Business Statistics Midterm Exam Fall 2013 Russell

Size: px
Start display at page:

Download "Business Statistics Midterm Exam Fall 2013 Russell"

Transcription

1 Name Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided into three parts. The true and false questions are worth 10 points, the multiple choice are 3 points each for a total of 30 points and the long answer questions are worth 60 points. You can use one side of an 8.5x11 sheet of notes during the exam. No other notes are permitted. You may use a calculator. Please write clearly and provide answers in the space provided. If you need additional space use the back of the exam pages and clearly organize your work. Students in my class are required to adhere to the standards of conduct in the Booth Honor Code and the Booth Standards of Scholarship. The Booth Honor Code also requires students to sign the following Booth Honor pledge, "I pledge my honor that I have not violated the Honor Code during this examination. I also understand that discussing the contents of this exam before all students have completed the exam would be a violation of the Honor Code". Please sign here to acknowledge

2 I. True or False Clearly indicate the best answer by circling T or F indicating that the statement is true or false respectively. If neither T nor F is clearly indicated the problem will be marked as incorrect. Each problem is worth 1 point. T F For a given set of returns data, converting the data from returns, to returns measured in percent will result in a sample mean and sample standard deviation that is 100 times larger. T F If a histogram has a long right tail and short left tail, the median will be above the mean. T F If the sample covariance is near 1 then there must be a very strong positive relationship between the two variables. T F For any continuous random variable X, X Pr.68. T F If two random variables X and Y are independent then the correlation must be zero. T F If you play 100 slot machines and whether or not you win is an iid Bernoulli with probability.01, the probability that you don t get any winners is.366. T F T F T F T F Standardized values from a data set obtained by subtracting the mean and dividing by the standard deviation that are larger than three are always very rare events. If X and Y are identically distributed random variables, they have the same mean and variance. Daily temperatures in Chicago could be modeled well as an IID process. For a sample average ( x ) constructed from 50 iid draws from the random E X x. variable X, 2

3 II. Multiple choice: Clearly circle the answer that is best. Each problem is worth 3 points for a total of 30. No partial credit will be given in this section. If no answer is clearly circled the problem will be marked as incorrect. For problems 1 and 2 consider the data set What is the sample average? a. 3 b. 2 c. 2.5 d What is the sample variance? a. 2.1 b. 2.2 c. 2.3 d. 4 Refer to the following table for questions 3 and 4. Let X denote the number of service visits required to fix a problem with a product purchased from a company. x P(x) The probability that it will take more than 2 visits? a..8 b..2 c..55 d Given that it takes more than one visit, what is the probability that it will take 4 visits? a b c d

4 Suppose annual returns for a mutual fund are N(.1792,.12 2 ). Use the following table to answer questions 5-8. Normal with mean = and standard deviation = x P( X <= x) What is the probability that the return on the fund is negative? a % b. 6.77% c. 1% d % 6. What is the probability that the return on the fund is between 0 and.2? a % b % c % d % 7. What is the probability that the return will be larger than.2? a b c d Find the value such that there is a 1% chance that the return is less than that value. a. 0 b..1 c..3 d. -.1 f. None of the above. 4

5 Use the following histogram for problems 9 and Histogram of x 10 Frequency x The distribution looks roughly normal with mean and standard deviation given by: a. =2 and =4 b. =3 and =4 c. =2 and =3 d. =3 and =3 10. By viewing the histogram above, what can you say about the data: a. iid b. Independent but not identically distributed c. Identically distributed but not independent d. Dependent e. Not enough information to tell. 5

6 III. Long answer questions. Try to do work in the space provided under each question and be show all work in order to facilitate partial credit. Be sure to clearly indicate your final answer and complete all computations. This section is worth 60 points. Problem 1. (12 points) Here are the summary statistics for the returns on two assets Descriptive Statistics: usa, france Variable N N* Mean StDev usa france Covariances: france, usa france usa france usa Consider a portfolio that invests 20% into a risk free asset that will obtain a.05 return over the next year, 50% in the USA asset and 30% in the French asset. Hence, P.2(.05).5 R.3R. USA France a. Find the mean of P b. Find the variance of P. 6

7 Suppose instead that you borrow at the risk free rate and use the money to invest in the USA and France assets. Suppose that your weights are P.2(.05).75 R.45R. c. What is the mean of P now? USA France d. What is the variance of P now? 7

