TWO μs OR MEDIANS: COMPARISONS. Business Statistics

Size: px
Start display at page:

Download "TWO μs OR MEDIANS: COMPARISONS. Business Statistics"

Transcription

1 TWO μs OR MEDIANS: COMPARISONS Business Statistics

2 CONTENTS Comparing two samples Comparing two unrelated samples Comparing the means of two unrelated samples Comparing the medians of two unrelated samples Old exam question Further study

3 COMPARING TWO SAMPLES It often happens that we want to compare two situations do I sell more when there is music in my shop? is the expensive machine more precise than the cheap one? are adverisements on TV or internet equally profitable? do people buy more on Tuesdays than on Wednesday? in couples, who drinks more: the man or the woman? etc.

4 COMPARING TWO SAMPLES In all these questions we compare two populations Situation 1: two populations (or sub-populations) with similar variable sales in 105 days without music sales in 96 days with music Data matrix: two options SPSS requires this data presentation

5 COMPARING TWO SAMPLES Situation : one sample with paired observations drinks of the man in 78 couples drinks of the woman in the same 78 couples Data matrix: one option only Will be discussed in a later lecture

6 COMPARING TWO UNRELATED SAMPLES Situation 1 independent samples/unrelated samples introduce symbols for the two random variables e.g., using X 1 en X X 1 with sample X 1,1, X 1,,, X 1,n1 X,1, X,,, X,n or using X and Y X: X 1, X,, X nx sample sizes can be different and Y: Y 1, Y,, Y ny and X with sample Or of course using meaningful indices: X B and X G for Belgium and Germany. Not B and G, because we need to stress that it is about a variable X (like sales)

7 COMPARING TWO UNRELATED SAMPLES We want to test hypothesis such as are the means equal? H 0 : μ X = μ Y or H 0 : μ 1 = μ or H 0 : μ X1 = μ X or... are the variances equal? H 0 : σ X = σ Y or etc. are the proportions equal H 0 : π X = π Y or etc. Also: inequalities, like H 0 : μ X μ Y and non-zero differences, like H 0 : μ X = μ Y + 85

8 COMPARING TWO UNRELATED SAMPLES Context: sample X 1 : sales in n 1 = 105 days without music sample X : sales in n = 96 days with music General idea: X 1 ~distribution θ 1 ൠ θ X ~distribution θ 1 = θ?

9 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Assumption (for now!): X~N μ X ; σ X Y~N μ Y ; σ Y in words: both samples come from normally distributed populations with known variances Question are μ X and μ Y different? can we test this, on the basis of the (limited!) evidence concerning xҧ and തy? so, can we reject H 0 : μ X = μ Y? To decide use തX തY ~N μx ത തY, σx ത തY So, the sampling distribution of the difference of means is normal

10 COMPARING THE MEANS OF TWO UNRELATED SAMPLES For one sample, we had തX μ ത X σ ത X ~N 0,1 As it turns out, for two samples, we have തX തY μx ത μy ത ~N 0,1 σ ത X തY μx ത μy ത = μ X μ Y follows from the null hypothesis for instance H 0 : μ X = μ Y or H 0 : μ X μ Y = 85 xҧ and തy are obtained from the data but what is σx ത തY?

11 COMPARING THE MEANS OF TWO UNRELATED SAMPLES For one sample, we had σx ത = σ X n As it turns out, for two independent samples, we have = σx ത + σy ത, so σ ത X തY σx ത തY = σ X + σ Y n X n Y recall that variances add up when X and Y are independent e.g., σ X+Y = σ X + σ Y but also σ X Y = σ X + σ Y

12 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Example Context: do I sell more when there is music in my shop? Experiment on some days the music is turned on, on other days the music is turned off you keep track of the sales during each day Data: sample of sales on days with music (x 1, x,, x 105 ) sample of sales on days without music (y 1, y,, y 96 ) Five step procedure

13 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Step 1: H 0 : μ X = μ Y ; H 1 : μ X μ Y ; α = 0.05 Step : sample statistic: തX തY reject for too large and too small values Step 3: null distribution ത X തY μ X μ Y σ ഥ X ഥY valid because... Step 4: z calc = z crit = Step 5: reject or not reject because... X = ത തY ~N 0,1 σ X ഥY ഥ in a minute we will supply full details and a worked example...

