STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models

Size: px
Start display at page:

Download "STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models"

Transcription

1 STA 6166 Fall 2007 Web-based Course 1 Notes 10: Probability Models We first saw the normal model as a useful model for the distribution of some quantitative variables. We ve also seen that if we make a random draw from a distribution that fits the normal model, then the random draw is a normal random variable. There are several other models for random phenomena that are so common that they have names. This chapter discusses three models for discrete random variables. They are all models for the results of independent Bernoulli trials. A Bernoulli trial is a random phenomenon where there are only two possible outcomes (generically called success and failure ). Independent Bernoulli trials are independent repetitions of the random phenomenon where the probability of success (called p) stays the same over all the trials. This is the model used for coin tosses. It can be used as a model for the outcome of many betting games where the two outcomes are win and lose. It can be used for many random phenomena where there are more than two possible outcomes, but where we are only concerned with whether some particular event happens or not. For example, roll a die and see whether or not you get an even number. Randomly choose an adult and determine if they are currently married or not, or intend to vote for Bush or not, or whether their annual income is above $30,000 or not. Random sampling from a population and observing a binary response variable is not precisely like Bernoulli trials. Even though the draws are independent, the probability of a success changes because random sampling is drawing without replacement. If I draw 10 cards without replacement from a deck of cards and observe whether or not each card is an Ace, these are not independent Bernoulli trials. However, if the population is large (like all adults in the U.S.) and the sample relatively small (less than 10% of the population), then the sample can be treated like independent Bernoulli trials without much loss. That is, the Bernoulli trials model will still be an acceptably good model (remember, models are never perfect representations of reality, anyway). The geometric model Suppose we have independent Bernoulli trials with probability of success p. One random variable we might be interested in is X = the number of the trial on which we first observe a success. In these experiments, we keep performing the trials until we get a success and then we stop. Example: Say we have a biased coin, such that the probability of heads is 0.1 instead of 0.5. If X is the number of coin tosses to the first head (head is a success ), what are the possible values of X? What is the probability that we get a head on the first throw? On the second throw? Not until the 10 th throw? Answer: The possible values of X are 1 to infinity. Infinity is very unlikely, but it is possible, theoretically. You all know the probability of getting heads on any throw is 0.5 for a fair coin, and so it s clear that the probability of getting heads on any throw with this biased coin is 0.1. To calculate the probability of requiring 2 throws to get a head, we need to use our rules of probability and a little logical thinking. If X=2, that means we failed to get a head on the first throw, but got a head on the second throw. Since the throws are independent, we know the probability of 2 throws is the product of the probability of the outcomes from the two throws.

2 2 In other words, the probability of tails on the first throw is 0.9 and the probability of heads on the second throw is 0.1, so the probability of X=2 is 0.9*0.1=0.09 Continuing for this example, X P(X = x) * *0.1*0.9 4 (0.1) (0.1) n (0.1) n The probability that we need to toss the coin 10 times to get our first head is (0.1) 9 0.9=9-10. Checkpoint 1: Say we are collecting cards of famous sports figures in cereal boxes, a success might be getting a Tiger Woods card and X is the number of boxes we buy until we get our first Tiger card. Since 20% of the boxes have Tiger cards, p =.2. We let q = 1 p =.8 denote the probability of a failure. What are the possible values of X? For the Tiger model, what s P(X = 1)? P(X = 2)? P(X = 10)? What s a general expression for P(X = x) in terms of p and q? The examples above follow a geometric model. The geometric model has one parameter: p. We denote the geometric model by Geom(p). So the number of boxes needed to get a Tiger card is modeled by a Geom(.2). The probabilities look like this (they keep going beyond x=20, but the probabilities keep getting smaller and smaller):

3 3 Geom(.2) Probability x The expected value of a random variable X with model Geom(p) is E(X) = xp(x = x) = 1p + 2qp + 3q p + 4q p +... = p (See the text for a proof of this using geometric series.) The standard deviation isσ = q / p. Hence, the expected number of boxes we need to but to get a Tiger card is 1/.2 = 5 boxes. The standard deviation is 2. 8 /(.2) = Checkpoint 2: What s the probability we will have to buy at least 10 boxes to get a Tiger card? Hint: At least 10 means greater than 9. Use what you know about complements from the rules of probability to simplify.