8 Problem 2. (26 points) Consider the following joint probability distribution for an indicator variable for whether the economy is in an expansion or a contraction in quarter i and quarter i+1. X i =1 denotes a expansion and X i =0 denotes a contraction in quarter i. The series is a first order Markov model so that Pr X i 1 Xi, Xi 1,... X0 Pr Xi 1 Xi. Consider the following joint model for X i and X i+1 : X i 0 1 X i a. Are consecutive expansion/contraction indicators dependent or independent? Explain. b. Explain why X i and X i+1 are identically distributed and state the distribution. c. What is the probability of an expansion? d. What is the mean of X i? e. What is the variance of X i? 8

9 f. Without doing any calculations, what is the sign of the correlation between X i and X i+1? State you logic. g. What is the conditional distribution of X i+1 given quarter i is a expansion quarter? h. What is the conditional distribution of X i+1 given that quarter i is a contraction? i. What is the expected value for X i+1 given that quarter i is a contraction? j. What is the probability of getting the sequence 0, 0, 0, 1, 1, 1, 1? 9

10 Problem 3. (10 points) Whether or not any customer decides to purchase a phone after entering the store is iid Bernoulli with probability.2. Suppose on Friday 76 potential customers enter the store and on Saturday 122 customers enter the store. a. Let Y Fri denote the total phone purchases on Friday. What is the model fory Fri? b. Let Y Sat denote the total phone purchases on Friday. What is the model fory Sat? c. Let T denote the total sales on Friday and Saturday. What is the model for T? d. What are the mean and variance of T? 10

11 Problem 4. (12 points) Let s consider an extension of the random walk model yt yt 1 xt that is a little more realistic. Let s allow for the variance of the change in the asset price to vary over time. Typically we find that declining prices tend to be associated with more volatile stock returns. We capture this by saying that x t has a distribution that depends on the past values of x t in the following way: x t Pr(x t x t-1 <0) And x t P x x 0 t t a. What are the mean and variance of the change x t following declining prices? b. What are the mean and variance of the change in x t following rising (or no change in) prices? 11

12 c. Now, given that y t-1 =100 and y t-2 =99 find the conditional model for y t. d. Again, given that y t-1 =100 and y t-2 =99 find the conditional model for y t+1. e. Suppose that you are holding a call option at 101 and a put option at 99 (this is called a straddle). This position will deliver a positive payoff when the price rises above 101 or falls below 99. What is the chance that this straddle position delivers a positive payoff in period t+1 if y t-1 =100 and y t-2 =99? 12

Business Statistics Midterm Exam Fall 2013 Russell

Business Statistics Midterm Exam Fall 2013 Russell Name SOLUTION Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided

More information

Financial Econometrics Jeffrey R. Russell Midterm 2014

Financial Econometrics Jeffrey R. Russell Midterm 2014 Name: Financial Econometrics Jeffrey R. Russell Midterm 2014 You have 2 hours to complete the exam. Use can use a calculator and one side of an 8.5x11 cheat sheet. Try to fit all your work in the space

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

Statistic Midterm. Spring This is a closed-book, closed-notes exam. You may use any calculator.

Statistic Midterm. Spring This is a closed-book, closed-notes exam. You may use any calculator. Statistic Midterm Spring 2018 This is a closed-book, closed-notes exam. You may use any calculator. Please answer all problems in the space provided on the exam. Read each question carefully and clearly

More information

Honor Code: By signing my name below, I pledge my honor that I have not violated the Booth Honor Code during this examination.

Honor Code: By signing my name below, I pledge my honor that I have not violated the Booth Honor Code during this examination. Name: OUTLINE SOLUTIONS University of Chicago Graduate School of Business Business 41000: Business Statistics Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper for the formulas.

More information

Financial Economics. Runs Test

Financial Economics. Runs Test Test A simple statistical test of the random-walk theory is a runs test. For daily data, a run is defined as a sequence of days in which the stock price changes in the same direction. For example, consider

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

x is a random variable which is a numerical description of the outcome of an experiment.

x is a random variable which is a numerical description of the outcome of an experiment. Chapter 5 Discrete Probability Distributions Random Variables is a random variable which is a numerical description of the outcome of an eperiment. Discrete: If the possible values change by steps or jumps.

