Statistics and Their Distributions

Size: px
Start display at page:

Download "Statistics and Their Distributions"

Transcription

1 Statistics and Their Distributions Deriving Sampling Distributions Example A certain system consists of two identical components. The life time of each component is supposed to have an expentional distribution with parameter λ. The lifetime of the system is supposed to be the sum of the two components and the two components are assumed to work independently. Let X 1 and X 2 be the lifetime of the two components, respectively. What can we say about the lifetime of the system T 0 = X 1 + X 2?

2

3 Proposition Let X 1, X 2,..., X n have mean values µ 1, µ 2,..., µ n, respectively, and variances σ 2 1, σ2 2,..., σ2 n, respectively. 1.Whether or not the X i s are independent, E(a 1 X 1 + a 2 X a n X n ) = a 1 E(X 1 ) + a 2 E(X 2 ) + + a n E(X n ) 2. If X 1, X 2,..., X n are independent, = a 1 µ 1 + a 2 µ a n µ n V (a 1 X 1 + a 2 X a n X n ) = a 2 1V (X 1 ) + a 2 2V (X 2 ) + + a 2 nv (X n ) = a 1 σ a 2 σ a n σ 2 n

4

5 Proposition (Continued) Let X 1, X 2,..., X n have mean values µ 1, µ 2,..., µ n, respectively, and variances σ 2 1, σ2 2,..., σ2 n, respectively. 3. More generally, for any X 1, X 2,..., X n V (a 1 X 1 + a 2 X a n X n ) = n n a i a j Cov(X i, X j ) i=1 j=1

6 Proposition (Continued) Let X 1, X 2,..., X n have mean values µ 1, µ 2,..., µ n, respectively, and variances σ 2 1, σ2 2,..., σ2 n, respectively. 3. More generally, for any X 1, X 2,..., X n V (a 1 X 1 + a 2 X a n X n ) = n n a i a j Cov(X i, X j ) i=1 j=1 We call a 1 X 1 + a 2 X a n X n a linear combination of the X i s.

7

8 Example (Problem 64) Suppose your waiting time for a bus in the morning is uniformly distributed on [0,8], whereas waiting time in the evening is uniformly distributed on [0,10] independent of morning waiting time.

9 Example (Problem 64) Suppose your waiting time for a bus in the morning is uniformly distributed on [0,8], whereas waiting time in the evening is uniformly distributed on [0,10] independent of morning waiting time. a. If you take the bus each morning and evening for a week, what is your total expected waiting time?

10 Example (Problem 64) Suppose your waiting time for a bus in the morning is uniformly distributed on [0,8], whereas waiting time in the evening is uniformly distributed on [0,10] independent of morning waiting time. a. If you take the bus each morning and evening for a week, what is your total expected waiting time? b. What is the variance of your total waiting time?

11 Example (Problem 64) Suppose your waiting time for a bus in the morning is uniformly distributed on [0,8], whereas waiting time in the evening is uniformly distributed on [0,10] independent of morning waiting time. a. If you take the bus each morning and evening for a week, what is your total expected waiting time? b. What is the variance of your total waiting time? c. What are the expected value and variance of the difference between morning and evening waiting times on a given day?

12 Example (Problem 64) Suppose your waiting time for a bus in the morning is uniformly distributed on [0,8], whereas waiting time in the evening is uniformly distributed on [0,10] independent of morning waiting time. a. If you take the bus each morning and evening for a week, what is your total expected waiting time? b. What is the variance of your total waiting time? c. What are the expected value and variance of the difference between morning and evening waiting times on a given day? d. What are the expected value and variance of the difference between total morning waiting time and total evening waiting time on a particular week?

13

14 Corollary E(X 1 X 2 ) = E(X 1 ) E(X 2 ) and, if X 1 and X 2 are independent, V (X 1 X 2 ) = V (X 1 ) + V (X 2 ).

15 Corollary E(X 1 X 2 ) = E(X 1 ) E(X 2 ) and, if X 1 and X 2 are independent, V (X 1 X 2 ) = V (X 1 ) + V (X 2 ). Proposition If X 1, X 2,..., X n are independent, normally distributed rv s (with possibly different means and/or variances), then any linear combination of the X i s also has a normal distribution. In particular, the difference X 1 X 2 between two independent, normally distributed variables is itself normally distributed.

16

17 Example (Problem 62) Manufacture of a certain component requires three different maching operations. Machining time for each operation has a normal distribution, and the three times are independent of one another. The mean values are 15, 30, and 20min, respectively, and the standard deviations are 1, 2, and 1.5min, respectively.

