compare the underlying

More information

AP 9.2 Notes WEB.notebook February 04, Bellwork

AP 9.2 Notes WEB.notebook February 04, Bellwork Bellwork A contract between a manufacturer and a consumer of light bulbs specifies that with an SRS of 100 bulbs. (a) Describe what a Type I error would be in this context. (b) Describe what a Type II

More information

STA258 Analysis of Variance

STA258 Analysis of Variance STA258 Analysis of Variance Al Nosedal. University of Toronto. Winter 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into a matrix format

More information

An approximate sampling distribution for the t-ratio. Caution: comparing population means when σ 1 σ 2.

An approximate sampling distribution for the t-ratio. Caution: comparing population means when σ 1 σ 2. Stat 529 (Winter 2011) Non-pooled t procedures (The Welch test) Reading: Section 4.3.2 The sampling distribution of Y 1 Y 2. An approximate sampling distribution for the t-ratio. The Sri Lankan analysis.

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 850 Introduction Cox proportional hazards regression models the relationship between the hazard function λ( t X ) time and k covariates using the following formula λ log λ ( t X ) ( t) 0 = β1 X1

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or Solve the problem. 1. Find forα=0.01. A. 1.96 B. 2.575 C. 1.645 D. 2.33 2.Whatistheconfidencelevelofthefolowingconfidenceintervalforμ?

More information

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop Minitab 14 1 GETTING STARTED To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop The Minitab session will come up like this 2 To SAVE FILE 1. Click File>Save Project

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Tests for Paired Means using Effect Size

Tests for Paired Means using Effect Size Chapter 417 Tests for Paired Means using Effect Size Introduction This procedure provides sample size and power calculations for a one- or two-sided paired t-test when the effect size is specified rather

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

STA218 Analysis of Variance

STA218 Analysis of Variance STA218 Analysis of Variance Al Nosedal. University of Toronto. Fall 2017 November 27, 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Mean Note: Weights were measured to the nearest 0.1 kg.

Mean Note: Weights were measured to the nearest 0.1 kg. Purpose of the Sign Test Supplement 16A: Sign Test The sign test is a simple and versatile test that requires few assumptions. It is based on the binomial distribution. The test involves simply counting

More information

Statistical Methodology. A note on a two-sample T test with one variance unknown

Statistical Methodology. A note on a two-sample T test with one variance unknown Statistical Methodology 8 (0) 58 534 Contents lists available at SciVerse ScienceDirect Statistical Methodology journal homepage: www.elsevier.com/locate/stamet A note on a two-sample T test with one variance

More information

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get MATH 111: REVIEW FOR FINAL EXAM SUMMARY STATISTICS Spring 2005 exam: 1(A), 2(E), 3(C), 4(D) Comments: This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var

More information

Non-Inferiority Tests for the Ratio of Two Means

Non-Inferiority Tests for the Ratio of Two Means Chapter 455 Non-Inferiority Tests for the Ratio of Two Means Introduction This procedure calculates power and sample size for non-inferiority t-tests from a parallel-groups design in which the logarithm

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

Two-Sample T-Tests using Effect Size

Two-Sample T-Tests using Effect Size Chapter 419 Two-Sample T-Tests using Effect Size Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the effect size is specified rather

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

HOMEWORK: Due Mon 11/8, Chapter 9: #15, 25, 37, 44

HOMEWORK: Due Mon 11/8, Chapter 9: #15, 25, 37, 44 This week: Chapter 9 (will do 9.6 to 9.8 later, with Chap. 11) Understanding Sampling Distributions: Statistics as Random Variables ANNOUNCEMENTS: Shandong Min will give the lecture on Friday. See website

More information

C.10 Exercises. Y* =!1 + Yz

C.10 Exercises. Y* =!1 + Yz C.10 Exercises C.I Suppose Y I, Y,, Y N is a random sample from a population with mean fj. and variance 0'. Rather than using all N observations consider an easy estimator of fj. that uses only the first

More information

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5)

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) Fall 2011 Lecture 10 (Fall 2011) Estimation Lecture 10 1 / 23 Review: Sampling Distributions Sample

More information

Statistical Models of Stocks and Bonds. Zachary D Easterling: Department of Economics. The University of Akron

Statistical Models of Stocks and Bonds. Zachary D Easterling: Department of Economics. The University of Akron Statistical Models of Stocks and Bonds Zachary D Easterling: Department of Economics The University of Akron Abstract One of the key ideas in monetary economics is that the prices of investments tend to

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Point-Biserial and Biserial Correlations

Point-Biserial and Biserial Correlations Chapter 302 Point-Biserial and Biserial Correlations Introduction This procedure calculates estimates, confidence intervals, and hypothesis tests for both the point-biserial and the biserial correlations.

