Standard Deviation. 1 Motivation 1

Size: px
Start display at page:

Download "Standard Deviation. 1 Motivation 1"

Transcription

1 Standard Deviation Table of Contents 1 Motivation 1 2 Standard Deviation 2 3 Computing Standard Deviation 4 4 Calculator Instructions 7 5 Homework Problems Instructions Problems Document License (CC BY-ND 4.0) License Links Motivation The mean (expected value) is a measure of central tendancy, it measures the position of the center of data. The mean summarizes data by telling us its center. The mean gives us one bit of information about the data, but is it enough information? Consider the following two frequency distributions. In each distribution, x denotes an outcome of an experiment. Distribution A Mean = = 5 1

2 Distribution B Mean = = 5 Both distributions have the same mean (5), and both distributions have the same number of outcomes ( = 20). However, in distribution A, the distance from an outcome to the mean is 4 (5 1 = 4 and 9 5 = 4), while in distribution B, the distance from an outcome to the mean is 1 (5 4 = 1 and 6 5 = 1). You can see how the mean is not an adequate summary of data. Distributions A and B provide a hint of another quantity that we can use to summarize data. That quantity is the average distance between an outcome and the mean. This average distance is 4 for distribution A, and it is 1 for distribution B. You can see that the outcomes of distribution A are spread out further from the mean than the outcomes of distribution B. In other words, the outcomes of distribution A are more dispersed around the mean than the outcomes of distribution B. The average distance between an outcome and the mean is called a measure of dispersion. There are different ways of computing the average distance between an outcome and the mean. We computed the mean distance between an outcome and the mean for distributions A and B. However, the mean distance between an outcome and the mean is not the usual average that is used as a measure of dispersion for technical reasons. The usual average that is computed is the standard deviation. 2 Standard Deviation The standard deviation measures the (weighted) average distance between a value of a random variable and the mean. It tells us how values of a random variable deviate from the mean on average. It shows us how much the values of a random variable are spread out (dispersed) around the mean. The standard deviation is the standard measure of dispersion. Three definitions of standard deviation are given below. These three definitions are equivalent to each other. The definition that is used to compute standard deviation depends on the situation we are given. The symbol µ (pronounced "mew") denotes the mean and the expected value. The symbol σ (pronounced "sigma") denotes the standard deviation. 2

3 Definition 1: The standard deviation of numbers x 1, x 2..., x n which have mean µ is σ = (x1 µ) 2 + (x 2 µ) (x n µ) 2 n Definition 2: Suppose X is a discrete random variable with possible values x 1, x 2,..., x n and suppose X has the following frequency distribution (x denotes a value of X): x 1 f 1 x 2 f 2. x n Let m = f 1 + f f n and P (X = x i ) = f i /m (the relative frequency of x i ) for 1 i n. If E(X) = µ, then the standard deviation of X is σ =. f n f 1 (x 1 µ) 2 + f 2 (x 2 µ) f n (x n µ) 2 f 1 + f f n Definition 3: Suppose X is a discrete random variable with possible values x 1, x 2,..., x n and suppose X has the following probability distribution (x denotes a value of X): x P (X = x) x 1 p 1 x 2 p 2 If E(X) = µ, then the standard deviation of X is. x n. p n σ = p 1 (x 1 µ) 2 + p 2 (x 2 µ) p n (x n µ) 2 Remember that if σ is small, then the values of a random variable are close to the mean on average. If σ is large, then the values of a random variable are far away from the mean on average. 3

4 3 Computing Standard Deviation You should have noticed the complexity of the standard deviation formulas in the three definitions. This complexity makes it difficult to compute the standard deviation by hand. To avoid this complexity, we will compute the standard deviation using the statistical functions built into our calculators. Example: Suppose X is a discrete random variable which has the following frequency distribution (x denotes a value of X): Compute µ and σ Notes: When you are given the frequency distribution of a random variable, you may assume that P (X = x) is the relative frequency of x. In addition, the instructions given below are summarized on the supplement in the Calculator Instructions section of this document. The first step is to put the calculator into the proper mode. Since the data in this problem uses only a single variable x, we need to put the calculator into 1-variable statistics mode. This is achieved by pressing the following keys on the calculator: 2nd DATA ENTER The next step is to put the data into the calculator. Press DATA to access the data entry function of the calculator. Since the first x in the frequency distribution table is 0, press 0 to get X 1 = 0 on the screen of the calculator. Now press and then 4 to get F RQ = 4 on the screen of the calculator. You have now successfully told the calculator that data value 0 has frequency 4. The following keystrokes will tell the calculator that data value 1 has frequency 7. Watch the screen carefully as you press the keys. 1 7 The following keystrokes will tell the calculator that data value 2 has frequency 19. Watch the screen carefully as you press the keys. 4

