The Central Limit Theorem for Sums

Size: px
Start display at page:

Download "The Central Limit Theorem for Sums"

Transcription

1 OpenStax-CNX module: m The Central Limit Theorem for Sums OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Suppose X is a random variable with a distribution that may be known or unknown (it can be any distribution) and suppose: a. µ X = the mean of X b. σ X = the standard deviation of X If you draw random samples of size n, then as n increases, the random variable ΣX consisting of sums tends to be normally distributed and ΣX N((n)(µ X ), ( n)(σ X )). Thecentral limit theorem for sums says that if you keep drawing larger and larger samples and taking their sums, the sums form their own normal distribution (the sampling distribution), which approaches a normal distribution as the sample size increases. The normal distribution has a mean equal to the original mean multiplied by the sample size and a standard deviation equal to the original standard deviation multiplied by the square root of the sample size. The random variable ΣX has the following z-score associated with it: a. Σx is one sum. b. z = Σx (n)(µ X ) ( n)(σ X ) i. (n)(µ X ) = the mean of ΣX ii. ( n) (σ X ) = standard deviation of ΣX : To nd probabilities for sums on the calculator, follow these steps. 2 nd DISTR 2:normalcdf normalcdf(lower value of the area, upper value of the area, (n)(mean), ( n)(standard deviation)) where: mean is the mean of the original distribution standard deviation is the standard deviation of the original distribution sample size = n Example 1 An unknown distribution has a mean of 90 and a standard deviation of 15. A sample of size 80 is drawn randomly from the population. Problem Version 1.5: Nov 23, :16 pm

2 OpenStax-CNX module: m a. Find the probability that the sum of the 80 values (or the total of the 80 values) is more than 7,500. b. Find the sum that is 1.5 standard deviations above the mean of the sums. Solution Let X = one value from the original unknown population. The probability question asks you to nd a probability for the sum (or total of) 80 values. ΣX = the sum or total of 80 values. Since µ X = 90, σ X = 15, and n = 80, ΣX N((80)(90), ( 80)(15)) mean of the sums = (n)(µ X ) = (80)(90) = 7,200 standard deviation of the sums = ( n)(σ X ) = ( 80)(15) sum of 80 values = Σx = 7,500 a. Find P(Σx > 7,500) P(Σx > 7,500) = Figure 1 : normalcdf(lower value, upper value, mean of sums, stdev of sums) The parameter list is abbreviated(lower, upper, (n)(µ X, ( n)(σ X )) normalcdf (7500,1E99,(80)(90), ( 80 ) (15)) = : 1E99 = Press the EE key for E. b. Find Σx where z = 1.5. Σx = (n)(µ X ) + (z)( n)(σ X ) = (80)(90) + (1.5)( 80)(15) = 7,401.2

3 OpenStax-CNX module: m : Exercise 2 (Solution on p. 8.) An unknown distribution has a mean of 45 and a standard deviation of eight. A sample size of 50 is drawn randomly from the population. Find the probability that the sum of the 50 values is more than 2,400. : To nd percentiles for sums on the calculator, follow these steps. 2 nd DIStR 3:invNorm k = invnorm (area to the left of k, (n)(mean), ( n(standard deviation)) where: k is the k th percentile mean is the mean of the original distribution standard deviation is the standard deviation of the original distribution sample size = n Example 2 In a recent study reported Oct. 29, 2012 on the Flurry Blog, the mean age of tablet users is 34 years. Suppose the standard deviation is 15 years. The sample of size is 50. a. What are the mean and standard deviation for the sum of the ages of tablet users? What is the distribution? b. Find the probability that the sum of the ages is between 1,500 and 1,800 years. c. Find the 80 th percentile for the sum of the 50 ages. Solution a. µ Σx = nµ x = 50(34) = 1,700 and σ Σx = nσ x = ( 50 )(15) = The distribution is normal for sums by the central limit theorem. b. P(1500 < Σx < 1800) = normalcdf (1,500, 1,800, (50)(34), ( 50 )(15)) = c. Let k = the 80 th percentile. k = invnorm(0.80,(50)(34), ( 50 )(15)) = 1,789.3 : Exercise 4 (Solution on p. 8.) In a recent study reported Oct.29, 2012 on the Flurry Blog, the mean age of tablet users is 35 years. Suppose the standard deviation is ten years. The sample size is 39. a.what are the mean and standard deviation for the sum of the ages of tablet users? What is the distribution? b.find the probability that the sum of the ages is between 1,400 and 1,500 years. c.find the 90 th percentile for the sum of the 39 ages.

