Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Size: px
Start display at page:

Download "Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling"

Transcription

1 Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial lenders who might lend from 0 to $10 million dollars each. The total amount raised follows a uniform distribution from 0 to $10n million dollars, where n is the number of lenders. If the firm is to have at least 80% chance of raising at least $100 million dollars what is the minimum number of lenders that should be contacted? Solution: This is a uniform distribution question. Let X be the total amount raised. X is distributed uniformly on [0,10n]. The density function is: f(x) = 1 10n The probability of raising more than $100 is at least 80% P (X > 100) = 1 P (X < 100) = n 80% At least 50 lenders should be contracted. n The probability that a person catches a cold during the cold and flu season is 0.4. Assume that 10 people are chosen at random. Solution: This is a binomial question. A success occurs when a person catches a cold during the cold and flu season. The probability of a success is 0.4. Let X be the number of successes in 10 people. (a) What is the probability that exactly 4 people have the flu? P (X = 4) = ( 10 4 )(0.4)4 (0.6) 6 = (b) What is the probability that between 2 and 5 people inclusive have the flu? P (2 X 5) = P (X 5) P (X 1) = = (c) What is the expected number of people with the flu and what is its variance? E[X] = µ = np = = 4 V [X] = σ 2 = np(1 p) = 2.4 1

2 (d) Approximate your answer in (b) using the normal approximation with and without continuity corrections. Without continuity correction: With continuity correction: P (2 X 5) P ( 2 4 X µ 2.4 σ ) = P ( Z ) = F (0.6455) (1 F (1.2910)) = ( ) = P (2 X 5) P ( X µ 2.4 σ = P ( Z ) ) = F (0.9682) (1 F (1.6137)) = ( ) = The following table displays the joint probability distribution of X and Y. Solution: X/Y (a) What is the covariance and correlation between the X and Y? Are these variables independent? Explain. E[X] = µ X = xp (x) = 1.01 E[Y ] = µ Y = yp (y) = 1.02 V [X] = σ X 2 = (X µ X ) 2 P (x) = V [Y ] = σ 2 Y = (Y µ Y ) 2 P (y) = Cov(X, Y ) = E(XY ) µ X µ Y = xyp (x, y) µ X µ Y = X Y Corr = Cov(X, Y ) = = σ X σ Y

3 (b) Calculate the mean and variance of D D = 2 + 4X 2Y E(D) = 2 + 4E(X) 2E(Y ) = 2 + 4(1.01) 2(1.02) = 4 V [D] = 4 2 V [X] V [Y ] 2(4)(2)Cov(X, Y ) = 16(0.4699) + 4(0.7396) 16(0.1698) = 7.76 (c) Write out the joint cumulative distribution. F(X,Y) F(X,0) F(X,1) F(X,2) F(0,Y) F(1,Y) F(2,Y) Suppose we know the number of sales X by any sales person follows a normal distribution with a mean of 61.7 and a standard deviation of 5.2. Solution: X N(61.7, ) (a) What is P (62.5 < X < 64)? P (62.5 < X < 64) = P ( < Z < ) = P ( < Z < ) = F (0.44) F (0.15) = = (b) What is the P (62.5 < X 3 < 64) where X 3 is the average sales from three (independent) sales persons? P (62.5 < X 3 < 64) = P ( 5.2/ < Z < 3 5.2/ ) = P ( < Z < ) 3 = F (0.77) F (0.27) = = (c) What is the value of k such that P (X > k) = 0.63? F ( 0.33) X = Zσ + µ = 0.33(5.2) = (d) What is the value of k such that P (59 < X < k) = 0.54? Thus P (59 < X < k) = P ( < Z < Z k ) = P ( 0.52 < Z < Z k ) 5.2 = F (Z k ) (1 F (0.52)) = 0.54 F (Z k ) = F (0.52) = = Z k 1 k = Z k σ + µ = 1(5.2) =