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

2. Modeling Uncertainty

2. Modeling Uncertainty 2. Modeling Uncertainty Models for Uncertainty (Random Variables): Big Picture We now move from viewing the data to thinking about models that describe the data. Since the real world is uncertain, our

More information

First Midterm Examination Econ 103, Statistics for Economists February 16th, 2016

First Midterm Examination Econ 103, Statistics for Economists February 16th, 2016 First Midterm Examination Econ 103, Statistics for Economists February 16th, 2016 You will have 70 minutes to complete this exam. Graphing calculators, notes, and textbooks are not permitted. I pledge

More information

Business Statistics. University of Chicago Booth School of Business Fall Jeffrey R. Russell

Business Statistics. University of Chicago Booth School of Business Fall Jeffrey R. Russell Business Statistics University of Chicago Booth School of Business Fall 08 Jeffrey R. Russell There is no text book for the course. You may choose to pick up a copy of Statistics for Business and Economics

More information

4: Probability. Notes: Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of course).

4: Probability. Notes: Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of course). 4: Probability What is probability? The probability of an event is its relative frequency (proportion) in the population. An event that happens half the time (such as a head showing up on the flip of a

More information

4.2 Bernoulli Trials and Binomial Distributions

4.2 Bernoulli Trials and Binomial Distributions Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 4.2 Bernoulli Trials and Binomial Distributions A Bernoulli trial 1 is an experiment with exactly two outcomes: Success and

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed to use any textbook, notes,

More information

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables STA 220H1F LEC0201 Week 7: More Probability: Discrete Random Variables Recall: A sample space for a random experiment is the set of all possible outcomes of the experiment. Random Variables A random variable

More information

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM March 19, 2008 This exam is closed to books and notes, but you may use a calculator. You have 3 hours. Your exam contains 9 questions and 13 pages. Please make

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Final Exam Practice Set, STT 315, Section 106

Final Exam Practice Set, STT 315, Section 106 Final Exam Practice Set, STT 315, Section 106 Options in BOLD are correct choices.: Question 1. Refer following sentences: I. If you flip a FAIR coin many, many times; the proportion of heads will be approximately

More information

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit.

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit. STA 103: Final Exam June 26, 2008 Name: } {{ } by writing my name i swear by the honor code Read all of the following information before starting the exam: Print clearly on this exam. Only correct solutions

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

Business Statistics Fall Quarter 2015 Midterm Answer Key

Business Statistics Fall Quarter 2015 Midterm Answer Key Business Statistics 4000 Fall Quarter 205 Midterm Answer Key Name (print please): Open book (but be courteous to your neighbors). No internet. A simple calculator may be helpful for computing numerical

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

BIOL The Normal Distribution and the Central Limit Theorem

BIOL The Normal Distribution and the Central Limit Theorem BIOL 300 - The Normal Distribution and the Central Limit Theorem In the first week of the course, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are

More information

CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS

CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, please circle the correct answer.. The weighted average of the possible

More information

Normal Cumulative Distribution Function (CDF)

Normal Cumulative Distribution Function (CDF) The Normal Model 2 Solutions COR1-GB.1305 Statistics and Data Analysis Normal Cumulative Distribution Function (CDF 1. Suppose that an automobile muffler is designed so that its lifetime (in months is

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. First Name: Last Name: SID: Class Time: M Tu W Th math10 - HW3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Continuous random variables are

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

ECOSOC MS EXCEL LECTURE SERIES DISTRIBUTIONS

ECOSOC MS EXCEL LECTURE SERIES DISTRIBUTIONS ECOSOC MS EXCEL LECTURE SERIES DISTRIBUTIONS Module Excel provides probabilities for the following functions: (Note- There are many other functions also but here we discuss only those which will help in

More information

Section 0: Introduction and Review of Basic Concepts

Section 0: Introduction and Review of Basic Concepts Section 0: Introduction and Review of Basic Concepts Carlos M. Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching 1 Getting Started Syllabus

More information

The binomial distribution p314

The binomial distribution p314 The binomial distribution p314 Example: A biased coin (P(H) = p = 0.6) ) is tossed 5 times. Let X be the number of H s. Fine P(X = 2). This X is a binomial r. v. The binomial setting p314 1. There are

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

ECON Introductory Econometrics. Lecture 1: Introduction and Review of Statistics

ECON Introductory Econometrics. Lecture 1: Introduction and Review of Statistics ECON4150 - Introductory Econometrics Lecture 1: Introduction and Review of Statistics Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 1-2 Lecture outline 2 What is econometrics? Course

More information

Lecture Stat 302 Introduction to Probability - Slides 15

Lecture Stat 302 Introduction to Probability - Slides 15 Lecture Stat 30 Introduction to Probability - Slides 15 AD March 010 AD () March 010 1 / 18 Continuous Random Variable Let X a (real-valued) continuous r.v.. It is characterized by its pdf f : R! [0, )

More information

If X = the different scores you could get on the quiz, what values could X be?

