Sampling Distributions

Size: px
Start display at page:

Download "Sampling Distributions"

Transcription

1 AP Statistics Ch. 7 Notes Sampling Distributions A major field of statistics is statistical inference, which is using information from a sample to draw conclusions about a wider population. Parameter: A number that describes some characteristic of the population. In practice, the value of the parameter is usually unknown because it is often impossible to eamine the entire population. µ (population mean) 2 σ (population variance) and σ (population standard deviation) p (population proportion the proportion of individuals in the population with a certain characteristic) Statistic: A number that describes some characteristic of a sample. The value of a statistic can be computed directly from the sample data. We often use a statistic to estimate an unknown parameter. (sample mean) 2 s (sample variance) and s (sample standard deviation) ˆp (sample proportion the proportion of individuals in the sample with a certain characteristic). Remember: statistics come from samples and parameters come from populations. Eample: Identify the population, the parameter, the sample, and the statistic in each of the following setting. a) A pediatrician wants to know the 75 th percentile for the distribution of heights of 10-year-old boys, so she takes a sample of 50 patients and calculates Q3 = 56 inches. b) A Pew Research Center poll asked to 17-year-olds in the United States if they have a cell phone. Of the respondents, 71% said yes. Sampling Variability: The value of a statistic varies from sample to sample in repeated samples from the same population. In order to answer a question about a parameter based on a sample, we need to know eactly how the value of a statistic varies from sample to sample. We ask ourselves, What would happen if we took many samples of the same size from this population? Take a large number of samples of the same size from the same population. Calculate the statistic (like or ˆp ) for each sample. Make a graph of the different values of the statistic. Eamine the distribution displayed in the graph for shape, center, and spread, as well as for outliers or other deviations.

2 Sampling Distribution: The distribution of values taken by the statistic in all possible samples of the same size from the same population. Eamples: The aces and face cards are removed from a deck of cards so that only cards 2 through 10 remain. The deck is thoroughly shuffled and a sample of 5 cards is selected. The median value of the five cards is recorded. This process is repeated 25 times and the following values of sample median are observed Sample Median Describe what you see: shape, center, spread, and any unusual values. A computer was used to simulate choosing 500 SRSs of size 5 from the deck of cards described above. The graph below shows the distribution of the sample median for these 500 samples SampleMedian Is this the sampling distribution of the sample median? Why or why not? Describe the distribution. Suppose that another student prepared a different deck of cards and claimed that it was eactly the same as the one used previously. When you took an SRS of size 5, the median was 4. Does this provide convincing evidence that the student s deck is different?

3 There are three distributions involved when we sample repeatedly, and it is very important to be clear which one we are talking about. Population distribution: Gives the values of the variable of interest for all individuals in the population. Distribution of sample data: Gives the values of the variable of interest for the individuals in the sample. Sampling distribution: Gives the values of the statistic for all possible samples of the same size taken from the population. The population distribution and the distribution of sample data describe individuals. A sampling distribution describes how a statistic varies in many samples from the population. When we calculate the value of a statistic, we usually want to use it to estimate the value of a population parameter. To determine how reliable a prediction based on a statistic is, we consider the shape, center, and spread of the sampling distribution for the statistic. Unbiased estimator: A statistic used to estimate a parameter is an unbiased estimator if the mean of its sampling distribution is equal to the true value of the parameter being estimated. Unbiased doesn t mean perfect. An unbiased estimator will almost always provide an estimate that is not eactly equal to the true value of the population parameter. It is called unbiased because in repeated samples, the estimates won t be consistently too high or consistently too low. When we talk about biased and unbiased estimators, we are assuming that the sampling process we are using has no bias. We are assuming that there are no sampling or non-sampling errors present, just sampling variability. If the sampling process is flawed, there can be bias even if we are using what is otherwise considered an unbiased estimator.