5 2 1 9 The following keystrokes will tell the calculator that data value 3 has frequency 16. Watch the screen carefully as you press the keys The following keystrokes will tell the calculator that data value 4 has frequency 8. Watch the screen carefully as you press the keys. 4 8 The following keystrokes will tell the calculator that data value 5 has frequency 2. Watch the screen carefully as you press the keys. 5 2 The data values and their frequencies have now been successfully entered into the calculator. The final step is to get the calculator to do the tedious work of computing the expected value (µ) and the standard deviation (σ). Press STATVAR to tell the calculator to do the computations. All we need to do now is to retrieve the expected value and the standard deviation from the calculator. Press to see the expected value. The calculator uses the symbol x for the expected value, but we use the symbol µ. Your screen should show that µ = Press to see the standard deviation. The calculator uses the symbol σx for the standard deviation, but we use the symbol σ. Your screen should show that σ = If your calculator failed to show the correct µ and σ, then it is likely that you did not enter the data values and frequencies correctly. Press DATA and then use and to check each data value and its frequency. Change any numbers that are incorrect and press STATVAR to recompute µ and σ. If you cannot obtain the correct µ and σ even after attempting to correct the data values and their frequencies, then you can clear out all of the data by pressing the following sequence of keys. Watch the screen carefully as you do this. 2nd DATA ENTER Now press DATA and enter the data values and their frequencies by following the instructions given above. Finally, press STATVAR to recompute µ and σ. 5

6 Example: Compute the mean and the standard deviation of the following scores from a math exam: 72, 54, 95, 74, 50, 74, 64, 66, 87, 88. Round each statistic to the nearest 1/10th. The first step is to clear out the data values and frequencies from the previous example. Pressing the following sequence of keys to clear out the old data values and their frequencies. Watch the screen carefully as you do this. 2nd DATA ENTER Now press DATA and enter the data values and their frequencies. In this case, each frequency will be 1. Once the data values and frequencies are entered correctly, press STATVAR to compute µ and σ. Retrieve µ and σ by following the instructions given in the previous example. You should get µ = 72.4 and σ = if you followed the steps correctly. Since each statistic must be rounded to the nearest 1/10th, the final results are µ = 72.4 and σ = Example: A group of people were surveyed and asked: "Which of the numbers 1, 2, 3, and 4 is your favorite?" Let X be a random variable that denotes the favorite number of a person responding to the survey. The probability distribution of X is given below. Compute µ and σ. x P (X = x) Since we cannot put probabilities into the calculator, we need to convert the probability distribution to a frequency distribution. To do this, we will assume that 100 people responded to the survey. Since P (X = 1) = 24%, 24% of the 100 people (24 people) said that 1 was their favorite. The other frequencies are determined in a similar way, and we have the following frequency distribution: Now follow the procedure given in the first example. You should get µ = 2.57 and σ =

7 You should exit 1-variable statistics mode once you are finished computing statistics such as the mean and the standard deviation. This will enable your calculator to operate normally for non-statistical computations. Press the following key sequence to exit 1-variable statistics mode: 2nd STATVAR ENTER 4 Calculator Instructions Enter 1-Variable Statistics Mode 2nd DATA ENTER Data Input To put the above data into the calculator, do the following steps: DATA X 1 = 0 F RQ = 4 X 2 = 1 F RQ = 7 X 3 = 2 F RQ = 19 X 4 = 3 F RQ = 16 X 5 = 4 F RQ = 8 X 6 = 5 F RQ = 2 Compute Statistics STATVAR µ = σ = Clear Out Data 2nd DATA ENTER Exit 1-Variable Statistics Mode 2nd STATVAR ENTER 7