14 COMPARING THE MEANS OF TWO UNRELATED SAMPLES But, wait isn t it weird to assume that σ X and σ Y are known, while μ X and μ Y are not known? In reality the population variances will often be unknown as well! remember we had the same problem in the one-sample case? there we decided to estimate the value of σ with the value of s and paid a price of using the wider t-distribution here we will do the same: estimate the two σ -values with two s -values and pay the same price: use t-dsitribution instead of z-distribution

15 COMPARING THE MEANS OF TWO UNRELATED SAMPLES For one sample, we had തX μ ത X S ത X ~t df As it turns out, for two samples, we have തX തY μ ത X μ ത Y S ത X തY ~t df μx ത μy ത = μ X μ Y follows from the null hypothesis xҧ and തy are obtained from the data but what is sx ത തY? and how to choose df?

16 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Two options for s ത X തY: 1: estimating σ X and σ Y from s X and s Y respectively : assuming σ X = σ Y = σ and estimating σ as the weighted average of both sample variances Both options lead to a different value of df

17 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Option 1: estimating σ X and σ Y from s X and s Y respectively (Welch s test) testing with t-distribution with quick rule, but bad approximation: df min n X 1, n Y 1 sx ത തY = s X + s Y n X df = s X n X s X n X + s Y n X 1 + n Y n Y s Y n Y n Y 1 Compare to σ തX തY = σ X + σ Y n X n Y

18 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Option : estimating the common σ from both samples a weighted mean of s X and s Y, the pooled variance s P and s P = n X 1 s X + n Y 1 s Y n X 1 + n Y 1 sx ത തY = s P + s P n X n Y testing with t-distribution with df = n X 1 + n Y 1 = n X + n Y You can read this as df X s X +df Y s Y df X +df Y Compare to s തX തY = s X + s Y n X n Y You can read this as df X + df Y

19 COMPARING THE MEANS OF TWO UNRELATED SAMPLES

20 EXERCISE 1 When to use: x a. z = ҧ തy σ X + σ Y n X n Y x b. t = ҧ തy s X + s Y n X n Y x c. t = ҧ തy s P + s P n X n Y

21 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Use of SPSS a data set on Computer Anxiety Rating split by gender

22 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Results split by gender Results of t-test

23 COMPARING THE MEANS OF TWO UNRELATED SAMPLES Zoom in t-test with pooled estimate of σ X = σ Y t-test with separate estimates of σ X and σ Y value of the t-statistic (t calc ) degrees of freedom p-value (-sided)

24 COMPARING THE MEANS OF TWO UNRELATED SAMPLES And one more thing... tests of the assumption of equal variance H 0 : σ X = σ Y versus H 1 : σ X σ Y p-value for this test

25 COMPARING THE MEANS OF TWO UNRELATED SAMPLES For these two tests, we need both തX and തY to be normally distributed This means either of the following three requirements holds: X is a normally distributed population X has a symmetric distribution and n X 15 n X 30 Also for Y one of these requirements must hold but not necessarily the same one as for X

26 EXERCISE a. Suppose X and Y are two distributions. We sample with n X = 10 and n Y = 0 and we want to test H 0 : μ X = μ Y. Do we need to make any assumption? b. Same as a, but now we know that X and Y are symmetrically distributed. c. Same as a, but now we know that X and Y are normally distributed

27 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Recall the non-parametric one-sample test for the median the Wilcoxon signed ranks test replacing the values by ranks and testing the sum of the positive ranks Can we also develop a non-parametric (rank-order) order test for two unrelated samples? Yes we can: Wilcoxon-Mann-Whitney test named after Frank Wilcoxon, Henry Mann, and Donald Whitney also named Wilcoxon (Mann-Whitney) test, Mann-Whitney test, etc. requirement: similar shape of distribution

28 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Computational steps of the Wilcoxon-Mann-Whitney test combine both samples (X and Y) assign ranks to the combined sample ties get an average rank sum the ranks of both samples separately (T X and T Y ) compare the test statistic T X (or T Y ) to a critical value from the table

29 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Example (same as before) Sample data are collected on the capacity rates (in %) for two factories factory A, the rates are 71, 8, 77, 94, 88 factory B, the rates are 85, 8, 9, 97 Are the median operating rates for two factories the same (at a significance level α = 0.05)?