4 Eample: A teacher thoroughly mies identically-sized slips of paper numbered 1 through 342 in a bag. Students draw out repeated samples of four numbers each and work to develop a formula to estimate the total number of slips, N, that are in the bag. The graph below shows the estimates produced by the following five different methods: (1) Partition = sample maimum (5/4) (2) Ma = sample maimum (3) MeanMediam = sample mean + sample median (4) SumQuartiles = Q 1 + Q 3 (both sample values) (5) TwiceIQR = 2 sample IQR Partition Ma MeanMedian SumQuartil... The thick line through the graph marks the true value of N = 342. a) Which of these statistics appear to be biased estimators? Eplain. TwiceIQR b) Of the unbiased estimators, which is best? Why? c) Eplain why a biased estimator might be preferred over an unbiased estimator. Variability of a statistic: How much the value of the statistic varies from sample to sample. It is described by the spread of its sampling distribution. This spread is determined primarily by the size of the random sample. Larger samples give smaller variability in the values of a statistic. Larger samples will reduce the variability of a statistic, but they don t eliminate bias! Eample: Suppose that the heights of adult males are approimately Normally distributed with a mean of 70 inches and a standard deviation of 3 inches. To see why sample size matters, we took 1000 SRSs of size 100 and calculated the sample mean height and then took 1000 SRSs of size 1500 and calculated the sample mean height. Here are the results, graphed on the same scale for easy comparisons: SampleMean SampleMean1500 Compare the shape, center, and spread of the distributions. What does this tell you about the relationship between sample size and sample mean?

5 We can represent the true value of the parameter we are trying to estimate by the bulls-eye of a target. The values of the statistic from sample to sample are represented by an arrow that is repeatedly shot at the target. Bias means our aim is off and we consistently miss the true value of the parameter. High variability means that the repeated shots (the values of the statistic from sample to sample) are widely scattered. When we select which statistic we want to use to estimate the value of a parameter, we want to choose a statistic that is accurate (unbiased) and precise (low variability).

6 Sample Proportions How good is the statistic ˆp (the proportion of individuals in a sample with a given characteristic) as an estimate of the parameter p (the proportion of individuals in the population with the given characteristic)? To answer, we ask, What would happen if we take many samples? Eample: In a population of N = 616 pennies, the proportion that were minted after 2005 is p = Five hundred samples each of sizes 5, 10, 20, and 50 are taken. The distributions of ˆp for the 500 samples of each size are shown below. Compare the shape, center, and spread of the distributions. p-hat 5 p-hat 10 p-hat 20 p-hat Sample Proportions Each sy mbol represents up to 18 observ ations. 0.8 Sampling Distribution of a Sample Proportion Choose an SRS of size n from a population of size N with proportion p of successes and proportion q of failures. Let ˆp be the sample proportion of successes. Then: The mean of the sampling distribution of ˆp is µ ˆ = p. p pq The standard deviation of the sampling distribution of ˆp is σ ˆp = as long as the observations are n 1 independent or the 10% condition is satisfied: n N or N 10 n. 10 As n increases, the sampling distribution of ˆp becomes approimately Normal. Before you use Normal calculations, check that the Normal condition is satisfied: np 10 and nq 10. Since larger random samples give better information, it sometimes make sense to sample more than 10% of the population. In this case, there s a more accurate formula for calculating the standard deviation σ pˆ. It uses something called a finite population correction (FPC). The formula without the FPC will always give a larger (more conservative) estimate of standard deviation than the actual standard deviation. In case you are dying to pq n know, the formula is σ pˆ = 1. n N

7 When solving problems involving sample proportions: 1. Justify using the Normal distribution by checking np 10 and nq Find µ ˆp and σ pˆ. Check the 10% condition to justify using the formula for σ pˆ. 3. Write a probability statement and draw and shade a Normal curve. p ˆ µ pˆ 4. Perform Normal calculations either by using z-scores z = and a table or by using normalcdf on σ pˆ your calculator. 5. Write your answer in contet. Eamples: About 75% of young adult Internet users (ages 18 to 29) watch online video. Suppose that a sample survey contacts an SRS of 1000 young adult Internet users and calculates the proportion ˆp in this sample who watch online video. (a) What is the mean of the sampling distribution of p ˆ? Eplain the meaning of µ ˆ. p (b) Find the standard deviation of the sampling distribution of p ˆ. Check that the 10% condition is satisfied. Then eplain the meaning of σ pˆ. (c) Is the sampling distribution of ˆp approimately Normal? Check that the Normal condition is met. (d) If the sample size were 9000 rather than 1000, how would this change the sampling distribution of p ˆ? Eample: The superintendent of a large school district wants to know what proportion of middle school students in her district are planning to attend a four-year college or university. Suppose that 80% of all middle school students in her district are planning to attend a four-year college or university. What is the probability that an SRS of size 125 will give an estimate of this proportion that is within 7 percentage points of the true value?