8 5 Homework Problems 5.1 Instructions Work through the homework problems referring to your notes and the lesson notes when necessary. Use the homework problem solutions only when you get completely stuck. Redo the homework problems before a quiz without referring to any other materials. It is best to do this more than once. 5.2 Problems 1. The exam scores for a course and the two classes taking the course are given below. Course Class X Class Y A. Compute µ and σ for the course. Round each statistic to the nearest 1/10th. B. If a score greater than µ σ is passing, how many students in the course passed the exam? C. If a score greater than µ + σ is an A, how many students in the course received an A on the exam? D. Compute µ and σ for class X. Round each statistic to the nearest 1/10th. E. Compute µ and σ for class Y. Round each statistic to the nearest 1/10th. 2. A. The daily high temperatures (in degrees Fahrenheit) for thirty consecutive winter days in city Z are given below. Compute the mean and standard deviation of this data. Round each statistic to the nearest 1/10th B. We say that data value x is within one standard deviation of the mean if µ σ x µ + σ. For example, if the mean is 100 and the standard deviation is 10, then data value x is within one standard deviation of the mean if x (90 x 110). Similarly, if µ is the mean, σ the standard deviation, n a positive integer, and x a data value, then x will be within n standard deviations of the mean 8

9 if µ n σ x µ + n σ. (We say that σ is one standard deviation and that n σ is n standard deviations.) How many of the daily high temperatures are within one standard deviation of the mean? C. What percentage of the data values are within one standard deviation of the mean? D. A sample of the above data is listed below. Compute the mean and sample standard deviation of the sample. Round each statistic to the nearest 1/10th E. How many of the sample s data values are within two standard deviations of its mean? F. What percentage of the sample s data values are within two standard deviations of its mean? 3. A group of students were asked how many different computer games they play. Let X be the random variable that denotes the number of different computer games played by a student. The frequency distribution of X is given below (x denotes a value of X) A. Compute the mean and standard deviation of X. Round each statistic to the nearest 1/10th. B. A student is considered to be obsessed with computer games if the number of different computer games the student plays is more than one standard deviation above the mean. How many of the students are obsessed with computer games? C. Determine the percentage of students obsessed with computer games. 4. Q made many phone calls during the month of March, but none were longer than six minutes in length. Let X be the random variable that denotes the length of a phone call made by Q. The frequency distribution of X is given below (x denotes a value of X)

10 A. Compute the mean and standard deviation of X. Round each statistic to the nearest 1/10th. B. How many phone calls did Q make during the five days which had lengths that were more than one standard deviation from the mean? C. During most normal five day periods, around 68% of the phone calls Q makes have lengths within one standard deviation of the mean. Would this five day period be considered normal? Explain your answer. 5. Let X be a random variable which denotes the number of computers owned by the members of a Linux users group. The probability distribution of X is shown below. x P (X = x) A. Compute the mean and standard deviation of X. Round each statistic to the nearest 1/10th. B. What is the probability that the number of computers a member of the group owns is within one standard deviation of the mean? 6. There are 30 students enrolled in a section of a course. Let X be a random variable which denotes the number of students who attend an entire class meeting of the section. The probability distribution of X is shown below. x P (X = x) x P (X = x) A. Compute the mean and standard deviation of X. Round each statistic to the nearest 1/10th. B. What is the probability that the number of students attending an entire class is fewer than one standard deviation below the mean? 10

11 6 Document License (CC BY-ND 4.0) Copyright Scott P. Randby This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) or later version license. License legal code 6.1 License Links License summary: License legal code: 11

Compound Interest. Table of Contents. 1 Mathematics of Finance. 2 Compound Interest. 1 Mathematics of Finance 1. 2 Compound Interest 1

Compound Interest. Table of Contents. 1 Mathematics of Finance. 2 Compound Interest. 1 Mathematics of Finance 1. 2 Compound Interest 1 Compound Interest Table of Contents 1 Mathematics of Finance 1 2 Compound Interest 1 3 Compound Interest Computations 3 4 The Effective Rate 5 5 Homework Problems 7 5.1 Instructions......................................

More information

Compound Interest. Contents. 1 Mathematics of Finance. 2 Compound Interest

Compound Interest. Contents. 1 Mathematics of Finance. 2 Compound Interest Compound Interest Contents 1 Mathematics of Finance 1 2 Compound Interest 1 3 Compound Interest Computations 3 4 The Effective Rate 5 5 Document License CC BY-ND 4.0) 7 5.1 License Links.....................................

More information

Statistics vs. statistics

Statistics vs. statistics Statistics vs. statistics Question: What is Statistics (with a capital S)? Definition: Statistics is the science of collecting, organizing, summarizing and interpreting data. Note: There are 2 main ways

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems.

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems. Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems. The following are marks from assignments and tests in a math class.

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters VOCABULARY: Point Estimate a value for a parameter. The most point estimate

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5 H homework problems, C-copyright Joe Kahlig Chapter Solutions, Page Chapter Homework Solutions Compiled by Joe Kahlig. (a) finite discrete (b) infinite discrete (c) continuous (d) finite discrete (e) continuous.