4 4 Binomial Model Suppose again we have independent Bernoulli trials with constant probability of success p. However, suppose now that the number of trials n is fixed and that the random variable X is the number of successes in the n trials. Then X follows a Binomial model. The binomial model has two parameters: n and p. It s denoted by Binom(n,p). Checkpoint 3: What are the possible values of X? The binomial probability model is n x n x P( X = x) = p q, x = 0,1,2,..., n, where x n = x n! x!( n x)! and q = 1 p. The symbol n! is pronounced n factorial and is equal to the product of all the numbers from 1 to n. That is 5!=5*4*3*2*1. The mean is µ = E ( X ) = np and the standard deviation is σ = SD ( X ) = npq. Checkpoint 4: Suppose we buy 5 boxes of cereal. What s the expected number of Tigers? What s the standard deviation? What s the probability that we get exactly one Tiger? What s the probability that we get two or fewer Tigers?

5 5 Binom(5,.2) Probability x Deriving the mean and standard deviation of a binomial random variable To derive the mean and standard deviation for the binomial model, start with a single Bernoulli trial with probability of success p. Let X be the number of successes on this single trial so X is either 1 or 0 and it s 1 with probability p and 0 with probability q=1-p. X is sometimes said to be a Bernoulli random variable. Checkpoint 5: Use the properties of expected value and variance to show that E(X) and Var(X) for a Bernoulli random variable. Remember, first list the possible outcomes and their probabilities. Then use the formulas for expected value and variance to calculate them, as you did for the roulette example in the last set of notes. Now, suppose we have n independent Bernoulli trials. The number of successes on the n trials is Y = X 1 + X X n where each of the X s is a Bernoulli trial. So, using the properties of expected value and variance, E(Y) = Var(Y) = SD(Y) = Using the normal model to approximate the binomial model If n in the Binomial model is large, then the calculation of the binomial probabilities can get pretty difficult. What happens to n! as n gets large?

6 6 Example: Suppose I take a 100-question, multiple-choice test for which there are 4 choices on every problem. What s the probability I will get more than 30 correct if my choices are random? Calculating all the binomial probabilities would be tedious and difficult for this example. However, it turns out that for large n, the binomial probabilities are well approximated by a normal model. The mean and standard deviation of the normal model are the mean and standard deviation of the binomial distribution you re trying to approximate. Binom(100,.25) Probability x For the Binom(100,.25) model, µ = 100(.25) = 25 and σ = 100(.25)(.75) = Therefore, if the normal approximation is adequate we can use z-scores and µ and σ to calculate binomial probabilities. Example: Use the normal approximation to the binomial to find the probability X < 10. Answer: = z = = From the Z table, we see that the probability of a N(0,1) random variable being less than is Checkpoint 6: Use the normal approximation to calculate P (X > 30) The normal approximation is generally considered adequate if np and nq are both greater than or equal to 10. Check this condition for the checkpoint above.

7 7 The Poisson model In the binomial model, what if n is large, but p is so small that the normal approximation to the binomial cannot be used? This would be a nightmare to calculate using the binomial model. Another model, the Poisson, can be used as an approximation to the binomial model in this case. The Poisson is commonly used for events that occur at a low rate over a large amount of time or space. Poisson is pronounced pwahsahn. People will make fun of you if you say poison. Checkpoint 7: If there are 3 x 10 9 basepairs in the human genome and the mutation rate per generation per basepair is In this example we see the 3 x 10 9 basepairs as trials where a mutation could occur or not. The mutation rate is the probability of a success where a success is the event that a mutation occurred. This is a classic binomial model. What is the probability that a baby will have no mutations? One mutation? We could use the binomial model for these outcomes. What assumption do we make if we do? What are n and p? Try using the binomial model to compute these probabilities. What does you calculator have to say about this? The Poisson model has one parameter, which is traditionally called λ, pronounced lambda. The probability function is P( X λ x e = x) =, x = 0, 1, 2, λ x! The expected value is E(X) = λ and the standard deviation is SD(X) = λ. To use the Poisson approximation to the binomial, use λ = np. Note in the mutation example that 3 x 10 9 *10-9 =3. Example: What is the probability of 0 mutations in the problem from checkpoint 7? Answer: x 3 0 e λ λ e λ 3 Pr{ = 0} = = = = X x! 0! e

8 Checkpoint 8: Calculate the probabilities of 1, 2, 3 mutations using the Poisson model. 8 The Poisson model turns out to be the theoretically correct model for events that occur randomly over time or space and we count the number of events in equal-sized intervals of time or space. Adjusting for Change in Units in the Poisson Model If we expect a drought in Florida every 5 years, how many droughts do we expect in 15? The intuitive answer is 3, and you intuition is right! The Poisson model is used for counts per unit time or space. If we change those units we simply change λ by the same conversion. So, if typos on a page follow a Poisson(3) model, typos on half a page follow a Poisson(1.5) model. The expected value of the first model is 3 and the variance is 3. For the second model, the expected value is 1.5 and the variance is 1.5. Checkpoint 9: If hummingbirds arrive at a flower at a rate of λ per hour, how many visits are expected in n hours of observation and what is the variance in this expectation? If significantly more variance is observed than expected, what might this tell you about hummingbird visits?

