1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

Size: px
Start display at page:

Download "1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of"

Transcription

1 1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of The amount of each claim is distributed as a Pareto distribution with 1000 and 4. Let S be the random variable representing the aggregate claims per insured in a calendar year. a. (8 points) Calculate the ES [ ] and Var[ S ]. Var N [ ] ( 1) (4)(1)( 7.315) ()(1) E[ S] E[ N] E[ X ] ( ) (.5) Var( S) E[ N] Var( X ) Var( N)( E[ X ]) (1000) (4) 1000 (4 1) () 4 1 (.5) (7.315) 1,31,500

2 b. (8 points) The Henry Insurance Company has 1000 independent dental policies which have no deductible or upper limits. Assuming the normal distribution, calculate the 95% confidence interval for the total aggregate claims for a calendar year for the 1000 policies. E[ Port] (1000)(750) 750,000 Var[ Port] (1000)(1,31,500) CI 750, (1000)(1,31,500) (678,99 ; 81, 008) c. (4 points) Henry Insurance Company decides to implement a franchise deductible of 50 for each claim. Determine the expected number of claims per policy during the calendar year. 4 L C L 1000 N.5 N N ( F(50)) (.5)

3 . (10 points) The number of claims under a hospital indemnity policy follows a Poisson distribution with a mean of 1. The amount of each claim is distributed as Amount of claim Probability Let S be the random variable representing the aggregate claims per insured in a calendar year. Calculate the net stop loss premium for a stop loss policy that covers aggregate losses in excess of 500. Premium E[ S] E[ S 500] E[ N] E[ X ] E[ S 500] (1) (0.)(1000) (0.3)(000) (0.5)(3000) (0)( f (0)) (1000)( f (1000)) (000)( f (000)) (500)(1 F (000)) S S S S f (0) Pr[ N 0] e S 1 f N X e 1 S (1000) Pr[ 1& 1000] ( )(0. ) e fs (000) Pr[ N 1& X 000] Pr[ N & Xs 1000] ( e )(0.3) (0.) e (0)( e ) (1000)( e 0.) (000) ( e )(0.3) (0.) (500)(1 1.5 e ) 888.9

4 3. (10 points) The number of claims in a calendar year under a cancer policy has the following distribution: Number of Claims Probability The amount of each claim is distributed as an exponential distribution with a mean of 100. Let S be the random variable representing the aggregate claims per insured in a calendar year. Calculate Var[ S ]. Var( S) E[ N] Var( X ) Var( N)( E[ X ]) EN [ ] (0)(0.5) (1)(0.3) (0.) 0.7 Var N [ ] (0 )(0.5) (1 )(0.3) ( )(0.) (0.7) 0.61 EX [ ] 100 Var[ X ] (100) Var S [ ] (0.7)(100) (0.61)(100) 1,886, 400

5 4. (10 points) The Wu Warranty Company provides warranties on iphones and Android phones. The probability of having a claim on an iphone is 0.5. The amount of a claim on an iphone is distributed as a Gamma distribution with 100 and 3. The probability of a claim on an Android phone is 0%. The amount of a claim on an Android phone is distributed uniformly between 100 and 300. Wu provides a warranty on 500 iphones and 1000 Android phones. Let S be the random variable representing the aggregate claims. Calculate the Var[ S ]. n ( ) [ (1 ) ] 1 Var S q q q iphone (100)(3) 300 and iphone (100) (3) 30, 000 Android ( ) ( ) 1 00 and Android Var S ( ) (500) (0.5)(30,000) (0.5)(0.75)(300) (1000) (0.)( ) (0.)(0.8)(00) 19, 54,166

6 5. Amstutz Ant Farm is studying the life expectancy of ants. One of the farms owners, Kevin, collects the following data on 100 ants: a. There were 70 ants in the farm at time 0. b. There were 15 ants that entered the farm at time c. There were 10 ants that entered the farm at time 3 d. There were 5 ants that entered the farm at time 4 e. There were 18 ants that escaped from the farm at time f. There were 1 ants that escaped from the farm at time 4 g. There were 5 ants still alive at the end of 10 days. h. The remaining 45 ants died as follows: Number of Days till Death Number of Ants Dying a. (10 points) Jana, the farm s actuary, uses the Nelson-Åalen estimator to calculate ˆ(4) S. Determine Jana s estimate. y s H (4) r S (4) e 0.638