8 Sample Means Eample: The histogram below shows the distribution of mint dates on a population of N = 616 pennies. Proportion Year 500 samples of size n = 5 and 500 samples of size n = 25 were taken from this population. The sample mean for each sample was calculated. The distributions of sample means for each sample size are shown below Proportion Proportion Sample Means, n=5 Sample Means, n=25 Compare the population distribution to the two distributions of sample means Mean and Standard Deviation of the Sampling Distribution of Suppose that is the mean of an SRS of size n drawn from a large population with mean µ and standard deviation σ. Then: The mean of the sampling distribution of is µ = µ. σ The standard deviation of the sampling distribution of is σ = as long as the observations are n 1 independent or the 10% condition is satisfied: n N or N 10 n. 10 These facts about the mean and standard deviation of are true no matter what shape the population distribution has. If the sample is larger than 10% of the population, the finite population correction factor (FPC) is used and the σ n formula for the standard deviation of is σ = 1. n N

9 Eample: Suppose that the number of movies viewed in the last year by high school students has an average of 19.3 with a standard deviation of Suppose we take an SRS of 100 high school students and calculate the mean number of movies viewed by the members of the sample. (a) What is the mean of the sampling distribution of? Eplain the meaning of µ. (b) What is the standard deviation of the sampling distribution of? Check that the 10% condition is satisfied. Eplain the meaning of σ. Sampling Distribution of a Sample Mean from a Normal Population Suppose that a population is Normally distributed with mean µ and standard deviation σ. Then the sampling distribution of has the Normal distribution with mean µ and standard deviation σ n, provided that the 10% condition is meant. This is true no matter what the sample size is. Eample: At the P. Nutty Peanut Company, dry-roasted, shelled peanuts are placed in jars by a machine. The distribution of weights in the jars is approimately Normal, with a mean of 16.1 ounces and a standard deviation of 0.15 ounces. (a) Without doing any calculations, eplain which outcome is more likely: randomly selecting a single jar and finding that the contents weigh less than 16 ounces or randomly selecting 10 jars and finding that the average contents weigh less than 16 ounces. (b) Find the probability of each event described above. The fact that averages of several observations are less variable than individual observations is important in many settings. It is common practice to repeat a measurement several times and report the average of the results. Think of the results of n repeated measurements as an SRS from the population of outcomes we would get if we repeated the measurement forever. The average of the n results is less variable than a single measurement.

10 Most population distributions are not Normal, so we need to figure out what shape the sampling distribution of is for a non-normal population or a population of unknown shape. The Central Limit Theorem (CLT) If a random sample of n observations is selected from any population and the sample size is sufficiently large ( n 30 ), then the sampling distribution of is approimately Normal. Normal Condition for Sample Means If the population distribution is Normal, then so is the sampling distribution of. This is true no matter what the sample size n is. If the population distribution is not Normal, the CLT tells us that the sampling distribution of will be approimately Normal in most cases if n 30. When solving problems involving sample means: 1. Justify using the Normal distribution using the conditions above. 2. Find µ and σ. Check the 10% condition to justify using the formula for σ. 3. Write a probability statement and draw and shade a Normal curve. µ 4. Perform Normal calculations either by using z-scores z = and a table or by using normalcdf on σ your calculator. 5. Write your answer in contet. Eamples: Suppose that the number of tets sent during a typical day by a randomly selected high school student follows a right-skewed distribution with a mean of 15 and a standard deviation of 35. Assuming that students at your school are typical teters, how likely is it that a random sample of 50 students will have sent more than a total of 1000 tets in the last 24 hours?