4 OpenStax-CNX module: m Example 3 The mean number of minutes for app engagement by a tablet user is 8.2 minutes. Suppose the standard deviation is one minute. Take a sample of size 70. a. What are the mean and standard deviation for the sums? b. Find the 95 th percentile for the sum of the sample. Interpret this value in a complete sentence. c. Find the probability that the sum of the sample is at least ten hours. Solution a. µ Σx = nµ x = 70(8.2) = 574 minutes and σ Σx = ( n) (σ x ) = ( 70 )(1) = 8.37 minutes b. Let k = the 95 th percentile. k = invnorm (0.95,(70)(8.2), ( 70)(1)) = minutes Ninety ve percent of the app engagement times are at most minutes. c. ten hours = 600 minutes P(Σx 600) = normalcdf(600,e99,(70)(8.2), ( 70)(1)) = : Exercise 6 (Solution on p. 8.) The mean number of minutes for app engagement by a table use is 8.2 minutes. Suppose the standard deviation is one minute. Take a sample size of 70. a.what is the probability that the sum of the sample is between seven hours and ten hours? What does this mean in context of the problem? b.find the 84 th and 16 th percentiles for the sum of the sample. Interpret these values in context. 1 References Farago, Peter. The Truth About Cats and Dogs: Smartphone vs Tablet Usage Dierences. The Flurry Blog, Posted October 29, Available online at (accessed May 17, 2013). 2 Chapter Review The central limit theorem tells us that for a population with any distribution, the distribution of the sums for the sample means approaches a normal distribution as the sample size increases. In other words, if the sample size is large enough, the distribution of the sums can be approximated by a normal distribution even if the original population is not normally distributed. Additionally, if the original population has a mean of µ X and a standard deviation of σ x, the mean of the sums is nµ x and the standard deviation is ( n)(σ x ) where n is the sample size. 3 Formula Review The Central Limit Theorem for Sums: X N[(n)(µ x ),( n)(σ x )] Mean for Sums ( X): (n)(µ x ) The Central Limit Theorem for Sums z-score and standard deviation for sums: z for the sample mean = Σx (n)(µ X ) ( n)(σ X ) Standard deviation for Sums ( X): ( n)(σ x )

5 OpenStax-CNX module: m Use the following information to answer the next four exercises: An unknown distribution has a mean of 80 and a standard deviation of 12. A sample size of 95 is drawn randomly from the population. Exercise 7 (Solution on p. 8.) Find the probability that the sum of the 95 values is greater than 7,650. Exercise 8 Find the probability that the sum of the 95 values is less than 7,400. Exercise 9 (Solution on p. 8.) Find the sum that is two standard deviations above the mean of the sums. Exercise 10 Find the sum that is 1.5 standard deviations below the mean of the sums. Use the following information to answer the next ve exercises: The distribution of results from a cholesterol test has a mean of 180 and a standard deviation of 20. A sample size of 40 is drawn randomly. Exercise 11 (Solution on p. 8.) Find the probability that the sum of the 40 values is greater than 7,500. Exercise 12 Find the probability that the sum of the 40 values is less than 7,000. Exercise 13 (Solution on p. 8.) Find the sum that is one standard deviation above the mean of the sums. Exercise 14 Find the sum that is 1.5 standard deviations below the mean of the sums. Exercise 15 (Solution on p. 8.) Find the percentage of sums between 1.5 standard deviations below the mean of the sums and one standard deviation above the mean of the sums. Use the following information to answer the next six exercises: A researcher measures the amount of sugar in several cans of the same soda. The mean is with a standard deviation of 0.5. The researcher randomly selects a sample of 100. Exercise 16 Find the probability that the sum of the 100 values is greater than 3,910. Exercise 17 (Solution on p. 8.) Find the probability that the sum of the 100 values is less than 3,900. Exercise 18 Find the probability that the sum of the 100 values falls between the numbers you found in Problem and Problem. Exercise 19 (Solution on p. 8.) Find the sum with a zscore of 2.5. Exercise 20 Find the sum with a zscore of 0.5. Exercise 21 (Solution on p. 8.) Find the probability that the sums will fall between the z-scores 2 and 1. Use the following information to answer the next four exercise: An unknown distribution has a mean 12 and a standard deviation of one. A sample size of 25 is taken. Let X = the object of interest.