7 b. (10 points) Molly, who is also part owner of the farm and a statistician, decides to calculate an 80% confidence interval for S (4) using the Meier-Kaplan Product Limit Estimator and the Greenwood approximation for the variance. Determine Molly s confidence interval S(4) Var (70)(68) (68)(6) (59)(48) (58)(49) ([(4)] ( ) CI (1.8) ( , )

8 6. You are given the following data regarding claims for automobile collision coverage offered by Cao Car Assurance Company: Amount of Claim Number of Claims Total Claims 0 to to , to , to 10, ,500 10,000 or more 5,000 a. (6 points) Using the Ogive, calculate F (000). 40 F 34 (1500) and F (3000) F 40 ( ) ( ) 34 (000) 0.65 ( ) 40 ( ) 40 b. (6 points) The above is based on claims with no modifications (deductible or upper limit). Cao decides to treat the data as an empirical distribution. Further, Cao decides to apply an ordinary deductible of 500 and an upper limit of 0,000. Calculate the expected amount that Cao will pay per claim with the deductible and upper limit.

9 E[ X 0, 000] E[ X 500] First, we note that no claim exceeds 15,000 because there are two claims over 10,000 and their sum is 5,000 so the maximum claim is 15,000. Therefore, 800 1, 000,500 6,500 5, ,800 E[ X 0,000] E[ X ] (3)(500) EX [ 500] E[ X 0, 000] E[ X 500]

10 7. You are given the following sample of five claims: 50, 80, 100, 300, 500 Xi 1030 Xi 358,900 a. (4 points) Calculate the unbiased estimate of the mean of the distribution from which this sample was selected Unbiased Estimator of the Mean is X X i b. (4points) Calculate the unbiased estimate of the variance of the distribution from which this sample was selected. Unbiased Estimator of the Variance X ( N)( X ) N 1 358,900 (5)(06) 4 36,380

11 8. (10 points) You are given the following sample data: X: 5, 6, 8, 10, 10, 10, 13, 17, 0, 1 You are also given: N = 10 Sum of Xi = 10 Sum of Xi = 174 You complete Hypothesis Testing with: H0: The mean is 10. H1: The mean is not 10. Calculate the z statistic, the critical value(s) assuming a significance level of 30%, and the p value. State your conclusion with regard to the Hypothesis Testing. X S X ( N)( X ) (1) N 1 9 z / Critical Value p value = Reect the null hypothesis.

12 9. (10 points) A sample of two ( X 1 and X ) is drawn from a population of a uniform distribution between 0 and. The parameter is estimated using the following estimator: ˆ X1 X Calculate the Mean Square Error in the estimate. Your answer will be in terms of. MSE Var( ˆ ) [ bias ( )] ˆ bias ( ) E[ ˆ ] E[ X X ] E[ X ] E[ X ] ˆ ˆ Var( ) Var( X1 X ) Var( X1 ) Var( X ) MSE 0 6 6

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 7.3125. The amount of each claim is distributed as a Pareto distribution with

More information

STAT 479 Test 2 Spring 2013

STAT 479 Test 2 Spring 2013 STAT 479 Test 2 Spring 2013 March 26, 2013 1. You have a sample 10 claims from a Pareto distribution. You are given that 10 X i 1 16,000,000. and 10 2 Xi i 1 i 12,000 Yi uses this information to determine

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

STAT 479 Test 2 Spring 2014 April 1, 2014

STAT 479 Test 2 Spring 2014 April 1, 2014 TAT 479 Test pring 014 April 1, 014 1. (5 points) You are given the following grouped data: Calculate F (4000) 5 using the ogive. Amount of claims Number of Claims 0 to 1000 8 1000 to 500 10 500 to 10,000