18 Example (Problem 62) Manufacture of a certain component requires three different maching operations. Machining time for each operation has a normal distribution, and the three times are independent of one another. The mean values are 15, 30, and 20min, respectively, and the standard deviations are 1, 2, and 1.5min, respectively. What is the probability that it takes at most 1 hour of machining time to produce a randomly selected component?

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

Applications of the Central Limit Theorem

Applications of the Central Limit Theorem Applications of the Central Limit Theorem Application 1: Assume that the systolic blood pressure of 30-year-old males is normally distributed with mean μ = 122 mmhg and standard deviation σ = 10 mmhg.

More information

6 Central Limit Theorem. (Chs 6.4, 6.5)

6 Central Limit Theorem. (Chs 6.4, 6.5) 6 Central Limit Theorem (Chs 6.4, 6.5) Motivating Example In the next few weeks, we will be focusing on making statistical inference about the true mean of a population by using sample datasets. Examples?

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

The Uniform Distribution

The Uniform Distribution The Uniform Distribution EXAMPLE 1 The previous problem is an example of the uniform probability distribution. Illustrate the uniform distribution. The data that follows are 55 smiling times, in seconds,

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and Exercise Questions This exercise set only covers some topics discussed after the midterm. It does not mean that the problems in the final will be similar to these. Neither solutions nor answers will be

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

Lecture 18 Section Mon, Feb 16, 2009

Lecture 18 Section Mon, Feb 16, 2009 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Feb 16, 2009 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

Lecture 18 Section Mon, Sep 29, 2008

Lecture 18 Section Mon, Sep 29, 2008 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Sep 29, 2008 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables ST 370 A random variable is a numerical value associated with the outcome of an experiment. Discrete random variable When we can enumerate the possible values of the variable

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE MSc Đào Việt Hùng Email: hungdv@tlu.edu.vn Random Variable A random variable is a function that assigns a real number to each outcome in the sample space of a

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Statistics vs. statistics

Statistics vs. statistics Statistics vs. statistics Question: What is Statistics (with a capital S)? Definition: Statistics is the science of collecting, organizing, summarizing and interpreting data. Note: There are 2 main ways

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

STAT Chapter 7: Central Limit Theorem

STAT Chapter 7: Central Limit Theorem STAT 251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an i.i.d

More information

(Practice Version) Midterm Exam 1

(Practice Version) Midterm Exam 1 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 19, 2014 (Practice Version) Midterm Exam 1 Last name First name SID Rules. DO NOT open

More information

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20 1 of 17 1/4/2008 12:01 PM 1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7 b. 22 3 c. 23 3 d. 20 3 e. 8 2. Suppose 1 for 0 x 1 s(x) = 1 ex 100 for 1

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

Continuous Random Variables: The Uniform Distribution *

Continuous Random Variables: The Uniform Distribution * OpenStax-CNX module: m16819 1 Continuous Random Variables: The Uniform Distribution * Susan Dean Barbara Illowsky, Ph.D. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

L04: Homework Answer Key

L04: Homework Answer Key L04: Homework Answer Key Instructions: You are encouraged to collaborate with other students on the homework, but it is important that you do your own work. Before working with someone else on the assignment,

More information

AP Statistics Test 5

AP Statistics Test 5 AP Statistics Test 5 Name: Date: Period: ffl If X is a discrete random variable, the the mean of X and the variance of X are given by μ = E(X) = X xp (X = x); Var(X) = X (x μ) 2 P (X = x): ffl If X is

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Point Estimation. Copyright Cengage Learning. All rights reserved.

Point Estimation. Copyright Cengage Learning. All rights reserved. 6 Point Estimation Copyright Cengage Learning. All rights reserved. 6.2 Methods of Point Estimation Copyright Cengage Learning. All rights reserved. Methods of Point Estimation The definition of unbiasedness

More information

15.063: Communicating with Data Summer Recitation 3 Probability II

15.063: Communicating with Data Summer Recitation 3 Probability II 15.063: Communicating with Data Summer 2003 Recitation 3 Probability II Today s Goal Binomial Random Variables (RV) Covariance and Correlation Sums of RV Normal RV 15.063, Summer '03 2 Random Variables

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Lecture 22. Survey Sampling: an Overview

Lecture 22. Survey Sampling: an Overview Math 408 - Mathematical Statistics Lecture 22. Survey Sampling: an Overview March 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 22 March 25, 2013 1 / 16 Survey Sampling: What and Why In surveys sampling

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

X(t) = B(t), t 0,

X(t) = B(t), t 0, IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2007, Professor Whitt, Final Exam Chapters 4-7 and 10 in Ross, Wednesday, May 9, 1:10pm-4:00pm Open Book: but only the Ross textbook,