6 OpenStax-CNX module: m Exercise 22 What is the mean of ΣX? Exercise 23 (Solution on p. 8.) What is the standard deviation of ΣX? Exercise 24 What is P(Σx = 290)? Exercise 25 (Solution on p. 8.) What is P(Σx > 290)? Exercise 26 True or False: only the sums of normal distributions are also normal distributions. Exercise 27 (Solution on p. 8.) In order for the sums of a distribution to approach a normal distribution, what must be true? Exercise 28 What three things must you know about a distribution to nd the probability of sums? Exercise 29 (Solution on p. 8.) An unknown distribution has a mean of 25 and a standard deviation of six. Let X = one object from this distribution. What is the sample size if the standard deviation of ΣX is 42? Exercise 30 An unknown distribution has a mean of 19 and a standard deviation of 20. Let X = the object of interest. What is the sample size if the mean of ΣX is 15,200? Use the following information to answer the next three exercises. A market researcher analyzes how many electronics devices customers buy in a single purchase. The distribution has a mean of three with a standard deviation of 0.7. She samples 400 customers. Exercise 31 (Solution on p. 8.) What is the z-score for Σx = 840? Exercise 32 What is the z-score for Σx = 1,186? Exercise 33 (Solution on p. 8.) What is P(Σx < 1,186)? Use the following information to answer the next three exercises: An unkwon distribution has a mean of 100, a standard deviation of 100, and a sample size of 100. Let X = one object of interest. Exercise 34 What is the mean of ΣX? Exercise 35 (Solution on p. 8.) What is the standard deviation of ΣX? Exercise 36 What is P(Σx > 9,000)?

7 OpenStax-CNX module: m Homework Exercise 37 Which of the following is NOT TRUE about the theoretical distribution of sums? a. The mean, median and mode are equal. b. The area under the curve is one. c. The curve never touches the x-axis. d. The curve is skewed to the right. Exercise 38 (Solution on p. 9.) Suppose that the duration of a particular type of criminal trial is known to have a mean of 21 days and a standard deviation of seven days. We randomly sample nine trials. a. In words, ΣX = b. ΣX (, ) c. Find the probability that the total length of the nine trials is at least 225 days. d. Ninety percent of the total of nine of these types of trials will last at least how long? Exercise 39 Suppose that the weight of open boxes of cereal in a home with children is uniformly distributed from two to six pounds with a mean of four pounds and standard deviation of We randomly survey 64 homes with children. a. In words, X = b. The distribution is. c. In words, ΣX = d. ΣX (, ) e. Find the probability that the total weight of open boxes is less than 250 pounds. f. Find the 35 th percentile for the total weight of open boxes of cereal. Exercise 40 (Solution on p. 9.) Salaries for teachers in a particular elementary school district are normally distributed with a mean of $44,000 and a standard deviation of $6,500. We randomly survey ten teachers from that district. a. In words, X = b. X (, ) c. In words, ΣX = d. ΣX (, ) e. Find the probability that the teachers earn a total of over $400,000. f. Find the 90 th percentile for an individual teacher's salary. g. Find the 90 th percentile for the sum of ten teachers' salary. h. If we surveyed 70 teachers instead of ten, graphically, how would that change the distribution in part d? i. If each of the 70 teachers received a $3,000 raise, graphically, how would that change the distribution in part b?

8 OpenStax-CNX module: m Solutions to Exercises in this Module to Exercise (p. 3) to Exercise (p. 3) a. µ Σx = nµ x = 1,365 and σ Σx = nσ x = 62.4 The distribution is normal for sums by the central limit theorem. b. P(1400 < Σ x < 1500) = normalcdf (1400,1500,(39)(35),( 39)(10)) = c. Let k = the 90 th percentile. k = invnorm(0.90,(39)(35),( 39) (10)) = Solution to Exercise (p. 4) a. 7 hours = 420 minutes 10 hours = 600 minutes normalcdfp (420 Σx 600) = normalcdf ( 420, 600, (70) (8.2), 70 (1) ) = This means that for this sample sums there is a 99.9% chance that the sums of usage minutes will be between 420 minutes and 600 minutes. b. invnorm ( 0.84, (70) (8.2), 70 (1) ) = invnorm ( 0.16, (70) (8.2), 70 (1) ) = Since 84% of the app engagement times are at most minutes and 16% of the app engagement times are at most minutes, we may state that 68% of the app engagement times are between minutes and minutes , , % , The sample size, n, gets larger