More information

1. Confidence Intervals (cont.)

1. Confidence Intervals (cont.) Math 1125-Introductory Statistics Lecture 23 11/1/06 1. Confidence Intervals (cont.) Let s review. We re in a situation, where we don t know µ, but we have a number from a normal population, either an

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

Applications of Data Dispersions

Applications of Data Dispersions 1 Applications of Data Dispersions Key Definitions Standard Deviation: The standard deviation shows how far away each value is from the mean on average. Z-Scores: The distance between the mean and a given

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence Measures of Variation Section -5 1 Waiting Times of Bank Customers at Different Banks in minutes Jefferson Valley Bank 6.5 6.6 6.7 6.8 7.1 7.3 7.4 Bank of Providence 4. 5.4 5.8 6. 6.7 8.5 9.3 10.0 Mean

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 3a 4/11/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 9 pages (including this cover page) and 9 problems. Check to see if any

More information

Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the following uniform density curve, answer the

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Fall 2011 Exam Score: /75. Exam 3

Fall 2011 Exam Score: /75. Exam 3 Math 12 Fall 2011 Name Exam Score: /75 Total Class Percent to Date Exam 3 For problems 1-10, circle the letter next to the response that best answers the question or completes the sentence. You do not

More information

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

5.1 Mean, Median, & Mode

5.1 Mean, Median, & Mode 5.1 Mean, Median, & Mode definitions Mean: Median: Mode: Example 1 The Blue Jays score these amounts of runs in their last 9 games: 4, 7, 2, 4, 10, 5, 6, 7, 7 Find the mean, median, and mode: Example 2

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

Chapter 6 Confidence Intervals

Chapter 6 Confidence Intervals Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) VOCABULARY: Point Estimate A value for a parameter. The most point estimate of the population parameter is the

More information

L04: Homework Answer Key

L04: Homework Answer Key L04: Homework Answer Key Instructions: You are encouraged to collaborate with other students on the homework, but it is important that you do your own work. Before working with someone else on the assignment,

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

MA 1125 Lecture 05 - Measures of Spread. Wednesday, September 6, Objectives: Introduce variance, standard deviation, range.

MA 1125 Lecture 05 - Measures of Spread. Wednesday, September 6, Objectives: Introduce variance, standard deviation, range. MA 115 Lecture 05 - Measures of Spread Wednesday, September 6, 017 Objectives: Introduce variance, standard deviation, range. 1. Measures of Spread In Lecture 04, we looked at several measures of central

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016.

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016. Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#3 4. Normal Curve Quiz Aug 23-8:31 PM 1 May 1-9:09 PM Apr 28-10:29 AM 2 27, 28, 29, 30 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at

More information

Section 8.1 Distributions of Random Variables

Section 8.1 Distributions of Random Variables Section 8.1 Distributions of Random Variables Random Variable A random variable is a rule that assigns a number to each outcome of a chance experiment. There are three types of random variables: 1. Finite

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Daily Agenda 1. Review OTL C6#5 2. Quiz Section 6.1 A-Skip 35, 39, 40 Crickets The length in inches of a cricket chosen at random from a field is a random variable X with mean 1.2 inches

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS I. INTRODUCTION TO RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS A. Random Variables 1. A random variable x represents a value

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

The Central Limit Theorem for Sums

The Central Limit Theorem for Sums OpenStax-CNX module: m46997 1 The Central Limit Theorem for Sums OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Suppose X is a random

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Discrete Random Variables In this section, we introduce the concept of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can be thought

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

Set up a normal distribution curve, to help estimate the percent of the band that, on average, practices a greater number of hours than Alexis.

Set up a normal distribution curve, to help estimate the percent of the band that, on average, practices a greater number of hours than Alexis. Section 5.5 Z-Scores Example 1 Alexis plays in her school jazz band. Band members practice an average of 16.5 h per week, with a standard deviation of 4.2 h. Alexis practices an average of 22 h per week.