30 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Example data A: x i (n X = 5) data B: y i (n Y = 4) one case of ties (8) T Y = 4.5 a tie: observations 3 and 4 are 8, so assign rank 3.5 to facilitate the discussion, we focus on the sample with the smallest sample size Capacity Rank Factory A Factory B Factory A Factory B Rank sums:

31 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Testing the Wilcoxon-Mann-Whitney T statistic using a table of critical values included in tables at exam using a normal approximation valid for large samples when Wilcoxon-Mann-Whitney table of critical values is not sufficient

32 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Table of critical values of Wilcoxon statistic for n x = n 1 = 4 and n y = n = 5 at α = 0.05: T lower = 11, T upper = 9 R crit = 0,11 [9,45] Why 0 and 45? 0 because the sum of the ranks cannot be smaller than because the sum of the ranks here cannot be larger than 45.

33 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Conclusion from small sample Wilcoxon-Mann-Whitney test T Y = 4.5 is between T lower = 11 and T upper = 9 Therefore, do not reject the null hypothesis (H 0 : M X = M Y ) at the 5% level There is not enough evidence to conclude that the medians are different

34 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Large sample approximation Under H 0, it can be shown that E T Y = n Y n X +n Y +1 var T Y = n Xn Y n X +n Y +1 1 Further, when n X 10 or n Y 10, we use a normal approximation: T Y ~N n X n X +n Y +1 Z = T Y n Y n X+n Y+1 n X n Y n X +n Y +1 1, n Xn Y n X +n Y +1 1 ~N 0,1

35 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Large sample approximation (continued) so you can compute z calc = T Y,calc n Y n X+n Y+1 n X n Y n X +n Y +1 1 and compare it to z crit (e.g., ±1.96)

36 COMPARING THE MEDIANS OF TWO UNRELATED SAMPLES Use of SPSS T = 345 z-score with normal approximation p-value (-sided)

37 OLD EXAM QUESTION 1 May 015, Qa

38 FURTHER STUDY Doane & Seward 5/E , 16.4 extra document Wilcoxon Mann-Whitney test Tutorial exercises week 3 z-test (known variance) t-test (pooled variance) t-test (separate variance estimates) Wilcoxon Mann-Whitney test

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

One sample z-test and t-test

One sample z-test and t-test One sample z-test and t-test January 30, 2017 psych10.stanford.edu Announcements / Action Items Install ISI package (instructions in Getting Started with R) Assessment Problem Set #3 due Tu 1/31 at 7 PM

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

12.1 One-Way Analysis of Variance. ANOVA - analysis of variance - used to compare the means of several populations.

12.1 One-Way Analysis of Variance. ANOVA - analysis of variance - used to compare the means of several populations. 12.1 One-Way Analysis of Variance ANOVA - analysis of variance - used to compare the means of several populations. Assumptions for One-Way ANOVA: 1. Independent samples are taken using a randomized design.

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether.

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether. : : Lecture 37 Sections 11.1, 11.2, 11.4 Hampden-Sydney College Mon, Mar 31, 2008 Outline : 1 2 3 4 5 : When two samples are taken from two different populations, they may be taken independently or not

More information

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get MATH 111: REVIEW FOR FINAL EXAM SUMMARY STATISTICS Spring 2005 exam: 1(A), 2(E), 3(C), 4(D) Comments: This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var

More information

Lecture 8: Single Sample t test

Lecture 8: Single Sample t test Lecture 8: Single Sample t test Review: single sample z-test Compares the sample (after treatment) to the population (before treatment) You HAVE to know the populational mean & standard deviation to use

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD MAJOR POINTS Sampling distribution of the mean revisited Testing hypotheses: sigma known An example Testing hypotheses:

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

The Two-Sample Independent Sample t Test

The Two-Sample Independent Sample t Test Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 The General Formula The Equal-n Formula 4 5 6 Independence Normality Homogeneity of Variances 7 Non-Normality Unequal

More information

Independent-Samples t Test

Independent-Samples t Test Chapter 14 Aplia week 8 (Two independent samples) Testing hypotheses about means of two populations naturally occurring populations introverts vs. extroverts neuroticism experimentally defined (random

More information

Two-Sample T-Test for Non-Inferiority

Two-Sample T-Test for Non-Inferiority Chapter 198 Two-Sample T-Test for Non-Inferiority Introduction This procedure provides reports for making inference about the non-inferiority of a treatment mean compared to a control mean from data taken

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Two Populations Hypothesis Testing

Two Populations Hypothesis Testing Two Populations Hypothesis Testing Two Proportions (Large Independent Samples) Two samples are said to be independent if the data from the first sample is not connected to the data from the second sample.