9 OpenStax-CNX module: m ,000 Solution to Exercise (p. 7) a. the total length of time for nine criminal trials b. N(189, 21) c d ; ninety percent of the total nine trials of this type will last 162 days or more. Solution to Exercise (p. 7) a. X = the salary of one elementary school teacher in the district b. X N(44,000, 6,500) c. ΣX sum of the salaries of ten elementary school teachers in the sample d. ΣX N(44000, ) e f. $52, g. 466, h. Sampling 70 teachers instead of ten would cause the distribution to be more spread out. It would be a more symmetrical normal curve. i. If every teacher received a $3,000 raise, the distribution of X would shift to the right by $3,000. In other words, it would have a mean of $47,000.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

The Central Limit Theorem for Sample Means (Averages)

The Central Limit Theorem for Sample Means (Averages) The Central Limit Theorem for Sample Means (Averages) By: OpenStaxCollege Suppose X is a random variable with a distribution that may be known or unknown (it can be any distribution). Using a subscript

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Central Limit Theorem: Homework

Central Limit Theorem: Homework Connexions module: m16952 1 Central Limit Theorem: Homework Susan Dean Barbara Illowsky, Ph.D. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Using the Central Limit Theorem

Using the Central Limit Theorem OpenStax-CNX module: m46992 1 Using the Central Limit Theorem OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 It is important for

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework The Central Limit Theorem: Homework EXERCISE 1 X N(60, 9). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages. Let X be the random variable of sums.

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

Using the Central Limit

Using the Central Limit Using the Central Limit Theorem By: OpenStaxCollege It is important for you to understand when to use the central limit theorem. If you are being asked to find the probability of the mean, use the clt

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework EERCISE 1 The Central Limit Theorem: Homework N(60, 9). Suppose that you form random samples of 25 from this distribution. Let be the random variable of averages. Let be the random variable of sums. For

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework The Central Limit Theorem: Homework EXERCISE 1 X N(60, 9). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages. Let X be the random variable of sums.

More information

Derived copy of Using the Normal Distribution *

Derived copy of Using the Normal Distribution * OpenStax-CNX module: m62375 1 Derived copy of Using the Normal Distribution * Cindy Sun Based on Using the Normal Distribution by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

The Uniform Distribution

The Uniform Distribution Connexions module: m46972 The Uniform Distribution OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0 The uniform distribution

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Normal Distribution: Introduction

Normal Distribution: Introduction Connexions module: m16979 1 Normal Distribution: Introduction Susan Dean Barbara Illowsky, Ph.D. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Statistics (This summary is for chapters 18, 29 and section H of chapter 19)

Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x n =

More information

Continuous Random Variables: The Uniform Distribution *

Continuous Random Variables: The Uniform Distribution * OpenStax-CNX module: m16819 1 Continuous Random Variables: The Uniform Distribution * Susan Dean Barbara Illowsky, Ph.D. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Shifting and rescaling data distributions

Shifting and rescaling data distributions Shifting and rescaling data distributions It is useful to consider the effect of systematic alterations of all the values in a data set. The simplest such systematic effect is a shift by a fixed constant.

More information

Unit 2: Statistics Probability

Unit 2: Statistics Probability Applied Math 30 3-1: Distributions Probability Distribution: - a table or a graph that displays the theoretical probability for each outcome of an experiment. - P (any particular outcome) is between 0

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

Section 3.4 The Normal Distribution

Section 3.4 The Normal Distribution Section 3.4 The Normal Distribution Properties of the Normal Distribution Curve 1. We denote the normal random variable with X = x. 2. The curve has a peak at x = µ. 3. The curve is symmetric about the

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

5.1 Mean, Median, & Mode

5.1 Mean, Median, & Mode 5.1 Mean, Median, & Mode definitions Mean: Median: Mode: Example 1 The Blue Jays score these amounts of runs in their last 9 games: 4, 7, 2, 4, 10, 5, 6, 7, 7 Find the mean, median, and mode: Example 2

More information

Chapter 4. The Normal Distribution

Chapter 4. The Normal Distribution Chapter 4 The Normal Distribution 1 Chapter 4 Overview Introduction 4-1 Normal Distributions 4-2 Applications of the Normal Distribution 4-3 The Central Limit Theorem 4-4 The Normal Approximation to the

More information

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain.