If X = the different scores you could get on the quiz, what values could X be? Example 1: Quiz? Take it. o, there are no questions m giving you. You just are giving me answers and m telling you if you got the answer correct. Good luck: hope you studied! Circle the correct answers

More information

Sample Statistics Pro ciency Exam #1

Sample Statistics Pro ciency Exam #1 Sample Statistics Pro ciency Exam #1 Name: 1 An appliance store recorded its monthly sales M of microwave ovens for 20 months and ordered them as follows: 123, 126, 140, 141, 149 152, 152, 160, 164, 165

More information

6.2.1 Linear Transformations

6.2.1 Linear Transformations 6.2.1 Linear Transformations In Chapter 2, we studied the effects of transformations on the shape, center, and spread of a distribution of data. Recall what we discovered: 1. Adding (or subtracting) a

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables Chapter 5 Probability Distributions Section 5-2 Random Variables 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation for the Binomial Distribution Random

More information

Standard Deviation. 1 Motivation 1

Standard Deviation. 1 Motivation 1 Standard Deviation Table of Contents 1 Motivation 1 2 Standard Deviation 2 3 Computing Standard Deviation 4 4 Calculator Instructions 7 5 Homework Problems 8 5.1 Instructions......................................

More information

Chapter 5. Discrete Probability Distributions. Random Variables

Chapter 5. Discrete Probability Distributions. Random Variables Chapter 5 Discrete Probability Distributions Random Variables x is a random variable which is a numerical description of the outcome of an experiment. Discrete: If the possible values change by steps or

More information

Lab#3 Probability

Lab#3 Probability 36-220 Lab#3 Probability Week of September 19, 2005 Please write your name below, tear off this front page and give it to a teaching assistant as you leave the lab. It will be a record of your participation

More information

Name: Date: Pd: Quiz Review

Name: Date: Pd: Quiz Review Name: Date: Pd: Quiz Review 8.1-8.3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A die is cast repeatedly until a 1 falls uppermost. Let the random

More information

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models STA 6166 Fall 2007 Web-based Course 1 Notes 10: Probability Models We first saw the normal model as a useful model for the distribution of some quantitative variables. We ve also seen that if we make a

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. Midterm Exam ٩(^ᴗ^)۶ In class, next week, Thursday, 26 April. 1 hour, 45 minutes. 5 questions of varying lengths.

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! STAT 3090 Test 2 - Fall 2015 Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Midterm GSB Honor Code: I pledge my honor that I have not violated the Honor Code during this examination.

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda 1. Review OTL C6#4 Chapter 6.2 rules for means and variances Aug 23-8:31 PM 1 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at random and

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3 GEK544 The Mathematics of Games Suggested Solutions to Tutorial 3. Consider a Las Vegas roulette wheel with a bet of $5 on black (payoff = : ) and a bet of $ on the specific group of 4 (e.g. 3, 4, 6, 7

More information

I pledge my honor that I have not violated the Honor Code during this examination.

I pledge my honor that I have not violated the Honor Code during this examination. The University of Chicago Booth School of Business Business Statistics, 41000-81/82, Spring 2011 Instructor: Hedibert F. Lopes Midterm Exam Name You may use a calculator. You may use a one-page-front-back

More information

AP Stats ~ Lesson 6B: Transforming and Combining Random variables

AP Stats ~ Lesson 6B: Transforming and Combining Random variables AP Stats ~ Lesson 6B: Transforming and Combining Random variables OBJECTIVES: DESCRIBE the effects of transforming a random variable by adding or subtracting a constant and multiplying or dividing by a

More information

Chapter 7. Random Variables: 7.1: Discrete and Continuous. Random Variables. 7.2: Means and Variances of. Random Variables

Chapter 7. Random Variables: 7.1: Discrete and Continuous. Random Variables. 7.2: Means and Variances of. Random Variables Chapter 7 Random Variables In Chapter 6, we learned that a!random phenomenon" was one that was unpredictable in the short term, but displayed a predictable pattern in the long run. In Statistics, we are

More information

Test 7A AP Statistics Name: Directions: Work on these sheets.

Test 7A AP Statistics Name: Directions: Work on these sheets. Test 7A AP Statistics Name: Directions: Work on these sheets. Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. Suppose X is a random variable with mean µ. Suppose we observe

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

We use probability distributions to represent the distribution of a discrete random variable.

