Applied Statistics I

Size: px
Start display at page:

Download "Applied Statistics I"

Transcription

1 Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, / 18

2 Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

3 Point Estimation Problem: when there are more then one point estimator for parameter θ, which one of them should we use? Liang Zhang (UofU) Applied Statistics I July 14, / 18

4 Point Estimation Problem: when there are more then one point estimator for parameter θ, which one of them should we use? There are a few criteria for us to select the best point estimator: Liang Zhang (UofU) Applied Statistics I July 14, / 18

5 Point Estimation Problem: when there are more then one point estimator for parameter θ, which one of them should we use? There are a few criteria for us to select the best point estimator: unbiasedness, Liang Zhang (UofU) Applied Statistics I July 14, / 18

6 Point Estimation Problem: when there are more then one point estimator for parameter θ, which one of them should we use? There are a few criteria for us to select the best point estimator: unbiasedness, minimum variance, Liang Zhang (UofU) Applied Statistics I July 14, / 18

7 Point Estimation Problem: when there are more then one point estimator for parameter θ, which one of them should we use? There are a few criteria for us to select the best point estimator: unbiasedness, minimum variance, and mean square error. Liang Zhang (UofU) Applied Statistics I July 14, / 18

8 Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

9 Point Estimation Definition A point estimator ˆθ is said to be an unbiased estimator of θ if E(ˆθ) = θ for every possible value of θ. If ˆθ is not unbiased, the difference E(ˆθ) θ is called the bias of ˆθ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

10 Point Estimation Definition A point estimator ˆθ is said to be an unbiased estimator of θ if E(ˆθ) = θ for every possible value of θ. If ˆθ is not unbiased, the difference E(ˆθ) θ is called the bias of ˆθ. Principle of Unbiased Estimation When choosing among several different estimators of θ, select one that is unbiased. Liang Zhang (UofU) Applied Statistics I July 14, / 18

11 Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

12 Point Estimation Proposition Let X 1, X 2,..., X n be a random sample from a distribution with mean µ and variance σ 2. Then the estimators ˆµ = X = n i=1 X i n and ˆσ 2 = S 2 = n i=1 (X i X ) 2 n 1 are unbiased estimator of µ and σ 2, respectively. If in addition the distribution is continuous and symmetric, then X and any trimmed mean are also unbiased estimators of µ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

13 Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

14 Point Estimation Principle of Minimum Variance Unbiased Estimation Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting ˆθ is called the minimum variance unbiased estimator ( MVUE) of θ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

15 Point Estimation Principle of Minimum Variance Unbiased Estimation Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting ˆθ is called the minimum variance unbiased estimator ( MVUE) of θ. Theorem Let X 1, X 2,..., X n be a random sample from a normal distribution with mean µ and variance σ 2. Then the estimator ˆµ = X is the MVUE for µ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

16 Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

17 Point Estimation Definition Let ˆθ be a point estimator of parameter θ. Then the quantity E[(ˆθ θ) 2 ] is called the mean square error (MSE) of ˆθ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

18 Point Estimation Definition Let ˆθ be a point estimator of parameter θ. Then the quantity E[(ˆθ θ) 2 ] is called the mean square error (MSE) of ˆθ. Proposition MSE = E[(ˆθ θ) 2 ] = V (ˆθ) + [E(ˆθ) θ] 2 Liang Zhang (UofU) Applied Statistics I July 14, / 18

19 Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

20 Point Estimation Definition The standard error of an estimator ˆθ is its standard deviation σ ˆθ = V (ˆθ). If the standard error itself involves unknown parameters whose values can be estimated, substitution of these estimates into σˆθ yields the estimated standard error (estimated standard deviation) of the estimator. The estimated standard error can be denoted either by ˆσ ˆθ or by s ˆθ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

21 Methods of Point Estimation Liang Zhang (UofU) Applied Statistics I July 14, / 18

22 Methods of Point Estimation The Invariance Principle Let ˆθ be the mle of the parameter θ. Then the mle of any function h(θ) of this parameter is the function h(ˆθ). Liang Zhang (UofU) Applied Statistics I July 14, / 18

23 Methods of Point Estimation The Invariance Principle Let ˆθ be the mle of the parameter θ. Then the mle of any function h(θ) of this parameter is the function h(ˆθ). Proposition Under very general conditions on the joint distribution of the sample, when the sample size n is large, the maximum likelihood estimator of any parameter θ is approximately unbiased [E(ˆθ) θ] and has variance that is nearly as small as can be achieved by any estimator. Stated another way, the mle ˆθ is approximately the MVUE of θ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