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain. Binomial and Normal Distributions Objective 1: Determining if an Experiment is a Binomial Experiment For an experiment to be considered a binomial experiment, four things must hold: 1. The experiment is

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Chapter Seven. The Normal Distribution

Chapter Seven. The Normal Distribution Chapter Seven The Normal Distribution 7-1 Introduction Many continuous variables have distributions that are bellshaped and are called approximately normally distributed variables, such as the heights

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

Math Tech IIII, May 7

Math Tech IIII, May 7 Math Tech IIII, May 7 The Normal Probability Models Book Sections: 5.1, 5.2, & 5.3 Essential Questions: How can I use the normal distribution to compute probability? Standards: S.ID.4 Properties of the

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Chapter 6: The Normal Distribution

Chapter 6: The Normal Distribution Chapter 6: The Normal Distribution Diana Pell Section 6.1: Normal Distributions Note: Recall that a continuous variable can assume all values between any two given values of the variables. Many continuous

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Chapter 6: The Normal Distribution

Chapter 6: The Normal Distribution Chapter 6: The Normal Distribution Diana Pell Section 6.1: Normal Distributions Note: Recall that a continuous variable can assume all values between any two given values of the variables. Many continuous

More information

5-1 pg ,4,5, EOO,39,47,50,53, pg ,5,9,13,17,19,21,22,25,30,31,32, pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38

5-1 pg ,4,5, EOO,39,47,50,53, pg ,5,9,13,17,19,21,22,25,30,31,32, pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38 5-1 pg. 242 3,4,5, 17-37 EOO,39,47,50,53,56 5-2 pg. 249 9,10,13,14,17,18 5-3 pg. 257 1,5,9,13,17,19,21,22,25,30,31,32,34 5-4 pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38 5-5 pg. 281 5-14,16,19,21,22,25,26,30

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

Skewness and the Mean, Median, and Mode *

Skewness and the Mean, Median, and Mode * OpenStax-CNX module: m46931 1 Skewness and the Mean, Median, and Mode * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Consider the following

More information

The Uniform Distribution

The Uniform Distribution The Uniform Distribution EXAMPLE 1 The previous problem is an example of the uniform probability distribution. Illustrate the uniform distribution. The data that follows are 55 smiling times, in seconds,

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

AP Stats Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High

AP Stats Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High AP Stats Review Mrs. Daniel Alonzo & Tracy Mourning Sr. High sdaniel@dadeschools.net Agenda 1. AP Stats Exam Overview 2. AP FRQ Scoring & FRQ: 2016 #1 3. Distributions Review 4. FRQ: 2015 #6 5. Distribution

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Objectives: Students will: Define a sampling distribution. Contrast bias and variability. Describe the sampling distribution of a proportion (shape, center, and spread).

More information

Section 6.5. The Central Limit Theorem

Section 6.5. The Central Limit Theorem Section 6.5 The Central Limit Theorem Idea Will allow us to combine the theory from 6.4 (sampling distribution idea) with our central limit theorem and that will allow us the do hypothesis testing in the

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Prob and Stats, Nov 7

Prob and Stats, Nov 7 Prob and Stats, Nov 7 The Standard Normal Distribution Book Sections: 7.1, 7.2 Essential Questions: What is the standard normal distribution, how is it related to all other normal distributions, and how

More information

STATISTICAL DISTRIBUTIONS AND THE CALCULATOR

STATISTICAL DISTRIBUTIONS AND THE CALCULATOR STATISTICAL DISTRIBUTIONS AND THE CALCULATOR 1. Basic data sets a. Measures of Center - Mean ( ): average of all values. Characteristic: non-resistant is affected by skew and outliers. - Median: Either

More information

Continuous Random Variables and the Normal Distribution

Continuous Random Variables and the Normal Distribution Chapter 6 Continuous Random Variables and the Normal Distribution Continuous random variables are used to approximate probabilities where there are many possible outcomes or an infinite number of possible

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

Chapter 5 Normal Probability Distributions

Chapter 5 Normal Probability Distributions Chapter 5 Normal Probability Distributions Section 5-1 Introduction to Normal Distributions and the Standard Normal Distribution A The normal distribution is the most important of the continuous probability

More information

Chapter Seven: Confidence Intervals and Sample Size

Chapter Seven: Confidence Intervals and Sample Size Chapter Seven: Confidence Intervals and Sample Size A point estimate is: The best point estimate of the population mean µ is the sample mean X. Three Properties of a Good Estimator 1. Unbiased 2. Consistent

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.2 Transforming and Combining Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers 6.2 Reading Quiz (T or F)

More information

The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations.