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 in the table handed out in class is a uniform distribution from 0 to 100. Determine what the table entries would be for a generalized uniform distribution covering the range from a

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 is a uniform distribution from 0 to 100. Determine the table entries for a generalized uniform distribution covering the range from a to b where a < b. 2. Let X be a discrete random

More information

STAT 479 Test 3 Spring 2016 May 3, 2016

STAT 479 Test 3 Spring 2016 May 3, 2016 The final will be set as a case study. This means that you will be using the same set up for all the problems. It also means that you are using the same data for several problems. This should actually

More information

SYLLABUS OF BASIC EDUCATION SPRING 2018 Construction and Evaluation of Actuarial Models Exam 4

SYLLABUS OF BASIC EDUCATION SPRING 2018 Construction and Evaluation of Actuarial Models Exam 4 The syllabus for this exam is defined in the form of learning objectives that set forth, usually in broad terms, what the candidate should be able to do in actual practice. Please check the Syllabus Updates

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS Questions 1-307 have been taken from the previous set of Exam C sample questions. Questions no longer relevant

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 2008 by the Society of Actuaries and the Casualty Actuarial Society

More information

1. The probability that a visit to a primary care physician s (PCP) office results in neither

1. The probability that a visit to a primary care physician s (PCP) office results in neither 1. The probability that a visit to a primary care physician s (PCP) office results in neither lab work nor referral to a specialist is 35%. Of those coming to a PCP s office, 30% are referred to specialists

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

1. For two independent lives now age 30 and 34, you are given:

1. For two independent lives now age 30 and 34, you are given: Society of Actuaries Course 3 Exam Fall 2003 **BEGINNING OF EXAMINATION** 1. For two independent lives now age 30 and 34, you are given: x q x 30 0.1 31 0.2 32 0.3 33 0.4 34 0.5 35 0.6 36 0.7 37 0.8 Calculate

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: l x

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: l x 1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: Age l Age 0 000 5 100 1 1950 6 1000 1850 7 700 3 1600 8 300 4 1400 9 0 l Datsenka sells an whole life annuity based

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Credibility. Chapters Stat Loss Models. Chapters (Stat 477) Credibility Brian Hartman - BYU 1 / 31

Credibility. Chapters Stat Loss Models. Chapters (Stat 477) Credibility Brian Hartman - BYU 1 / 31 Credibility Chapters 17-19 Stat 477 - Loss Models Chapters 17-19 (Stat 477) Credibility Brian Hartman - BYU 1 / 31 Why Credibility? You purchase an auto insurance policy and it costs $150. That price is

More information

Test 1 STAT Fall 2014 October 7, 2014

Test 1 STAT Fall 2014 October 7, 2014 Test 1 STAT 47201 Fall 2014 October 7, 2014 1. You are given: Calculate: i. Mortality follows the illustrative life table ii. i 6% a. The actuarial present value for a whole life insurance with a death

More information

1. For a special whole life insurance on (x), payable at the moment of death:

1. For a special whole life insurance on (x), payable at the moment of death: **BEGINNING OF EXAMINATION** 1. For a special whole life insurance on (x), payable at the moment of death: µ () t = 0.05, t > 0 (ii) δ = 0.08 x (iii) (iv) The death benefit at time t is bt 0.06t = e, t

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 11 Output Analysis for a Single Model Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Objective: Estimate system performance via simulation If q is the system performance,

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Module 4: Point Estimation Statistics (OA3102)

Module 4: Point Estimation Statistics (OA3102) Module 4: Point Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.1-8.4 Revision: 1-12 1 Goals for this Module Define

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

8.5 Numerical Evaluation of Probabilities

8.5 Numerical Evaluation of Probabilities 8.5 Numerical Evaluation of Probabilities 1 Density of event individual became disabled at time t is so probability is tp 7µ 1 7+t 16 tp 11 7+t 16.3e.4t e.16 t dt.3e.3 16 Density of event individual became

More information

November 2001 Course 1 Mathematical Foundations of Actuarial Science. Society of Actuaries/Casualty Actuarial Society