We use probability distributions to represent the distribution of a discrete random variable. Now we focus on discrete random variables. We will look at these in general, including calculating the mean and standard deviation. Then we will look more in depth at binomial random variables which are

More information

Exam P Flashcards exams. Key concepts. Important formulas. Efficient methods. Advice on exam technique

Exam P Flashcards exams. Key concepts. Important formulas. Efficient methods. Advice on exam technique Exam P Flashcards 01 exams Key concepts Important formulas Efficient methods Advice on exam technique All study material produced by BPP Professional Education is copyright and is sold for the exclusive

More information

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions Economics 430 Chris Georges Handout on Rational Expectations: Part I Review of Statistics: Notation and Definitions Consider two random variables X and Y defined over m distinct possible events. Event

More information

Section 1.4: Learning from data

Section 1.4: Learning from data Section 1.4: Learning from data Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 4.1, 4.2, 4.4, 5.3 1 A First Modeling Exercise

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted Figure 1: Math 223 Lecture Notes 4/1/04 Section 4.10 The normal distribution Recall that a continuous random variable X with probability distribution function f(x) = 1 µ)2 (x e 2σ 2πσ is said to have a

More information

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996:

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996: University of Washington Summer Department of Economics Eric Zivot Economics 3 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of handwritten notes. Answer all

More information

Revised: Spring2009 Huseyin Yuce and Urmi Ghosh-Dastidar Revised: Urmi Ghosh-Dastidar and Grazyna Niezgoda (Spring 2013)

Revised: Spring2009 Huseyin Yuce and Urmi Ghosh-Dastidar Revised: Urmi Ghosh-Dastidar and Grazyna Niezgoda (Spring 2013) MAT 1272 REVIEW FOR THE FINAL Profs. Han, Bruno, Chen, Singh Revised: Spring2009 Huseyin Yuce and Urmi Ghosh-Dastidar Revised: Urmi Ghosh-Dastidar and Grazyna Niezgoda (Spring 2013) 1) The following are

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

Session Window. Variable Name Row. Worksheet Window. Double click on MINITAB icon. You will see a split screen: Getting Started with MINITAB

Session Window. Variable Name Row. Worksheet Window. Double click on MINITAB icon. You will see a split screen: Getting Started with MINITAB STARTING MINITAB: Double click on MINITAB icon. You will see a split screen: Session Window Worksheet Window Variable Name Row ACTIVE WINDOW = BLUE INACTIVE WINDOW = GRAY f(x) F(x) Getting Started with

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Midterm ChicagoBooth Honor Code: I pledge my honor that I have not violated the Honor Code during this

More information

Module 3: Sampling Distributions and the CLT Statistics (OA3102)

Module 3: Sampling Distributions and the CLT Statistics (OA3102) Module 3: Sampling Distributions and the CLT Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chpt 7.1-7.3, 7.5 Revision: 1-12 1 Goals for

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

CHAPTER 1. Find the mean, median and mode for the number of returns prepared by each accountant.

CHAPTER 1. Find the mean, median and mode for the number of returns prepared by each accountant. CHAPTER 1 TUTORIAL 1. Explain the term below : i. Statistics ii. Population iii. Sample 2. A questionnaire provides 58 Yes, 42 No and 20 no-opinion. i. In the construction of a pie chart, how many degrees

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Section M Discrete Probability Distribution

Section M Discrete Probability Distribution Section M Discrete Probability Distribution A random variable is a numerical measure of the outcome of a probability experiment, so its value is determined by chance. Random variables are typically denoted

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

Homework Assigment 1. Nick Polson 41000: Business Statistics Booth School of Business. Due in Week 3

Homework Assigment 1. Nick Polson 41000: Business Statistics Booth School of Business. Due in Week 3 Homework Assigment 1 Nick Polson 41000: Business Statistics Booth School of Business Due in Week 3 Problem 1: Probability Answer the following statements TRUE or FALSE, providing a succinct explanation

More information

Section 6.2 Transforming and Combining Random Variables. Linear Transformations

Section 6.2 Transforming and Combining Random Variables. Linear Transformations Section 6.2 Transforming and Combining Random Variables Linear Transformations In Section 6.1, we learned that the mean and standard deviation give us important information about a random variable. In

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 2: Probability and Distributions) GY Zou gzou@robarts.ca Reporting of continuous data If approximately symmetric, use mean (SD), e.g., Antibody titers ranged from

More information

STA Module 3B Discrete Random Variables

STA Module 3B Discrete Random Variables STA 2023 Module 3B Discrete Random Variables Learning Objectives Upon completing this module, you should be able to 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information