The bell-shaped curve, or normal curve, is a probability distribution that describes many real-life situations. 6.1 6.2 The Standard Normal Curve The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations. Basic Properties 1. The total area under the curve is.

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes. Standardizing normal distributions The Standard Normal Curve

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes. Standardizing normal distributions The Standard Normal Curve 6.1 6.2 The Standard Normal Curve Standardizing normal distributions The "bell-shaped" curve, or normal curve, is a probability distribution that describes many reallife situations. Basic Properties 1.

More information

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011 Standard Deviation Lecture 18 Section 5.3.4 Robb T. Koether Hampden-Sydney College Mon, Sep 26, 2011 Robb T. Koether (Hampden-Sydney College) Standard Deviation Mon, Sep 26, 2011 1 / 42 Outline 1 Variability

More information

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES DISCRETE RANDOM VARIABLE: Variable can take on only certain specified values. There are gaps between possible data values. Values may be counting numbers or

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Normal Probability Distributions

Normal Probability Distributions C H A P T E R Normal Probability Distributions 5 Section 5.2 Example 3 (pg. 248) Normal Probabilities Assume triglyceride levels of the population of the United States are normally distributed with a mean

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Study Ch. 7.3, # 63 71

Study Ch. 7.3, # 63 71 GOALS: 1. Understand the distribution of the sample mean. 2. Understand that using the distribution of the sample mean with sufficiently large sample sizes enables us to use parametric statistics for distributions

More information

Fall 2011 Exam Score: /75. Exam 3

Fall 2011 Exam Score: /75. Exam 3 Math 12 Fall 2011 Name Exam Score: /75 Total Class Percent to Date Exam 3 For problems 1-10, circle the letter next to the response that best answers the question or completes the sentence. You do not

More information

10/1/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

10/1/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Pivotal subject: distributions of statistics. Foundation linchpin important crucial You need sampling distributions to make inferences:

More information

A Single Population Mean using the Student t Distribution

A Single Population Mean using the Student t Distribution OpenStax-CNX module: m47001 1 A Single Population Mean using the Student t Distribution OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Lecture 18 Section Mon, Feb 16, 2009

Lecture 18 Section Mon, Feb 16, 2009 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Feb 16, 2009 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

22.2 Shape, Center, and Spread

22.2 Shape, Center, and Spread Name Class Date 22.2 Shape, Center, and Spread Essential Question: Which measures of center and spread are appropriate for a normal distribution, and which are appropriate for a skewed distribution? Eplore

More information

Lecture 18 Section Mon, Sep 29, 2008

Lecture 18 Section Mon, Sep 29, 2008 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Sep 29, 2008 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

Density curves. (James Madison University) February 4, / 20

Density curves. (James Madison University) February 4, / 20 Density curves Figure 6.2 p 230. A density curve is always on or above the horizontal axis, and has area exactly 1 underneath it. A density curve describes the overall pattern of a distribution. Example

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Terms & Characteristics

Terms & Characteristics NORMAL CURVE Knowledge that a variable is distributed normally can be helpful in drawing inferences as to how frequently certain observations are likely to occur. NORMAL CURVE A Normal distribution: Distribution

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Statistics vs. statistics

Statistics vs. statistics Statistics vs. statistics Question: What is Statistics (with a capital S)? Definition: Statistics is the science of collecting, organizing, summarizing and interpreting data. Note: There are 2 main ways

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

These Statistics NOTES Belong to:

These Statistics NOTES Belong to: These Statistics NOTES Belong to: Topic Notes Questions Date 1 2 3 4 5 6 REVIEW DO EVERY QUESTION IN YOUR PROVINCIAL EXAM BINDER Important Calculator Functions to know for this chapter Normal Distributions

More information