9 Checkpoint 10: (From Romano) If bacteria are spread across a plate at an average density of 5000 per square inch, what is the chance of seeing no bacteria in the viewing field of a microscope if this viewing field is 10-4 square inches? What, therefore, is the probability of seeing at least one cell? 9 Example: FLYING-BOMB HITS ON LONDON (576 cells with 537 hits)* # of hits # of cells with # of hits above Poisson Fit The actual fit of the Poisson for the data is surprisingly good. It is interesting to note that most people believed in a tendency of the points of impact to cluster. If this were true there would be a higher frequency of areas with either no impacts or many impacts and a deficiency in the intermediate classes. The table indicates randomness and homogeneity of the area. We have here an instructive illustration of the fact that to the untrained eye randomness appears as regularity or tendency to cluster. Example: From Time magazine, Sept. 4, 1989 For players of Montana's Big Spin lottery game, lady luck went on vacation and never came back. In Big Spin, the state chooses three people each week from among thousands of losing lottery ticket holders and gives them a chance to win a $1 million jackpot by whirling the Big Spin wheel. But in 222 tries over the past 18 months, no one has hit the jackpot. Officials added a second $1 million slot to the 100-slot wheel, but to no avail. Without a big winner to hype, ticket sales have dropped from $23 million in fiscal 1988 to $11.2 million in Checkpoint 11: Is the big wheel fixed? Why or why not?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Probability Models. Grab a copy of the notes on the table by the door

Probability Models. Grab a copy of the notes on the table by the door Grab a copy of the notes on the table by the door Bernoulli Trials Suppose a cereal manufacturer puts pictures of famous athletes in boxes of cereal, in the hope of increasing sales. The manufacturer announces

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Chapter 17 Probability Models

Chapter 17 Probability Models Chapter 17 Probability Models Overview Key Concepts Know how to tell if a situation involves Bernoulli trials. Be able to choose whether to use a Geometric or a Binomial model for a random variable involving

More information

Chapter 17. Probability Models. Copyright 2010 Pearson Education, Inc.

Chapter 17. Probability Models. Copyright 2010 Pearson Education, Inc. Chapter 17 Probability Models Copyright 2010 Pearson Education, Inc. Bernoulli Trials The basis for the probability models we will examine in this chapter is the Bernoulli trial. We have Bernoulli trials

More information

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Discrete Probability Distributions McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Overview Introduction 5-1 Probability Distributions 5-2 Mean, Variance, Standard Deviation, and Expectation

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations II - Probability Counting Techniques three rules of counting 1multiplication rules 2permutations 3combinations Section 2 - Probability (1) II - Probability Counting Techniques 1multiplication rules In

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Binomal and Geometric Distributions

Binomal and Geometric Distributions Binomal and Geometric Distributions Sections 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 7-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

6.3: The Binomial Model

6.3: The Binomial Model 6.3: The Binomial Model The Normal distribution is a good model for many situations involving a continuous random variable. For experiments involving a discrete random variable, where the outcome of the

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Random Variables and Probability Functions

Random Variables and Probability Functions University of Central Arkansas Random Variables and Probability Functions Directory Table of Contents. Begin Article. Stephen R. Addison Copyright c 001 saddison@mailaps.org Last Revision Date: February

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

***SECTION 8.1*** The Binomial Distributions

***SECTION 8.1*** The Binomial Distributions ***SECTION 8.1*** The Binomial Distributions CHAPTER 8 ~ The Binomial and Geometric Distributions In practice, we frequently encounter random phenomenon where there are two outcomes of interest. For example,

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

Chapter 14 - Random Variables

Chapter 14 - Random Variables Chapter 14 - Random Variables October 29, 2014 There are many scenarios where probabilities are used to determine risk factors. Examples include Insurance, Casino, Lottery, Business, Medical, and other

More information

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why?

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? Probability Introduction Shifting our focus We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? What is Probability? Probability is used

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

The Binomial distribution

The Binomial distribution The Binomial distribution Examples and Definition Binomial Model (an experiment ) 1 A series of n independent trials is conducted. 2 Each trial results in a binary outcome (one is labeled success the other

More information

8.1 Binomial Distributions

8.1 Binomial Distributions 8.1 Binomial Distributions The Binomial Setting The 4 Conditions of a Binomial Setting: 1.Each observation falls into 1 of 2 categories ( success or fail ) 2 2.There is a fixed # n of observations. 3.All

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

(Practice Version) Midterm Exam 1

(Practice Version) Midterm Exam 1 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 19, 2014 (Practice Version) Midterm Exam 1 Last name First name SID Rules. DO NOT open