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Ti 83/84. Descriptive Statistics for a List of Numbers

Ti 83/84. Descriptive Statistics for a List of Numbers Ti 83/84 Descriptive Statistics for a List of Numbers Quiz scores in a (fictitious) class were 10.5, 13.5, 8, 12, 11.3, 9, 9.5, 5, 15, 2.5, 10.5, 7, 11.5, 10, and 10.5. It s hard to get much of a sense

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Tuesday, Week 10. Announcements:

Tuesday, Week 10. Announcements: Tuesday, Week 10 Announcements: Thursday, October 25, 2 nd midterm in class, covering Chapters 6-8 (Confidence intervals). Charissa Mikoski, the TA for our class, will be administering the exam (I will

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T9 STANDARD DEVIATION 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) STATISTICS = the branch of mathematics used to analyze and interpret data. 2) DATA = information, often in the form of numbers,

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

*****CENTRAL LIMIT THEOREM (CLT)*****

*****CENTRAL LIMIT THEOREM (CLT)***** Sampling Distributions and CLT Day 5 *****CENTRAL LIMIT THEOREM (CLT)***** (One of the MOST important theorems in Statistics - KNOW AND UNDERSTAND THIS!!!!!!) Draw an SRS of size n from ANY population

More information

FORMULA FOR STANDARD DEVIATION:

FORMULA FOR STANDARD DEVIATION: Chapter 5 Review: Statistics Textbook p.210-282 Summary: p.238-239, p.278-279 Practice Questions p.240, p.280-282 Z- Score Table p.592 Key Concepts: Central Tendency, Standard Deviation, Graphing, Normal

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

I. Standard Error II. Standard Error III. Standard Error 2.54

I. Standard Error II. Standard Error III. Standard Error 2.54 1) Original Population: Match the standard error (I, II, or III) with the correct sampling distribution (A, B, or C) and the correct sample size (1, 5, or 10) I. Standard Error 1.03 II. Standard Error

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

Chapter 12. Sequences and Series

Chapter 12. Sequences and Series Chapter 12 Sequences and Series Lesson 1: Sequences Lesson 2: Arithmetic Sequences Lesson 3: Geometry Sequences Lesson 4: Summation Notation Lesson 5: Arithmetic Series Lesson 6: Geometric Series Lesson

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

Math 14, Homework 6.2 p. 337 # 3, 4, 9, 10, 15, 18, 19, 21, 22 Name

Math 14, Homework 6.2 p. 337 # 3, 4, 9, 10, 15, 18, 19, 21, 22 Name Name 3. Population in U.S. Jails The average daily jail population in the United States is 706,242. If the distribution is normal and the standard deviation is 52,145, find the probability that on a randomly

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test.

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test. Honors Statistics Aug 23-8:26 PM 3. Review team test Aug 23-8:31 PM 1 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 2 May 8-7:44 PM May 1-9:09 PM 3 Dec 1-2:08 PM Sep

More information

Section 3.4 The Normal Distribution

Section 3.4 The Normal Distribution Section 3.4 The Normal Distribution Properties of the Normal Distribution Curve 1. We denote the normal random variable with X = x. 2. The curve has a peak at x = µ. 3. The curve is symmetric about the

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011 Standard Deviation Lecture 18 Section 5.3.4 Robb T. Koether Hampden-Sydney College Mon, Sep 26, 2011 Robb T. Koether (Hampden-Sydney College) Standard Deviation Mon, Sep 26, 2011 1 / 42 Outline 1 Variability

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 3 Presentation of Data: Numerical Summary Measures Part 2 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh

More information

Business Statistics Midterm Exam Fall 2013 Russell

Business Statistics Midterm Exam Fall 2013 Russell Name Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided into

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain.

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain. Binomial and Normal Distributions Objective 1: Determining if an Experiment is a Binomial Experiment For an experiment to be considered a binomial experiment, four things must hold: 1. The experiment is

More information

Statistics 511 Supplemental Materials

Statistics 511 Supplemental Materials Gaussian (or Normal) Random Variable In this section we introduce the Gaussian Random Variable, which is more commonly referred to as the Normal Random Variable. This is a random variable that has a bellshaped

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

23.1 Probability Distributions

23.1 Probability Distributions 3.1 Probability Distributions Essential Question: What is a probability distribution for a discrete random variable, and how can it be displayed? Explore Using Simulation to Obtain an Empirical Probability

More information

MATH 112 Section 7.3: Understanding Chance

MATH 112 Section 7.3: Understanding Chance MATH 112 Section 7.3: Understanding Chance Prof. Jonathan Duncan Walla Walla University Autumn Quarter, 2007 Outline 1 Introduction to Probability 2 Theoretical vs. Experimental Probability 3 Advanced

More information

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted Figure 1: Math 223 Lecture Notes 4/1/04 Section 4.10 The normal distribution Recall that a continuous random variable X with probability distribution function f(x) = 1 µ)2 (x e 2σ 2πσ is said to have a

More information