November 2001 Course 1 Mathematical Foundations of Actuarial Science. Society of Actuaries/Casualty Actuarial Society November 00 Course Mathematical Foundations of Actuarial Science Society of Actuaries/Casualty Actuarial Society . An urn contains 0 balls: 4 red and 6 blue. A second urn contains 6 red balls and an unknown

More information

Chapter 2 and 3 Exam Prep Questions

Chapter 2 and 3 Exam Prep Questions 1 You are given the following mortality table: q for males q for females 90 020 010 91 02 01 92 030 020 93 040 02 94 00 030 9 060 040 A life insurance company currently has 1000 males insured and 1000

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

STAT 472 Fall 2016 Test 2 November 8, 2016

STAT 472 Fall 2016 Test 2 November 8, 2016 STAT 472 Fall 2016 Test 2 November 8, 2016 1. Anne who is (65) buys a whole life policy with a death benefit of 200,000 payable at the end of the year of death. The policy has annual premiums payable for

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers?

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 1 451/551 - Final Review Problems 1 Probability by Sample Points 1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 2. A box contains

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

May 2001 Course 3 **BEGINNING OF EXAMINATION** Prior to the medical breakthrough, s(x) followed de Moivre s law with ω =100 as the limiting age.

May 2001 Course 3 **BEGINNING OF EXAMINATION** Prior to the medical breakthrough, s(x) followed de Moivre s law with ω =100 as the limiting age. May 001 Course 3 **BEGINNING OF EXAMINATION** 1. For a given life age 30, it is estimated that an impact of a medical breakthrough will be an increase of 4 years in e o 30, the complete expectation of

More information

STAT 472 Fall 2013 Test 2 October 31, 2013

STAT 472 Fall 2013 Test 2 October 31, 2013 STAT 47 Fall 013 Test October 31, 013 1. (6 points) Yifei who is (45) is receiving an annuity with payments of 5,000 at the beginning of each year. The annuity guarantees that payments will be made for

More information

No. of Printed Pages : 11 I MIA-005 (F2F) I M.Sc. IN ACTUARIAL SCIENCE (MSCAS) Term-End Examination June, 2012

No. of Printed Pages : 11 I MIA-005 (F2F) I M.Sc. IN ACTUARIAL SCIENCE (MSCAS) Term-End Examination June, 2012 No. of Printed Pages : 11 I MIA-005 (F2F) I M.Sc. IN ACTUARIAL SCIENCE (MSCAS) Term-End Examination June, 2012 MIA-005 (F2F) : STOCHASTIC MODELLING AND SURVIVAL MODELS Time : 3 hours Maximum Marks : 100

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM P PROBABILITY EXAM P SAMPLE QUESTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM P PROBABILITY EXAM P SAMPLE QUESTIONS SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM P PROBABILITY EXAM P SAMPLE QUESTIONS Copyright 007 by the Society of Actuaries and the Casualty Actuarial Society Some of the questions in this study

More information

Subject CS2A Risk Modelling and Survival Analysis Core Principles

Subject CS2A Risk Modelling and Survival Analysis Core Principles ` Subject CS2A Risk Modelling and Survival Analysis Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

C.10 Exercises. Y* =!1 + Yz

C.10 Exercises. Y* =!1 + Yz C.10 Exercises C.I Suppose Y I, Y,, Y N is a random sample from a population with mean fj. and variance 0'. Rather than using all N observations consider an easy estimator of fj. that uses only the first

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

Introduction Models for claim numbers and claim sizes

Introduction Models for claim numbers and claim sizes Table of Preface page xiii 1 Introduction 1 1.1 The aim of this book 1 1.2 Notation and prerequisites 2 1.2.1 Probability 2 1.2.2 Statistics 9 1.2.3 Simulation 9 1.2.4 The statistical software package

More information

1/2 2. Mean & variance. Mean & standard deviation

1/2 2. Mean & variance. Mean & standard deviation Question # 1 of 10 ( Start time: 09:46:03 PM ) Total Marks: 1 The probability distribution of X is given below. x: 0 1 2 3 4 p(x): 0.73? 0.06 0.04 0.01 What is the value of missing probability? 0.54 0.16

More information

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit.