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables STA 220H1F LEC0201 Week 7: More Probability: Discrete Random Variables Recall: A sample space for a random experiment is the set of all possible outcomes of the experiment. Random Variables A random variable

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

CIVL Discrete Distributions

CIVL Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

6. THE BINOMIAL DISTRIBUTION

6. THE BINOMIAL DISTRIBUTION 6. THE BINOMIAL DISTRIBUTION Eg: For 1000 borrowers in the lowest risk category (FICO score between 800 and 850), what is the probability that at least 250 of them will default on their loan (thereby rendering

More information

PROBABILITY AND STATISTICS, A16, TEST 1

PROBABILITY AND STATISTICS, A16, TEST 1 PROBABILITY AND STATISTICS, A16, TEST 1 Name: Student number (1) (1.5 marks) i) Let A and B be mutually exclusive events with p(a) = 0.7 and p(b) = 0.2. Determine p(a B ) and also p(a B). ii) Let C and

More information

Chpt The Binomial Distribution

Chpt The Binomial Distribution Chpt 5 5-4 The Binomial Distribution 1 /36 Chpt 5-4 Chpt 5 Homework p262 Applying the Concepts Exercises p263 1-11, 14-18, 23, 24, 26 2 /36 Objective Chpt 5 Find the exact probability for x successes in

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Chapter 8 Probability Models

Chapter 8 Probability Models Chapter 8 Probability Models We ve already used the calculator to find probabilities based on normal models. There are many more models which are useful. This chapter explores three such models. Many types

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Chapter 8. Binomial and Geometric Distributions

Chapter 8. Binomial and Geometric Distributions Chapter 8 Binomial and Geometric Distributions Lesson 8-1, Part 1 Binomial Distribution What is a Binomial Distribution? Specific type of discrete probability distribution The outcomes belong to two categories

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,...

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,... Assignment 3 - Statistics Name: Permutation: Combination: n n! P r = (n r)! n n! C r = (n r)!r! n = 1,2,3,... n = 1,2,3,... The Fundamental Counting Principle: If two indepndent events A and B can happen

More information

Math 227 Practice Test 2 Sec Name

Math 227 Practice Test 2 Sec Name Math 227 Practice Test 2 Sec 4.4-6.2 Name Find the indicated probability. ) A bin contains 64 light bulbs of which 0 are defective. If 5 light bulbs are randomly selected from the bin with replacement,

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

Chapter 6 Section 3: Binomial and Geometric Random Variables

Chapter 6 Section 3: Binomial and Geometric Random Variables Name: Date: Period: Chapter 6 Section 3: Binomial and Geometric Random Variables When the same chance process is repeated several times, we are often interested whether a particular outcome does or does

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

Binomial and Geometric Distributions

Binomial and Geometric Distributions Binomial and Geometric Distributions Section 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office hours: T Th 2:30 pm - 5:15 pm 620 PGH Department of Mathematics University of Houston February 11, 2016

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys?

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? Chapters 6 8 Review 1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? (A) 1 (B) 3 1 (C) 3 (D) 4 1 (E) None of the above..

More information

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 41

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 41 STA258H5 Al Nosedal and Alison Weir Winter 2017 Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 41 NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION. Al Nosedal and Alison Weir STA258H5 Winter 2017

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic.

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic. A Statistics Section 6.1 Day 1 ultiple Choice ractice Name: 1. A variable whose value is a numerical outcome of a random phenomenon is called a) a random variable. b) a parameter. c) biased. d) a random

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

When the observations of a quantitative random variable can take on only a finite number of values, or a countable number of values.

When the observations of a quantitative random variable can take on only a finite number of values, or a countable number of values. 5.1 Introduction to Random Variables and Probability Distributions Statistical Experiment - any process by which an observation (or measurement) is obtained. Examples: 1) Counting the number of eggs in

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable 1. A number between 0 and 1 that is use to measure uncertainty is called: (a) Random variable (b) Trial (c) Simple event (d) Probability 2. Probability can be expressed as: (a) Rational (b) Fraction (c)

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

Discrete Probability Distributions

Discrete Probability Distributions Page 1 of 6 Discrete Probability Distributions In order to study inferential statistics, we need to combine the concepts from descriptive statistics and probability. This combination makes up the basics

More information

S = 1,2,3, 4,5,6 occurs

S = 1,2,3, 4,5,6 occurs Chapter 5 Discrete Probability Distributions The observations generated by different statistical experiments have the same general type of behavior. Discrete random variables associated with these experiments

More information

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled. Part 1: Probability Distributions VIDEO 1 Name: 11-10 Probability and Binomial Distributions A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information