24 Liang Zhang (UofU) Applied Statistics I July 14, / 18

25 Example (a variant of Problem 62, Ch5) The total time for manufacturing a certain component is known to have a normal distribution. However, the mean µ and variance σ 2 for the normal distribution are unknown. After an experiment in which we manufactured 10 components, we recorded the sample time which is given as follows: time time Liang Zhang (UofU) Applied Statistics I July 14, / 18

26 Example (a variant of Problem 62, Ch5) The total time for manufacturing a certain component is known to have a normal distribution. However, the mean µ and variance σ 2 for the normal distribution are unknown. After an experiment in which we manufactured 10 components, we recorded the sample time which is given as follows: time time We know that both MME and MLE for the population mean µ is the sample mean X, i.e. ˆµ = X = How accurate is this estimation? Liang Zhang (UofU) Applied Statistics I July 14, / 18

27 Liang Zhang (UofU) Applied Statistics I July 14, / 18

28 Assume the other parameter σ is known, e.g. σ = 2.7 Liang Zhang (UofU) Applied Statistics I July 14, / 18

29 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n Liang Zhang (UofU) Applied Statistics I July 14, / 18

30 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? Liang Zhang (UofU) Applied Statistics I July 14, / 18

31 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? P( A < Z < A) =.95 Liang Zhang (UofU) Applied Statistics I July 14, / 18

32 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? P( A < Z < A) =.95 A is the 97.5the percentle, which is Liang Zhang (UofU) Applied Statistics I July 14, / 18

33 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? P( A < Z < A) =.95 A is the 97.5the percentle, which is ( ) P 1.96 < X µ σ/ n < 1.96 =.95 Liang Zhang (UofU) Applied Statistics I July 14, / 18

34 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? P( A < Z < A) =.95 A is the 97.5the percentle, which is ( ) P 1.96 < X µ σ/ n < 1.96 =.95 ) σ P (X 1.96 n σ < µ < X n =.95 Liang Zhang (UofU) Applied Statistics I July 14, / 18

35 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? P( A < Z < A) =.95 A is the 97.5the percentle, which is ( ) P 1.96 < X µ σ/ n < 1.96 =.95 ) σ P (X 1.96 n σ < µ < X n =.95 ) σ The interval (X 1.96 n σ, X n is called the 95% confidence interval for µ. Liang Zhang (UofU) Applied Statistics I July 14, / 18

36 Assume the other parameter σ is known, e.g. σ = 2.7 X is normally distributed with mean µ and variance σ 2 /n. Therefore, Z = X µ σ/ is a standard normal random variable. n For the interval [ A, A], how large should A be such that with 95% confidence we are sure Z falls in that interval? P( A < Z < A) =.95 A is the 97.5the percentle, which is ( ) P 1.96 < X µ σ/ n < 1.96 =.95 ) σ P (X 1.96 n σ < µ < X n =.95 ) σ The interval (X 1.96 n σ, X n is called the 95% confidence interval for µ. In our case, 95% confidence interval for µ is (63.28, 66.62). Liang Zhang (UofU) Applied Statistics I July 14, / 18

37 Liang Zhang (UofU) Applied Statistics I July 14, / 18

38 Interpretation of Confidence Interval Liang Zhang (UofU) Applied Statistics I July 14, / 18

39 Interpretation of Confidence Interval The 95% confidence interval for µ (63.28, 66.62) doesn t mean P(µ falls in the interval(63.28, 66.62)) =.95 Liang Zhang (UofU) Applied Statistics I July 14, / 18

40 Interpretation of Confidence Interval The 95% confidence interval for µ (63.28, 66.62) doesn t mean P(µ falls in the interval(63.28, 66.62)) =.95 It is a long-run effect: if we have 1000 random samples, then for approximately 950 of them, µ falls in the interval (X 1.96 σ n, X σ n ). Liang Zhang (UofU) Applied Statistics I July 14, / 18

41 Liang Zhang (UofU) Applied Statistics I July 14, / 18

42 Example (a variant of Problem 62, Ch5) The total time for manufacturing a certain component is known to have a normal distribution. However, the mean µ for the normal distribution is unknown. After an experiment in which we manufactured 10 components, we recorded the sample time which is given as follows: time time We know that both MME and MLE for the population mean µ is the sample mean X, i.e. ˆµ = X = We further assume the standard deviation is known to be σ = 2.7. What is the 99% confidence interval for µ? Liang Zhang (UofU) Applied Statistics I July 14, / 18