More information

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence Measures of Variation Section -5 1 Waiting Times of Bank Customers at Different Banks in minutes Jefferson Valley Bank 6.5 6.6 6.7 6.8 7.1 7.3 7.4 Bank of Providence 4. 5.4 5.8 6. 6.7 8.5 9.3 10.0 Mean

More information

8.3 CI for μ, σ NOT known (old 8.4)

8.3 CI for μ, σ NOT known (old 8.4) GOALS: 1. Learn the properties of the student t distribution and the t curve. 2. Understand how degrees of freedom, df, relate to t curves. 3. Recognize that t curves approach the SNC as df increases.

More information

Two-Sample Z-Tests Assuming Equal Variance

Two-Sample Z-Tests Assuming Equal Variance Chapter 426 Two-Sample Z-Tests Assuming Equal Variance Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample z-tests when the variances of the two groups

More information

Computing Statistics ID1050 Quantitative & Qualitative Reasoning

Computing Statistics ID1050 Quantitative & Qualitative Reasoning Computing Statistics ID1050 Quantitative & Qualitative Reasoning Single-variable Statistics We will be considering six statistics of a data set Three measures of the middle Mean, median, and mode Two measures

More information

Two-Sample T-Test for Superiority by a Margin

Two-Sample T-Test for Superiority by a Margin Chapter 219 Two-Sample T-Test for Superiority by a Margin Introduction This procedure provides reports for making inference about the superiority of a treatment mean compared to a control mean from data

More information

Lecture 35 Section Wed, Mar 26, 2008

Lecture 35 Section Wed, Mar 26, 2008 on Lecture 35 Section 10.2 Hampden-Sydney College Wed, Mar 26, 2008 Outline on 1 2 3 4 5 on 6 7 on We will familiarize ourselves with the t distribution. Then we will see how to use it to test a hypothesis

More information

Statistics TI-83 Usage Handout

Statistics TI-83 Usage Handout Statistics TI-83 Usage Handout This handout includes instructions for performing several different functions on a TI-83 calculator for use in Statistics. The Contents table below lists the topics covered

More information

Statistics vs. statistics

Statistics vs. statistics Statistics vs. statistics Question: What is Statistics (with a capital S)? Definition: Statistics is the science of collecting, organizing, summarizing and interpreting data. Note: There are 2 main ways

More information

Lecture 2 INTERVAL ESTIMATION II

Lecture 2 INTERVAL ESTIMATION II Lecture 2 INTERVAL ESTIMATION II Recap Population of interest - want to say something about the population mean µ perhaps Take a random sample... Recap When our random sample follows a normal distribution,

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different

22S:105 Statistical Methods and Computing. Two independent sample problems. Goal of inference: to compare the characteristics of two different 22S:105 Statistical Methods and Computing Two independent-sample t-tests Lecture 17 Apr. 5, 2013 1 2 Two independent sample problems Goal of inference: to compare the characteristics of two different populations

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means Chapter 11: Inference for Distributions 11.1 Inference for Means of a Population 11.2 Comparing Two Means 1 Population Standard Deviation In the previous chapter, we computed confidence intervals and performed

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Problem Set 4 Answer Key

Problem Set 4 Answer Key Economics 31 Menzie D. Chinn Fall 4 Social Sciences 7418 University of Wisconsin-Madison Problem Set 4 Answer Key This problem set is due in lecture on Wednesday, December 1st. No late problem sets will

More information

Copyright 2005 Pearson Education, Inc. Slide 6-1

Copyright 2005 Pearson Education, Inc. Slide 6-1 Copyright 2005 Pearson Education, Inc. Slide 6-1 Chapter 6 Copyright 2005 Pearson Education, Inc. Measures of Center in a Distribution 6-A The mean is what we most commonly call the average value. It is

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Business Statistics (BK/IBA) Tutorial 1 Exercises

Business Statistics (BK/IBA) Tutorial 1 Exercises Business Statistics (BK/IBA) Tutorial 1 Exercises Instruction In a tutorial session of 2 hours, we will obviously not be able to discuss all questions. Therefore, the following procedure applies: we expect