4 5. Sales at a local electrical wholesaler consist of both over-the-counter sales as well as deliveries. During the course of a month, over-the-counter sales have a mean of $96,780 with a standard deviation of $12,520. Over the same time period, deliveries average $229,620 with a standard deviation of $234,100. Assume that over-the-counter sales and deliveries have a correlation of.2. Solution: Let S C denote over-the-counter sales and S D denote deliveries. S C N(96780, ) and S D N(229620, ) Corr(S C, S D ) = 0.2 (a) What is the mean, variance and distribution of all sales S? All sales S = S C + S D E[S] = µ S = E[S C ] + E[S D ] = = V [S] = σ s 2 = V [S C ] + V [S D ] + 2(Corr)( V (S C ))( V (S D )) = (0.2)(12520)(234100) = Now we can see that S N(326400, ) (b) What is the P (222, 900 < S < 240, 400)? 222, P (222, 900 < S < 240, 400) = P ( < Z < = P ( < Z < ) = F (0.4369) F (0.363) = Suppose X is uniform distribution over the interval 0 to 150. (a) Find the mean and variance. µ X = a + b = = σ 2 (b a)2 = = = , ) (b) Find the value that leaves.05 in the lower tail and also the value that leaves.05 in the upper tail = X L = 150 X U 150 X L = 7.5 X U =

5 (c) Suppose that you do not know that the variable is uniform but are given the mean and variance from (a). Calculate the same magnitudes for (b). F (Z L = 1.645) = 0.05 X L = ( 1.645) = F (Z U = 1.645) = 0.05 X U = (1.645) = (d) Draw the two distributions to explain these results. 7. Two classes of statistics have grades that are normally and independently distributed with C 1 N(75, 12) and C 2 N(80, 22). (a) What is the expected difference and its variance? C = C 1 C 2 The expected difference and its variance: E[C] = µ C = E[C 1 ] E[C 2 ] = = 5 V [C] = σ C 2 = V [C 1 ] + V [C 2 ] = = 34 (b) What is the probability that the difference from picking 1 student from each class is between -1 and 1? 1 ( 5) P ( 1 < C < 1) = P ( 34 < Z < 1 ( 5) 34 ) = P ( < Z < ) = F (1.03) F (0.69) = (c) To give the class the same mean as the second class, the professor adds 5 to all grades. Explain why this does not leave the two classes equivalent. Which class would you prefer to be in? 8. A car company says their car gets a mean of 45km per liter with a standard deviation of 6. Suppose we assume a normal distribution. Solution: (a) Suppose some sales representative claims you will get at least 47 80% of the time, what can you tell him? P (X 47) = P (Z ) = P (Z 1 ) = 1 F (0.333) = (b) If we have 4 cars and take the average, calculate the P (44 < X 4 < 46). P (44 < X 4 < 46) = P ( 6/ < Z < 4 6/ 4 ) = P ( < Z < ) = F (0.33) (1 F (0.33)) = 2(0.6293) 1 =

6 9. Suppose you wish to drive across a country that is 2625 km wide and you intend to rent a series of cars from Rent-A-Wreck. The distance that the first car they give you is normally distributed with a mean distance of 1500km and a variance of 500km. Each subsequent car you rent gets 50% less km on average than the previous one with a 75% reduction in the variance. (a) Try to formulize this problem. (b) What is the probability that the trip can be done using exactly 2 cars? (c) What is the probability that you do the trip with more than 3 cars? (d) If each car costs $100 what is the expected cost of the trip? (e) Approximate the expected length of the farthest trip that can be taken. Let Xi be the distance travelled by car i... and so on Consider the first car X1 N(1500, 500) X2 N(750, 125) X3 N(375, 31.5) P (X 1 > 2625) = P ( X 1 µ 1 σ 1 > ) P (Z > 50.3) 0 Consider the distance traveled by the first car and then the second car P (X 1 + X 2 > 2625) = P ( X 1+X 2 (µ 1 +µ 2 ) σ 2 1 +σ 2 2 Now the third car: P (X 1 + X 2 + X 3 > 2625) = P ( X 1+X 2 +X 3 (µ 1 +µ 2 +µ 3 ) σ 1 2 +σ 2 2 +σ 3 2 So n = 3 Expected cost of the trip is $300. Farthest trip possible T (geometric series) > 2625 ( ) ) P (Z > 15) 0 > 2625 ( ) ) P (Z > 0) = 0.5 T = X 1 + X 2 + X = E[T ] = = X 1 6

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

(Practice Version) Midterm Exam 1

(Practice Version) Midterm Exam 1 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 19, 2014 (Practice Version) Midterm Exam 1 Last name First name SID Rules. DO NOT open