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

Mixed Models Tests for the Slope Difference in a 3-Level Hierarchical Design with Random Slopes (Level-3 Randomization)

Mixed Models Tests for the Slope Difference in a 3-Level Hierarchical Design with Random Slopes (Level-3 Randomization) Chapter 375 Mixed Models Tests for the Slope Difference in a 3-Level Hierarchical Design with Random Slopes (Level-3 Randomization) Introduction This procedure calculates power and sample size for a three-level

More information

Introduction. Not as simple as. Sample Size Calculations. The Three Most Important Components of any Study Are

Introduction. Not as simple as. Sample Size Calculations. The Three Most Important Components of any Study Are Introduction Issues in Sample Size Calculations with Multiple Must-win Comparisons University of Sheffield Introduce the problem Describe some examples of multiple mustwin Give a solution for using bioequivalence

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution Patrick Breheny February 16 Patrick Breheny STA 580: Biostatistics I 1/38 Random variables The Binomial Distribution Random variables The binomial coefficients The binomial distribution

More information

Top Incorrect Problems

Top Incorrect Problems What is the z-score for scores in the bottom 5%? a) -1.645 b) 1.645 c).4801 d) The score is not listed in the table. A professor grades 120 research papers and reports that the average score was an 80%.

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Stat 139 Homework 2 Solutions, Fall 2016

Stat 139 Homework 2 Solutions, Fall 2016 Stat 139 Homework 2 Solutions, Fall 2016 Problem 1. The sum of squares of a sample of data is minimized when the sample mean, X = Xi /n, is used as the basis of the calculation. Define g(c) as a function

More information

Statistics & Statistical Tests: Assumptions & Conclusions

Statistics & Statistical Tests: Assumptions & Conclusions Degrees of Freedom Statistics & Statistical Tests: Assumptions & Conclusions Kinds of degrees of freedom Kinds of Distributions Kinds of Statistics & assumptions required to perform each Normal Distributions

More information

Section 7.2. Estimating a Population Proportion

Section 7.2. Estimating a Population Proportion Section 7.2 Estimating a Population Proportion Overview Section 7.2 Estimating a Population Proportion Section 7.3 Estimating a Population Mean Section 7.4 Estimating a Population Standard Deviation or

More information

First Exam for MTH 23

First Exam for MTH 23 First Exam for MTH 23 October 5, 2017 Nikos Apostolakis Name: Instructions: This exam contains 6 pages (including this cover page) and 5 questions. Each question is worth 20 points, and so the perfect

More information

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE 19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which

More information

Value (x) probability Example A-2: Construct a histogram for population Ψ.

Value (x) probability Example A-2: Construct a histogram for population Ψ. Calculus 111, section 08.x The Central Limit Theorem notes by Tim Pilachowski If you haven t done it yet, go to the Math 111 page and download the handout: Central Limit Theorem supplement. Today s lecture

More information

Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T

Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T Nathan P. Hendricks and Aaron Smith October 2014 A1 Bias Formulas for Large T The heterogeneous

More information

( ) 2 ( ) 2 where s 1 > s 2

( ) 2 ( ) 2 where s 1 > s 2 Section 9 3: Testing a Claim about the Difference in! 2 Population Standard Deviations Test H 0 : σ 1 = σ 2 there is no difference in Population Standard Deviations σ 1 σ 2 = 0 against H 1 : σ 1 > σ 2

More information

- International Scientific Journal about Simulation Volume: Issue: 2 Pages: ISSN

- International Scientific Journal about Simulation Volume: Issue: 2 Pages: ISSN Received: 13 June 016 Accepted: 17 July 016 MONTE CARLO SIMULATION FOR ANOVA TU of Košice, Faculty SjF, Institute of Special Technical Sciences, Department of Applied Mathematics and Informatics, Letná

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

* Point estimate for P is: x n

* Point estimate for P is: x n Estimation and Confidence Interval Estimation and Confidence Interval: Single Mean: To find the confidence intervals for a single mean: 1- X ± ( Z 1 σ n σ known S - X ± (t 1,n 1 n σ unknown Estimation

More information

STAT 1220 FALL 2010 Common Final Exam December 10, 2010

STAT 1220 FALL 2010 Common Final Exam December 10, 2010 STAT 1220 FALL 2010 Common Final Exam December 10, 2010 PLEASE PRINT THE FOLLOWING INFORMATION: Name: Instructor: Student ID #: Section/Time: THIS EXAM HAS TWO PARTS. PART I. Part I consists of 30 multiple

More information