More information

1 Small Sample CI for a Population Mean µ

1 Small Sample CI for a Population Mean µ Lecture 7: Small Sample Confidence Intervals Based on a Normal Population Distribution Readings: Sections 7.4-7.5 1 Small Sample CI for a Population Mean µ The large sample CI x ± z α/2 s n was constructed

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

INFERENTIAL STATISTICS REVISION

INFERENTIAL STATISTICS REVISION INFERENTIAL STATISTICS REVISION PREMIUM VERSION PREVIEW WWW.MATHSPOINTS.IE/SIGN-UP/ 2016 LCHL Paper 2 Question 9 (a) (i) Data on earnings were published for a particular country. The data showed that the

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

If the distribution of a random variable x is approximately normal, then

If the distribution of a random variable x is approximately normal, then Confidence Intervals for the Mean (σ unknown) In many real life situations, the standard deviation is unknown. In order to construct a confidence interval for a random variable that is normally distributed

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Confidence Intervals for the Mean. When σ is known

Confidence Intervals for the Mean. When σ is known Confidence Intervals for the Mean When σ is known Objective Find the confidence interval for the mean when s is known. Intro Suppose a college president wishes to estimate the average age of students attending

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

STA2601. Tutorial letter 105/2/2018. Applied Statistics II. Semester 2. Department of Statistics STA2601/105/2/2018 TRIAL EXAMINATION PAPER

STA2601. Tutorial letter 105/2/2018. Applied Statistics II. Semester 2. Department of Statistics STA2601/105/2/2018 TRIAL EXAMINATION PAPER STA2601/105/2/2018 Tutorial letter 105/2/2018 Applied Statistics II STA2601 Semester 2 Department of Statistics TRIAL EXAMINATION PAPER Define tomorrow. university of south africa Dear Student Congratulations

More information

Lecture 6: Confidence Intervals

Lecture 6: Confidence Intervals Lecture 6: Confidence Intervals Taeyong Park Washington University in St. Louis February 22, 2017 Park (Wash U.) U25 PS323 Intro to Quantitative Methods February 22, 2017 1 / 29 Today... Review of sampling

More information

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority Chapter 235 Analysis of 2x2 Cross-Over Designs using -ests for Non-Inferiority Introduction his procedure analyzes data from a two-treatment, two-period (2x2) cross-over design where the goal is to demonstrate

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

Center and Spread. Measures of Center and Spread. Example: Mean. Mean: the balance point 2/22/2009. Describing Distributions with Numbers.

Center and Spread. Measures of Center and Spread. Example: Mean. Mean: the balance point 2/22/2009. Describing Distributions with Numbers. Chapter 3 Section3-: Measures of Center Section 3-3: Measurers of Variation Section 3-4: Measures of Relative Standing Section 3-5: Exploratory Data Analysis Describing Distributions with Numbers The overall

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation.

Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. 1 Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. 2 Once we know the central location of a data set, we want to know how close things are to the center. 2 Once we know

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Lecture 39 Section 11.5

Lecture 39 Section 11.5 on Lecture 39 Section 11.5 Hampden-Sydney College Mon, Nov 10, 2008 Outline 1 on 2 3 on 4 on Exercise 11.27, page 715. A researcher was interested in comparing body weights for two strains of laboratory

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://wwwstattamuedu/~suhasini/teachinghtml Suhasini Subba Rao Review of previous lecture The main idea in the previous lecture is that the sample

More information

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

Statistical Methodology. A note on a two-sample T test with one variance unknown

Statistical Methodology. A note on a two-sample T test with one variance unknown Statistical Methodology 8 (0) 58 534 Contents lists available at SciVerse ScienceDirect Statistical Methodology journal homepage: www.elsevier.com/locate/stamet A note on a two-sample T test with one variance

More information

Session 178 TS, Stats for Health Actuaries. Moderator: Ian G. Duncan, FSA, FCA, FCIA, FIA, MAAA. Presenter: Joan C. Barrett, FSA, MAAA

Session 178 TS, Stats for Health Actuaries. Moderator: Ian G. Duncan, FSA, FCA, FCIA, FIA, MAAA. Presenter: Joan C. Barrett, FSA, MAAA Session 178 TS, Stats for Health Actuaries Moderator: Ian G. Duncan, FSA, FCA, FCIA, FIA, MAAA Presenter: Joan C. Barrett, FSA, MAAA Session 178 Statistics for Health Actuaries October 14, 2015 Presented

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Hypotesis testing: Two samples (Chapter 8)

Hypotesis testing: Two samples (Chapter 8) Hypotesis testing: Two samples (Chapter 8) Medical statistics 009 http://folk.ntnu.no/slyderse/medstat/medstati_h09.html 1 Two sample test (def 8.1) vs one sample test : Two sample test: Compare the underlying

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

PRINTABLE VERSION. Quiz 6. Suppose that x is normally distributed with a mean of 20 and a standard deviation of 3. What is P(16.91 x 24.59)?