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3 Estimation 7 Copyright Cengage Learning. All rights reserved. Section 7.3 Estimating p in the Binomial Distribution Copyright Cengage Learning. All rights reserved. Focus Points Compute the maximal length

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables ST 370 A random variable is a numerical value associated with the outcome of an experiment. Discrete random variable When we can enumerate the possible values of the variable

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

15.063: Communicating with Data Summer Recitation 3 Probability II

15.063: Communicating with Data Summer Recitation 3 Probability II 15.063: Communicating with Data Summer 2003 Recitation 3 Probability II Today s Goal Binomial Random Variables (RV) Covariance and Correlation Sums of RV Normal RV 15.063, Summer '03 2 Random Variables

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Chapter 5: Probability models

Chapter 5: Probability models Chapter 5: Probability models 1. Random variables: a) Idea. b) Discrete and continuous variables. c) The probability function (density) and the distribution function. d) Mean and variance of a random variable.

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Probability and Random Variables A FINANCIAL TIMES COMPANY

Probability and Random Variables A FINANCIAL TIMES COMPANY Probability Basics Probability and Random Variables A FINANCIAL TIMES COMPANY 2 Probability Probability of union P[A [ B] =P[A]+P[B] P[A \ B] Conditional Probability A B P[A B] = Bayes Theorem P[A \ B]

More information

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and Exercise Questions This exercise set only covers some topics discussed after the midterm. It does not mean that the problems in the final will be similar to these. Neither solutions nor answers will be

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit.

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit. STA 103: Final Exam June 26, 2008 Name: } {{ } by writing my name i swear by the honor code Read all of the following information before starting the exam: Print clearly on this exam. Only correct solutions

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

STUDY SET 2. Continuous Probability Distributions. ANSWER: Without continuity correction P(X>10) = P(Z>-0.66) =

STUDY SET 2. Continuous Probability Distributions. ANSWER: Without continuity correction P(X>10) = P(Z>-0.66) = STUDY SET 2 Continuous Probability Distributions 1. The normal distribution is used to approximate the binomial under certain conditions. What is the best way to approximate the binomial using the normal?

More information

MATH 218 FINAL EXAMINATION December 17, 2003 Professors: J. Colwell, F. Lin, K. Styrkas, E. Verona, Z. Vorel.

MATH 218 FINAL EXAMINATION December 17, 2003 Professors: J. Colwell, F. Lin, K. Styrkas, E. Verona, Z. Vorel. MATH 218 FINAL EXAMINATION December 17, 2003 Professors: J. Colwell, F. Lin, K. Styrkas, E. Verona, Z. Vorel. Problem 1. A random sample of 50 purchases at a department store produced the following contingency

More information

Chapter 7: Random Variables and Discrete Probability Distributions

Chapter 7: Random Variables and Discrete Probability Distributions Chapter 7: Random Variables and Discrete Probability Distributions 7. Random Variables and Probability Distributions This section introduced the concept of a random variable, which assigns a numerical

More information

1. The probability that a visit to a primary care physician s (PCP) office results in neither

1. The probability that a visit to a primary care physician s (PCP) office results in neither 1. The probability that a visit to a primary care physician s (PCP) office results in neither lab work nor referral to a specialist is 35%. Of those coming to a PCP s office, 30% are referred to specialists

More information

Statistics and Their Distributions

Statistics and Their Distributions Statistics and Their Distributions Deriving Sampling Distributions Example A certain system consists of two identical components. The life time of each component is supposed to have an expentional distribution

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

d) Find the standard deviation of the random variable X.

d) Find the standard deviation of the random variable X. Q 1: The number of students using Math lab per day is found in the distribution below. x 6 8 10 12 14 P(x) 0.15 0.3 0.35 0.1 0.1 a) Find the mean for this probability distribution. b) Find the variance

More information

Lecture 4: Return vs Risk: Mean-Variance Analysis

Lecture 4: Return vs Risk: Mean-Variance Analysis Lecture 4: Return vs Risk: Mean-Variance Analysis 4.1 Basics Given a cool of many different stocks, you want to decide, for each stock in the pool, whether you include it in your portfolio and (if yes)

More information

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers?