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit. STA 103: Final Exam June 26, 2008 Name: } {{ } by writing my name i swear by the honor code Read all of the following information before starting the exam: Print clearly on this exam. Only correct solutions

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

APPROACHES TO VALIDATING METHODOLOGIES AND MODELS WITH INSURANCE APPLICATIONS

APPROACHES TO VALIDATING METHODOLOGIES AND MODELS WITH INSURANCE APPLICATIONS APPROACHES TO VALIDATING METHODOLOGIES AND MODELS WITH INSURANCE APPLICATIONS LIN A XU, VICTOR DE LA PAN A, SHAUN WANG 2017 Advances in Predictive Analytics December 1 2, 2017 AGENDA QCRM to Certify VaR

More information

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1.

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. Solutions to the Spring 213 Course MLC Examination by Krzysztof Ostaszewski, http://wwwkrzysionet, krzysio@krzysionet Copyright 213 by Krzysztof Ostaszewski All rights reserved No reproduction in any form

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk?

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk? Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk? Ramon Alemany, Catalina Bolancé and Montserrat Guillén Riskcenter - IREA Universitat de Barcelona http://www.ub.edu/riskcenter

More information

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90.

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90. Two hours MATH39542 UNIVERSITY OF MANCHESTER RISK THEORY 23 May 2016 14:00 16:00 Answer ALL SIX questions The total number of marks in the paper is 90. University approved calculators may be used 1 of

More information

A Test of the Normality Assumption in the Ordered Probit Model *

A Test of the Normality Assumption in the Ordered Probit Model * A Test of the Normality Assumption in the Ordered Probit Model * Paul A. Johnson Working Paper No. 34 March 1996 * Assistant Professor, Vassar College. I thank Jahyeong Koo, Jim Ziliak and an anonymous

More information

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20 1 of 17 1/4/2008 12:01 PM 1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7 b. 22 3 c. 23 3 d. 20 3 e. 8 2. Suppose 1 for 0 x 1 s(x) = 1 ex 100 for 1

More information

Changes to Exams FM/2, M and C/4 for the May 2007 Administration

Changes to Exams FM/2, M and C/4 for the May 2007 Administration Changes to Exams FM/2, M and C/4 for the May 2007 Administration Listed below is a summary of the changes, transition rules, and the complete exam listings as they will appear in the Spring 2007 Basic

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Chapter 4: Estimation

Chapter 4: Estimation Slide 4.1 Chapter 4: Estimation Estimation is the process of using sample data to draw inferences about the population Sample information x, s Inferences Population parameters µ,σ Slide 4. Point and interval

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Data analysis methods in weather and climate research

Data analysis methods in weather and climate research Data analysis methods in weather and climate research Dr. David B. Stephenson Department of Meteorology University of Reading www.met.rdg.ac.uk/cag 5. Parameter estimation Fitting probability models he

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

STRESS-STRENGTH RELIABILITY ESTIMATION

STRESS-STRENGTH RELIABILITY ESTIMATION CHAPTER 5 STRESS-STRENGTH RELIABILITY ESTIMATION 5. Introduction There are appliances (every physical component possess an inherent strength) which survive due to their strength. These appliances receive

More information

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions UNIVERSITY OF VICTORIA Midterm June 04 Solutions NAME: STUDENT NUMBER: V00 Course Name & No. Inferential Statistics Economics 46 Section(s) A0 CRN: 375 Instructor: Betty Johnson Duration: hour 50 minutes

More information

Point Estimation. Edwin Leuven

Point Estimation. Edwin Leuven Point Estimation Edwin Leuven Introduction Last time we reviewed statistical inference We saw that while in probability we ask: given a data generating process, what are the properties of the outcomes?

More information

Value (x) probability Example A-2: Construct a histogram for population Ψ.