43 Liang Zhang (UofU) Applied Statistics I July 14, / 18

44 Definition A 100(1 α)% confidence interval for the mean µ of a normal population when the value of σ is known is given by ( x z α/2 σ n, x + z α/2 ) σ n or, equivalently, by x z α/2 σ n Liang Zhang (UofU) Applied Statistics I July 14, / 18

45 Liang Zhang (UofU) Applied Statistics I July 14, / 18

46 Graphically interpretation: Liang Zhang (UofU) Applied Statistics I July 14, / 18

47 Liang Zhang (UofU) Applied Statistics I July 14, / 18

48 Example (a variant of Problem 62, Ch5) The total time for manufacturing a certain component is known to have a normal distribution. However, the mean µ for the normal distribution is unknown. Thus we decide to do an experiment in which we manufacture n components to estimate the population mean µ. We know that both MME and MLE for the population mean µ is the sample mean X, i.e. ˆµ = X. We further assume the standard deviation is known to be σ = 2.7. If we want a 99% confidence interval for µ with width 3.34, how large should n be? Liang Zhang (UofU) Applied Statistics I July 14, / 18

49 Liang Zhang (UofU) Applied Statistics I July 14, / 18

50 Proposition To obtain a 100(1 α)% confidence interval with width w for the mean µ of a normal population when the value of σ is known, we need a random sample of size at least ( n = 2z α/2 σ ) 2 w Liang Zhang (UofU) Applied Statistics I July 14, / 18

51 Proposition To obtain a 100(1 α)% confidence interval with width w for the mean µ of a normal population when the value of σ is known, we need a random sample of size at least ( n = 2z α/2 σ ) 2 w Remark: The half-width w 2 of the 100(1 α)% CI is called the bound on the error of estimation associated with a 100(1 α)% confidence level. Liang Zhang (UofU) Applied Statistics I July 14, / 18

52 Liang Zhang (UofU) Applied Statistics I July 14, / 18

53 Example: Extensive experience with fans of a certain type used in diesel engines has suggested that the exponential distribution provides a good model for time until failure. However, the parameter λ is unknown. The following table records the data for a size 10 sample: time time What is a 95% confidence interval for λ? Liang Zhang (UofU) Applied Statistics I July 14, / 18

54 Liang Zhang (UofU) Applied Statistics I July 14, / 18

55 Proposition Let X 1, X 2,..., X n i.i.d random variables from an expentional distribution with parameter λ. Then the random variable Y = 2λ n i=1 X i has the chi-squared distribution with 2n degrees of freedom, i.e., Y χ 2 (2n) Liang Zhang (UofU) Applied Statistics I July 14, / 18

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

Chapter 6: Point Estimation

Chapter 6: Point Estimation Chapter 6: Point Estimation Professor Sharabati Purdue University March 10, 2014 Professor Sharabati (Purdue University) Point Estimation Spring 2014 1 / 37 Chapter Overview Point estimator and point estimate

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Point Estimation. Copyright Cengage Learning. All rights reserved.

Point Estimation. Copyright Cengage Learning. All rights reserved. 6 Point Estimation Copyright Cengage Learning. All rights reserved. 6.2 Methods of Point Estimation Copyright Cengage Learning. All rights reserved. Methods of Point Estimation The definition of unbiasedness

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Review of key points about estimators

Review of key points about estimators Review of key points about estimators Populations can be at least partially described by population parameters Population parameters include: mean, proportion, variance, etc. Because populations are often

More information

Review of key points about estimators

Review of key points about estimators Review of key points about estimators Populations can be at least partially described by population parameters Population parameters include: mean, proportion, variance, etc. Because populations are often

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

1. Statistical problems - a) Distribution is known. b) Distribution is unknown.

1. Statistical problems - a) Distribution is known. b) Distribution is unknown. Probability February 5, 2013 Debdeep Pati Estimation 1. Statistical problems - a) Distribution is known. b) Distribution is unknown. 2. When Distribution is known, then we can have either i) Parameters

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/11-11:17:37) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 2 2.2 Unknown

More information

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions UNIVERSITY OF VICTORIA Midterm June 04 Solutions NAME: STUDENT NUMBER: V00 Course Name & No. Inferential Statistics Economics 46 Section(s) A0 CRN: 375 Instructor: Betty Johnson Duration: hour 50 minutes

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Computer Statistics with R

Computer Statistics with R MAREK GAGOLEWSKI KONSTANCJA BOBECKA-WESO LOWSKA PRZEMYS LAW GRZEGORZEWSKI Computer Statistics with R 5. Point Estimation Faculty of Mathematics and Information Science Warsaw University of Technology []

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Point Estimation. Edwin Leuven

Point Estimation. Edwin Leuven Point Estimation Edwin Leuven Introduction Last time we reviewed statistical inference We saw that while in probability we ask: given a data generating process, what are the properties of the outcomes?