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 1 451/551 - Final Review Problems 1 Probability by Sample Points 1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 2. A box contains

More information

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE MSc Đào Việt Hùng Email: hungdv@tlu.edu.vn Random Variable A random variable is a function that assigns a real number to each outcome in the sample space of a

More information

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP Note 1: The exercises below that are referenced by chapter number are taken or modified from the following open-source online textbook that was adapted by

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Binomal and Geometric Distributions

Binomal and Geometric Distributions Binomal and Geometric Distributions Sections 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 7-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

ECON Introductory Econometrics. Lecture 1: Introduction and Review of Statistics

ECON Introductory Econometrics. Lecture 1: Introduction and Review of Statistics ECON4150 - Introductory Econometrics Lecture 1: Introduction and Review of Statistics Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 1-2 Lecture outline 2 What is econometrics? Course

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Test 7A AP Statistics Name: Directions: Work on these sheets.

Test 7A AP Statistics Name: Directions: Work on these sheets. Test 7A AP Statistics Name: Directions: Work on these sheets. Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. Suppose X is a random variable with mean µ. Suppose we observe

More information

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Physical Principles in Biology Biology 3550 Fall 2018 Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Monday, 10 September 2018 c David P. Goldenberg University

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

15.063: Communicating with Data Summer Recitation 4 Probability III

15.063: Communicating with Data Summer Recitation 4 Probability III 15.063: Communicating with Data Summer 2003 Recitation 4 Probability III Today s Content Normal RV Central Limit Theorem (CLT) Statistical Sampling 15.063, Summer '03 2 Normal Distribution Any normal RV

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

CS145: Probability & Computing

CS145: Probability & Computing CS145: Probability & Computing Lecture 8: Variance of Sums, Cumulative Distribution, Continuous Variables Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Answer Key: Quiz2-Chapter5: Discrete Probability Distribution

Answer Key: Quiz2-Chapter5: Discrete Probability Distribution Economics 70: Applied Business Statistics For Economics & Business (Summer 01) Answer Key: Quiz-Chapter5: Discrete Probability Distribution The number of electrical outages in a city varies from day to

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

1/12/2011. Chapter 5: z-scores: Location of Scores and Standardized Distributions. Introduction to z-scores. Introduction to z-scores cont.

1/12/2011. Chapter 5: z-scores: Location of Scores and Standardized Distributions. Introduction to z-scores. Introduction to z-scores cont. Chapter 5: z-scores: Location of Scores and Standardized Distributions Introduction to z-scores In the previous two chapters, we introduced the concepts of the mean and the standard deviation as methods

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

C.10 Exercises. Y* =!1 + Yz

C.10 Exercises. Y* =!1 + Yz C.10 Exercises C.I Suppose Y I, Y,, Y N is a random sample from a population with mean fj. and variance 0'. Rather than using all N observations consider an easy estimator of fj. that uses only the first

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

3/28/18. Estimation. Focus Points. Focus Points. Estimating p in the Binomial Distribution. Estimating p in the Binomial Distribution. Section 7.

3/28/18. Estimation. Focus Points. Focus Points. Estimating p in the Binomial Distribution. Estimating p in the Binomial Distribution. Section 7. Which side of a cheetah has the most spots? Estimation The outside. 7 Section 7.3 Estimating p in the Binomial Distribution Boy, I m tired. I ve been up since the quack of dawn. Focus Points Compute the

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations II - Probability Counting Techniques three rules of counting 1multiplication rules 2permutations 3combinations Section 2 - Probability (1) II - Probability Counting Techniques 1multiplication rules In

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Chapter 5 Basic Probability

Chapter 5 Basic Probability Chapter 5 Basic Probability Probability is determining the probability that a particular event will occur. Probability of occurrence = / T where = the number of ways in which a particular event occurs

More information

TRINITY COLLGE DUBLIN

TRINITY COLLGE DUBLIN TRINITY COLLGE DUBLIN School of Computer Science and Statistics Extra Questions ST3009: Statistical Methods for Computer Science NOTE: There are many more example questions in Chapter 4 of the course textbook

More information

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 41

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 41 STA258H5 Al Nosedal and Alison Weir Winter 2017 Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 41 NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION. Al Nosedal and Alison Weir STA258H5 Winter 2017

More information