Value (x) probability Example A-2: Construct a histogram for population Ψ. Calculus 111, section 08.x The Central Limit Theorem notes by Tim Pilachowski If you haven t done it yet, go to the Math 111 page and download the handout: Central Limit Theorem supplement. Today s lecture

More information

UPDATED IAA EDUCATION SYLLABUS

UPDATED IAA EDUCATION SYLLABUS II. UPDATED IAA EDUCATION SYLLABUS A. Supporting Learning Areas 1. STATISTICS Aim: To enable students to apply core statistical techniques to actuarial applications in insurance, pensions and emerging

More information

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM March 17, 2009 This exam is closed to books and notes, but you may use a calculator. You have 3 hours. Your exam contains 7 questions and 11 pages. Please make

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics Eric Zivot April 29, 2013 Lecture Outline The Leverage Effect Asymmetric GARCH Models Forecasts from Asymmetric GARCH Models GARCH Models with

More information

Stat 139 Homework 2 Solutions, Fall 2016

Stat 139 Homework 2 Solutions, Fall 2016 Stat 139 Homework 2 Solutions, Fall 2016 Problem 1. The sum of squares of a sample of data is minimized when the sample mean, X = Xi /n, is used as the basis of the calculation. Define g(c) as a function

More information

Summary of Formulae for Actuarial Life Contingencies

Summary of Formulae for Actuarial Life Contingencies Summary of Formulae for Actuarial Life Contingencies Contents Review of Basic Actuarial Functions... 3 Random Variables... 5 Future Lifetime (Continuous)... 5 Curtate Future Lifetime (Discrete)... 5 1/m

More information

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii) Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Computer Statistics with R

Computer Statistics with R MAREK GAGOLEWSKI KONSTANCJA BOBECKA-WESO LOWSKA PRZEMYS LAW GRZEGORZEWSKI Computer Statistics with R 5. Point Estimation Faculty of Mathematics and Information Science Warsaw University of Technology []

More information

Contents Utility theory and insurance The individual risk model Collective risk models

Contents Utility theory and insurance The individual risk model Collective risk models Contents There are 10 11 stars in the galaxy. That used to be a huge number. But it s only a hundred billion. It s less than the national deficit! We used to call them astronomical numbers. Now we should

More information

**BEGINNING OF EXAMINATION**

**BEGINNING OF EXAMINATION** Fall 2002 Society of Actuaries **BEGINNING OF EXAMINATION** 1. Given: The survival function s x sbxg = 1, 0 x < 1 b g x d i { } b g, where s x = 1 e / 100, 1 x < 45. b g = s x 0, 4.5 x Calculate µ b4g.

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

FV N = PV (1+ r) N. FV N = PVe rs * N 2011 ELAN GUIDES 3. The Future Value of a Single Cash Flow. The Present Value of a Single Cash Flow

FV N = PV (1+ r) N. FV N = PVe rs * N 2011 ELAN GUIDES 3. The Future Value of a Single Cash Flow. The Present Value of a Single Cash Flow QUANTITATIVE METHODS The Future Value of a Single Cash Flow FV N = PV (1+ r) N The Present Value of a Single Cash Flow PV = FV (1+ r) N PV Annuity Due = PVOrdinary Annuity (1 + r) FV Annuity Due = FVOrdinary

More information

Problem # 2. In a country with a large population, the number of persons, N, that are HIV positive at time t is given by:

Problem # 2. In a country with a large population, the number of persons, N, that are HIV positive at time t is given by: Problem # 1 A marketing survey indicates that 60% of the population owns an automobile, 30% owns a house, and 20% owns both an automobile and a house. Calculate the probability that a person chosen at

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Evaluation of Models. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Evaluation of Models. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Evaluation of Models Niels andwehr earning and Prediction Classification, Regression: earning problem Input: training data Output:

More information

Module 3: Sampling Distributions and the CLT Statistics (OA3102)

Module 3: Sampling Distributions and the CLT Statistics (OA3102) Module 3: Sampling Distributions and the CLT Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chpt 7.1-7.3, 7.5 Revision: 1-12 1 Goals for

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

CIVL Confidence Intervals

CIVL Confidence Intervals CIVL 3103 Confidence Intervals Learning Objectives - Confidence Intervals Define confidence intervals, and explain their significance to point estimates. Identify and apply the appropriate confidence interval

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information