More information

12 The Bootstrap and why it works

12 The Bootstrap and why it works 12 he Bootstrap and why it works For a review of many applications of bootstrap see Efron and ibshirani (1994). For the theory behind the bootstrap see the books by Hall (1992), van der Waart (2000), Lahiri

More information

Simple Random Sampling. Sampling Distribution

Simple Random Sampling. Sampling Distribution STAT 503 Sampling Distribution and Statistical Estimation 1 Simple Random Sampling Simple random sampling selects with equal chance from (available) members of population. The resulting sample is a simple

More information

Learning Objectives for Ch. 7

Learning Objectives for Ch. 7 Chapter 7: Point and Interval Estimation Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 7 Obtaining a point estimate of a population parameter

More information

1 Introduction 1. 3 Confidence interval for proportion p 6

1 Introduction 1. 3 Confidence interval for proportion p 6 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/15-13:41:02) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 3 2.2 Unknown

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

STAT Chapter 6: Sampling Distributions

STAT Chapter 6: Sampling Distributions STAT 515 -- Chapter 6: Sampling Distributions Definition: Parameter = a number that characterizes a population (example: population mean ) it s typically unknown. Statistic = a number that characterizes

More information

Module 4: Point Estimation Statistics (OA3102)

Module 4: Point Estimation Statistics (OA3102) Module 4: Point Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.1-8.4 Revision: 1-12 1 Goals for this Module Define

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Statistics and Their Distributions

Statistics and Their Distributions Statistics and Their Distributions Deriving Sampling Distributions Example A certain system consists of two identical components. The life time of each component is supposed to have an expentional distribution

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased.

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased. 1 Evaluating estimators Suppose you observe data X 1,..., X n that are iid observations with distribution F θ indexed by some parameter θ. When trying to estimate θ, one may be interested in determining

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Comparing the Means of. Two Log-Normal Distributions: A Likelihood Approach

Comparing the Means of. Two Log-Normal Distributions: A Likelihood Approach Journal of Statistical and Econometric Methods, vol.3, no.1, 014, 137-15 ISSN: 179-660 (print), 179-6939 (online) Scienpress Ltd, 014 Comparing the Means of Two Log-Normal Distributions: A Likelihood Approach

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved.

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 Chapter 4 Commonly Used Distributions 2014 by The Companies, Inc. All rights reserved. Section 4.1: The Bernoulli Distribution 4-2 We use the Bernoulli distribution when we have an experiment which

More information

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD MAJOR POINTS Sampling distribution of the mean revisited Testing hypotheses: sigma known An example Testing hypotheses:

More information

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice.

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice. Methods of Inference Toss coin 6 times and get Heads twice. p is probability of getting H. Probability of getting exactly 2 heads is 15p 2 (1 p) 4 This function of p, is likelihood function. Definition:

More information

Analysis of truncated data with application to the operational risk estimation

Analysis of truncated data with application to the operational risk estimation Analysis of truncated data with application to the operational risk estimation Petr Volf 1 Abstract. Researchers interested in the estimation of operational risk often face problems arising from the structure

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

The Constant Expected Return Model

The Constant Expected Return Model Chapter 1 The Constant Expected Return Model The first model of asset returns we consider is the very simple constant expected return (CER)model.Thismodelassumesthatanasset sreturnover time is normally

More information

MAS6012. MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Sampling, Design, Medical Statistics

MAS6012. MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Sampling, Design, Medical Statistics t r r r t s t SCHOOL OF MATHEMATICS AND STATISTICS Sampling, Design, Medical Statistics Spring Semester 206 207 3 hours t s 2 r t t t t r t t r s t rs t2 r t s s rs r t r t 2 r t st s rs q st s r rt r

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according STAT 345 Spring 2018 Homework 9 - Point Estimation Name: Please adhere to the homework rules as given in the Syllabus. 1. Mean Squared Error. Suppose that X 1, X 2 and X 3 are independent random variables

More information

STRESS-STRENGTH RELIABILITY ESTIMATION

STRESS-STRENGTH RELIABILITY ESTIMATION CHAPTER 5 STRESS-STRENGTH RELIABILITY ESTIMATION 5. Introduction There are appliances (every physical component possess an inherent strength) which survive due to their strength. These appliances receive

More information

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example...