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Objectives: Students will: Define a sampling distribution. Contrast bias and variability. Describe the sampling distribution of a proportion (shape, center, and spread).

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Chapter 9 & 10. Multiple Choice.

Chapter 9 & 10. Multiple Choice. Chapter 9 & 10 Review Name Multiple Choice. 1. An agricultural researcher plants 25 plots with a new variety of corn. The average yield for these plots is X = 150 bushels per acre. Assume that the yield

More information

Sampling Distributions Chapter 18

Sampling Distributions Chapter 18 Sampling Distributions Chapter 18 Parameter vs Statistic Example: Identify the population, the parameter, the sample, and the statistic in the given settings. a) The Gallup Poll asked a random sample of

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

22.2 Shape, Center, and Spread

22.2 Shape, Center, and Spread Name Class Date 22.2 Shape, Center, and Spread Essential Question: Which measures of center and spread are appropriate for a normal distribution, and which are appropriate for a skewed distribution? Eplore

More information

Making Sense of Cents

Making Sense of Cents Name: Date: Making Sense of Cents Exploring the Central Limit Theorem Many of the variables that you have studied so far in this class have had a normal distribution. You have used a table of the normal

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

and µ Asian male > " men

and µ Asian male >  men A.P. Statistics Sampling Distributions and the Central Limit Theorem Definitions A parameter is a number that describes the population. A parameter always exists but in practice we rarely know its value

More information

The Central Limit Theorem

The Central Limit Theorem Section 6-5 The Central Limit Theorem I. Sampling Distribution of Sample Mean ( ) Eample 1: Population Distribution Table 2 4 6 8 P() 1/4 1/4 1/4 1/4 μ (a) Find the population mean and population standard

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean.

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean. Lecture 3 Sampling distributions. Counts, Proportions, and sample mean. Statistical Inference: Uses data and summary statistics (mean, variances, proportions, slopes) to draw conclusions about a population

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

1 Sampling Distributions

1 Sampling Distributions 1 Sampling Distributions 1.1 Statistics and Sampling Distributions When a random sample is selected the numerical descriptive measures calculated from such a sample are called statistics. These statistics

More information

The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations.

The bell-shaped curve, or normal curve, is a probability distribution that describes many real-life situations. 6.1 6.2 The Standard Normal Curve The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations. Basic Properties 1. The total area under the curve is.

More information

Section The Sampling Distribution of a Sample Mean

Section The Sampling Distribution of a Sample Mean Section 5.2 - The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes. Standardizing normal distributions The Standard Normal Curve

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes. Standardizing normal distributions The Standard Normal Curve 6.1 6.2 The Standard Normal Curve Standardizing normal distributions The "bell-shaped" curve, or normal curve, is a probability distribution that describes many reallife situations. Basic Properties 1.

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Multiple-Choice Questions

Multiple-Choice Questions AP Statistics Testbank 6 Formulas: If,, 1 2..., n are random variables, then E ( 1 + 2 + + n ) = E( 1 ) + E( 2 ) + + E( n ). If,, 1 2..., n independent random variables, then Var + + + ) = Var( ) + Var(

More information

AP * Statistics Review

AP * Statistics Review AP * Statistics Review Normal Models and Sampling Distributions Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

CHAPTER 5 SAMPLING DISTRIBUTIONS

CHAPTER 5 SAMPLING DISTRIBUTIONS CHAPTER 5 SAMPLING DISTRIBUTIONS Sampling Variability. We will visualize our data as a random sample from the population with unknown parameter μ. Our sample mean Ȳ is intended to estimate population mean

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Chapter 9 Chapter Friday, June 4 th

Chapter 9 Chapter Friday, June 4 th Chapter 9 Chapter 10 Sections 9.1 9.5 and 10.1 10.5 Friday, June 4 th Parameter and Statisticti ti Parameter is a number that is a summary characteristic of a population Statistic, is a number that is

More information

AP Stats ~ Lesson 6B: Transforming and Combining Random variables

AP Stats ~ Lesson 6B: Transforming and Combining Random variables AP Stats ~ Lesson 6B: Transforming and Combining Random variables OBJECTIVES: DESCRIBE the effects of transforming a random variable by adding or subtracting a constant and multiplying or dividing by a

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.)