PRINTABLE VERSION. Quiz 6. Suppose that x is normally distributed with a mean of 20 and a standard deviation of 3. What is P(16.91 x 24.59)? PRINTABLE VERSION Quiz 6 Question 1 Suppose that x is normally distributed with a mean of 20 and a standard deviation of 3. What is P(16.91 x 24.59)? a) 0.348 b) 0.438 c) 0.353 d) 0.437 e) 0.785 Question

More information

Business Statistics (BK/IBA) Tutorial 1 Full solutions

Business Statistics (BK/IBA) Tutorial 1 Full solutions Business Statistics (BK/IBA) Tutorial 1 Full solutions Instruction In a tutorial session of 2 hours, we will obviously not be able to discuss all questions. Therefore, the following procedure applies:

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Mean Note: Weights were measured to the nearest 0.1 kg.

Mean Note: Weights were measured to the nearest 0.1 kg. Purpose of the Sign Test Supplement 16A: Sign Test The sign test is a simple and versatile test that requires few assumptions. It is based on the binomial distribution. The test involves simply counting

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Lecture 18 Section Mon, Feb 16, 2009

Lecture 18 Section Mon, Feb 16, 2009 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Feb 16, 2009 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

ECE 295: Lecture 03 Estimation and Confidence Interval

ECE 295: Lecture 03 Estimation and Confidence Interval ECE 295: Lecture 03 Estimation and Confidence Interval Spring 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 23 Theme of this Lecture What is Estimation? You

More information

Lecture 18 Section Mon, Sep 29, 2008

Lecture 18 Section Mon, Sep 29, 2008 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Sep 29, 2008 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011

The t Test. Lecture 35 Section Robb T. Koether. Hampden-Sydney College. Mon, Oct 31, 2011 The t Test Lecture 35 Section 10.2 Robb T. Koether Hampden-Sydney College Mon, Oct 31, 2011 Robb T. Koether (Hampden-Sydney College) The t Test Mon, Oct 31, 2011 1 / 38 Outline 1 Introduction 2 Hypothesis

More information

ASSIGNMENT - 1, MAY M.Sc. (PREVIOUS) FIRST YEAR DEGREE STATISTICS. Maximum : 20 MARKS Answer ALL questions.

ASSIGNMENT - 1, MAY M.Sc. (PREVIOUS) FIRST YEAR DEGREE STATISTICS. Maximum : 20 MARKS Answer ALL questions. (DMSTT 0 NR) ASSIGNMENT -, MAY-04. PAPER- I : PROBABILITY AND DISTRIBUTION THEORY ) a) State and prove Borel-cantelli lemma b) Let (x, y) be jointly distributed with density 4 y(+ x) f( x, y) = y(+ x)

More information

Mean GMM. Standard error

Mean GMM. Standard error Table 1 Simple Wavelet Analysis for stocks in the S&P 500 Index as of December 31 st 1998 ^ Shapiro- GMM Normality 6 0.9664 0.00281 11.36 4.14 55 7 0.9790 0.00300 56.58 31.69 45 8 0.9689 0.00319 403.49

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION In Inferential Statistic, ESTIMATION (i) (ii) is called the True Population Mean and is called the True Population Proportion. You must also remember that are not the only population parameters. There

More information

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters VOCABULARY: Point Estimate a value for a parameter. The most point estimate

More information

2018 AAPM: Normal and non normal distributions: Why understanding distributions are important when designing experiments and analyzing data

2018 AAPM: Normal and non normal distributions: Why understanding distributions are important when designing experiments and analyzing data Statistical Failings that Keep Us All in the Dark Normal and non normal distributions: Why understanding distributions are important when designing experiments and Conflict of Interest Disclosure I have

More information