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example... Chapter 4 Point estimation Contents 4.1 Introduction................................... 2 4.2 Estimating a population mean......................... 2 4.2.1 The problem with estimating a population mean

More information

CIVL Confidence Intervals

CIVL Confidence Intervals CIVL 3103 Confidence Intervals Learning Objectives - Confidence Intervals Define confidence intervals, and explain their significance to point estimates. Identify and apply the appropriate confidence interval

More information

Confidence Intervals for an Exponential Lifetime Percentile

Confidence Intervals for an Exponential Lifetime Percentile Chapter 407 Confidence Intervals for an Exponential Lifetime Percentile Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for a percentile

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

Lecture 22. Survey Sampling: an Overview

Lecture 22. Survey Sampling: an Overview Math 408 - Mathematical Statistics Lecture 22. Survey Sampling: an Overview March 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 22 March 25, 2013 1 / 16 Survey Sampling: What and Why In surveys sampling

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: SAMPLING DISTRIBUTIONS and POINT ESTIMATIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of

More information

MgtOp S 215 Chapter 8 Dr. Ahn

MgtOp S 215 Chapter 8 Dr. Ahn MgtOp S 215 Chapter 8 Dr. Ahn An estimator of a population parameter is a rule that tells us how to use the sample values,,, to estimate the parameter, and is a statistic. An estimate is the value obtained

More information

Chapter Seven: Confidence Intervals and Sample Size

Chapter Seven: Confidence Intervals and Sample Size Chapter Seven: Confidence Intervals and Sample Size A point estimate is: The best point estimate of the population mean µ is the sample mean X. Three Properties of a Good Estimator 1. Unbiased 2. Consistent

More information

Parameter Estimation II

Parameter Estimation II Parameter Estimation II ELEC 41 PROF. SIRIPONG POTISUK Estimating μ With Unnown σ This is often true in practice. When the sample is large and σ is unnown, the sampling distribution is approimately normal

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Estimation Y 3. Confidence intervals I, Feb 11,

Estimation Y 3. Confidence intervals I, Feb 11, Estimation Example: Cholesterol levels of heart-attack patients Data: Observational study at a Pennsylvania medical center blood cholesterol levels patients treated for heart attacks measurements 2, 4,

More information

Two Populations Hypothesis Testing

Two Populations Hypothesis Testing Two Populations Hypothesis Testing Two Proportions (Large Independent Samples) Two samples are said to be independent if the data from the first sample is not connected to the data from the second sample.

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

Dealing with forecast uncertainty in inventory models

Dealing with forecast uncertainty in inventory models Dealing with forecast uncertainty in inventory models 19th IIF workshop on Supply Chain Forecasting for Operations Lancaster University Dennis Prak Supervisor: Prof. R.H. Teunter June 29, 2016 Dennis Prak

More information

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions:

Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean, μ, we were assuming the following simple conditions: (1) Our data (observations)

More information

6 Central Limit Theorem. (Chs 6.4, 6.5)

6 Central Limit Theorem. (Chs 6.4, 6.5) 6 Central Limit Theorem (Chs 6.4, 6.5) Motivating Example In the next few weeks, we will be focusing on making statistical inference about the true mean of a population by using sample datasets. Examples?

More information

LET us say we have a population drawn from some unknown probability distribution f(x) with some

LET us say we have a population drawn from some unknown probability distribution f(x) with some CmpE 343 Lecture Notes 9: Estimation Ethem Alpaydın December 30, 04 LET us say we have a population drawn from some unknown probability distribution fx with some parameter θ. When we do not know θ, we

More information

A New Hybrid Estimation Method for the Generalized Pareto Distribution

A New Hybrid Estimation Method for the Generalized Pareto Distribution A New Hybrid Estimation Method for the Generalized Pareto Distribution Chunlin Wang Department of Mathematics and Statistics University of Calgary May 18, 2011 A New Hybrid Estimation Method for the GPD

More information