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.) Starter Ch. 6: A z-score Analysis Starter Ch. 6 Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and an 85 on test 2. You re all set to drop

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Chapter 15: Sampling distributions

Chapter 15: Sampling distributions =true true Chapter 15: Sampling distributions Objective (1) Get "big picture" view on drawing inferences from statistical studies. (2) Understand the concept of sampling distributions & sampling variability.

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 315 - Lecture 3 Instructor: Aylin ALIN 04/02/2014 Midterm # 2 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

The Normal Approximation to the Binomial

The Normal Approximation to the Binomial Lecture 16 The Normal Approximation to the Binomial We can calculate l binomial i probabilities bbilii using The binomial formula The cumulative binomial tables When n is large, and p is not too close

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Sampling Distribution Models. Copyright 2009 Pearson Education, Inc.

Sampling Distribution Models. Copyright 2009 Pearson Education, Inc. Sampling Distribution Mols Copyright 2009 Pearson Education, Inc. Rather than showing real repeated samples, imagine what would happen if we were to actually draw many samples. The histogram we d get if

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters VOCABULARY: Point Estimate a value for a parameter. The most point estimate

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

CHAPTER 5 Sampling Distributions

CHAPTER 5 Sampling Distributions CHAPTER 5 Sampling Distributions 5.1 The possible values of p^ are 0, 1/3, 2/3, and 1. These correspond to getting 0 persons with lung cancer, 1 with lung cancer, 2 with lung cancer, and all 3 with lung

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

1. Variability in estimates and CLT

1. Variability in estimates and CLT Unit3: Foundationsforinference 1. Variability in estimates and CLT Sta 101 - Fall 2015 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_f15

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede,

FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede, FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede, mb8@ecs.soton.ac.uk The normal distribution The normal distribution is the classic "bell curve". We've seen that

More information

Sampling. Marc H. Mehlman University of New Haven. Marc Mehlman (University of New Haven) Sampling 1 / 20.

Sampling. Marc H. Mehlman University of New Haven. Marc Mehlman (University of New Haven) Sampling 1 / 20. Sampling Marc H. Mehlman marcmehlman@yahoo.com University of New Haven (University of New Haven) Sampling 1 / 20 Table of Contents 1 Sampling Distributions 2 Central Limit Theorem 3 Binomial Distribution

More information

HOMEWORK: Due Mon 11/8, Chapter 9: #15, 25, 37, 44

HOMEWORK: Due Mon 11/8, Chapter 9: #15, 25, 37, 44 This week: Chapter 9 (will do 9.6 to 9.8 later, with Chap. 11) Understanding Sampling Distributions: Statistics as Random Variables ANNOUNCEMENTS: Shandong Min will give the lecture on Friday. See website

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

5-1 pg ,4,5, EOO,39,47,50,53, pg ,5,9,13,17,19,21,22,25,30,31,32, pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38

5-1 pg ,4,5, EOO,39,47,50,53, pg ,5,9,13,17,19,21,22,25,30,31,32, pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38 5-1 pg. 242 3,4,5, 17-37 EOO,39,47,50,53,56 5-2 pg. 249 9,10,13,14,17,18 5-3 pg. 257 1,5,9,13,17,19,21,22,25,30,31,32,34 5-4 pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38 5-5 pg. 281 5-14,16,19,21,22,25,26,30

More information

The Normal Model The famous bell curve

The Normal Model The famous bell curve Math 243 Sections 6.1-6.2 The Normal Model Here are some roughly symmetric, unimodal histograms The Normal Model The famous bell curve Example 1. Let s say the mean annual rainfall in Portland is 40 inches

More information

Stats CH 6 Intro Activity 1

Stats CH 6 Intro Activity 1 Stats CH 6 Intro Activit 1 1. Purpose can ou tell the difference between bottled water and tap water? You will drink water from 3 samples. 1 of these is bottled water.. You must test them in the following

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

The Central Limit Theorem for Sample Means (Averages)

The Central Limit Theorem for Sample Means (Averages) The Central Limit Theorem for Sample Means (Averages) By: OpenStaxCollege Suppose X is a random variable with a distribution that may be known or unknown (it can be any distribution). Using a subscript

More information

Sampling Distributions For Counts and Proportions

Sampling Distributions For Counts and Proportions Sampling Distributions For Counts and Proportions IPS Chapter 5.1 2009 W. H. Freeman and Company Objectives (IPS Chapter 5.1) Sampling distributions for counts and proportions Binomial distributions for

More information

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate.