More information

STAT 241/251 - Chapter 7: Central Limit Theorem

STAT 241/251 - Chapter 7: Central Limit Theorem STAT 241/251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Lecture 4: Return vs Risk: Mean-Variance Analysis

Lecture 4: Return vs Risk: Mean-Variance Analysis Lecture 4: Return vs Risk: Mean-Variance Analysis 4.1 Basics Given a cool of many different stocks, you want to decide, for each stock in the pool, whether you include it in your portfolio and (if yes)

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Bus 701: Advanced Statistics. Harald Schmidbauer

Bus 701: Advanced Statistics. Harald Schmidbauer Bus 701: Advanced Statistics Harald Schmidbauer c Harald Schmidbauer & Angi Rösch, 2008 About These Slides The present slides are not self-contained; they need to be explained and discussed. They contain

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.2 Transforming and Combining Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Transforming and Combining

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

5.3 Statistics and Their Distributions

5.3 Statistics and Their Distributions Chapter 5 Joint Probability Distributions and Random Samples Instructor: Lingsong Zhang 1 Statistics and Their Distributions 5.3 Statistics and Their Distributions Statistics and Their Distributions Consider

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 6.3 Binomial and

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 6.3 Binomial and

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

X P(X=x) E(X)= V(X)= S.D(X)= X P(X=x) E(X)= V(X)= S.D(X)=

X P(X=x) E(X)= V(X)= S.D(X)= X P(X=x) E(X)= V(X)= S.D(X)= 1. X 0 1 2 P(X=x) 0.2 0.4 0.4 E(X)= V(X)= S.D(X)= X 100 200 300 400 P(X=x) 0.1 0.2 0.5 0.2 E(X)= V(X)= S.D(X)= 2. A day trader buys an option on a stock that will return a $100 profit if the stock goes

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

WebAssign Math 3680 Homework 5 Devore Fall 2013 (Homework)

WebAssign Math 3680 Homework 5 Devore Fall 2013 (Homework) WebAssign Math 3680 Homework 5 Devore Fall 2013 (Homework) Current Score : 135.45 / 129 Due : Friday, October 11 2013 11:59 PM CDT Mirka Martinez Applied Statistics, Math 3680-Fall 2013, section 2, Fall

More information

1. The probability that a visit to a primary care physician s (PCP) office results in neither

1. The probability that a visit to a primary care physician s (PCP) office results in neither 1. The probability that a visit to a primary care physician s (PCP) office results in neither lab work nor referral to a specialist is 35%. Of those coming to a PCP s office, 30% are referred to specialists

More information

Chapter 6: Point Estimation

Chapter 6: Point Estimation Chapter 6: Point Estimation Professor Sharabati Purdue University March 10, 2014 Professor Sharabati (Purdue University) Point Estimation Spring 2014 1 / 37 Chapter Overview Point estimator and point estimate

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

8.1 Binomial Distributions

8.1 Binomial Distributions 8.1 Binomial Distributions The Binomial Setting The 4 Conditions of a Binomial Setting: 1.Each observation falls into 1 of 2 categories ( success or fail ) 2 2.There is a fixed # n of observations. 3.All

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers?

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 1 451/551 - Final Review Problems 1 Probability by Sample Points 1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 2. A box contains

More information

Reliability and Risk Analysis. Survival and Reliability Function

Reliability and Risk Analysis. Survival and Reliability Function Reliability and Risk Analysis Survival function We consider a non-negative random variable X which indicates the waiting time for the risk event (eg failure of the monitored equipment, etc.). The probability

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 20 th May 2013 Subject CT3 Probability & Mathematical Statistics Time allowed: Three Hours (10.00 13.00) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1.

More information

Section 7.4 Transforming and Combining Random Variables (DAY 1)

Section 7.4 Transforming and Combining Random Variables (DAY 1) Section 7.4 Learning Objectives (DAY 1) After this section, you should be able to DESCRIBE the effect of performing a linear transformation on a random variable (DAY 1) COMBINE random variables and CALCULATE

More information

Statistics. Marco Caserta IE University. Stats 1 / 56

Statistics. Marco Caserta IE University. Stats 1 / 56 Statistics Marco Caserta marco.caserta@ie.edu IE University Stats 1 / 56 1 Random variables 2 Binomial distribution 3 Poisson distribution 4 Hypergeometric Distribution 5 Jointly Distributed Discrete Random

More information

Project Management Techniques (PMT)

Project Management Techniques (PMT) Project Management Techniques (PMT) Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT) are 2 main basic techniques used in project management. Example: Construction of a house.

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information