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate. Chapter 7 Confidence Intervals and Sample Sizes 7. Estimating a Proportion p 7.3 Estimating a Mean µ (σ known) 7.4 Estimating a Mean µ (σ unknown) 7.5 Estimating a Standard Deviation σ In a recent poll,

More information

AP Stats. Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High

AP Stats. Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High AP Stats Review Mrs. Daniel Alonzo & Tracy Mourning Sr. High sdaniel@dadeschools.net Agenda 1. AP Stats Exam Overview 2. AP FRQ Scoring & FRQ: 2016 #1 3. Distributions Review 4. FRQ: 2015 #6 5. Distribution

More information

Module 4: Point Estimation Statistics (OA3102)

Module 4: Point Estimation Statistics (OA3102) Module 4: Point Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.1-8.4 Revision: 1-12 1 Goals for this Module Define

More information

DO NOT POST THESE ANSWERS ONLINE BFW Publishers 2014

DO NOT POST THESE ANSWERS ONLINE BFW Publishers 2014 Section 6.3 Check our Understanding, page 389: 1. Check the BINS: Binary? Success = get an ace. Failure = don t get an ace. Independent? Because you are replacing the card in the deck and shuffling each

More information

Study Ch. 7.3, # 63 71

Study Ch. 7.3, # 63 71 GOALS: 1. Understand the distribution of the sample mean. 2. Understand that using the distribution of the sample mean with sufficiently large sample sizes enables us to use parametric statistics for distributions

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name The bar graph shows the number of tickets sold each week by the garden club for their annual flower show. ) During which week was the most number of tickets sold? ) A) Week B) Week C) Week 5

More information

Chapter Seven. The Normal Distribution

Chapter Seven. The Normal Distribution Chapter Seven The Normal Distribution 7-1 Introduction Many continuous variables have distributions that are bellshaped and are called approximately normally distributed variables, such as the heights

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Homework: (Due Wed) Chapter 10: #5, 22, 42

Homework: (Due Wed) Chapter 10: #5, 22, 42 Announcements: Discussion today is review for midterm, no credit. You may attend more than one discussion section. Bring 2 sheets of notes and calculator to midterm. We will provide Scantron form. Homework:

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6. 6.3 Binomial and

More information

STA 320 Fall Thursday, Dec 5. Sampling Distribution. STA Fall

STA 320 Fall Thursday, Dec 5. Sampling Distribution. STA Fall STA 320 Fall 2013 Thursday, Dec 5 Sampling Distribution STA 320 - Fall 2013-1 Review We cannot tell what will happen in any given individual sample (just as we can not predict a single coin flip in advance).

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

AP Stats Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High

AP Stats Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High AP Stats Review Mrs. Daniel Alonzo & Tracy Mourning Sr. High sdaniel@dadeschools.net Agenda 1. AP Stats Exam Overview 2. AP FRQ Scoring & FRQ: 2016 #1 3. Distributions Review 4. FRQ: 2015 #6 5. Distribution

More information

BIOL The Normal Distribution and the Central Limit Theorem

BIOL The Normal Distribution and the Central Limit Theorem BIOL 300 - The Normal Distribution and the Central Limit Theorem In the first week of the course, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Normal Probability Distributions

Normal Probability Distributions CHAPTER 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 5.2 Normal Distributions: Finding Probabilities 5.3 Normal Distributions: Finding

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

Using the Central Limit

Using the Central Limit Using the Central Limit Theorem By: OpenStaxCollege It is important for you to understand when to use the central limit theorem. If you are being asked to find the probability of the mean, use the clt

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information