Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Size: px
Start display at page:

Download "Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems."

Transcription

1 Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing continuous cumulative distribution function. Let X (1) X (2) X (n) denote the ordered statistics. (a) Show that U j = F (X j ) U(0, 1) for j = 1,..., n. (b) Show that B j = F (X (j) ) ind Beta(j, n j + 1) for j = 1,..., n. (c) Show that E[X (j) ] = E[F 1 (B j )] where B j is as defined in part (b) above and F 1 (u) = inf{x R : F (x) u} for u [0, 1]. 2. Suppose X i f(x µ, σ) = 1 σ exp{ (x µ)/σ}i (µ, )(x) for i = 1,..., n, where µ R and σ > 0 are both unknown. Let θ = (µ, σ) denote parameter of this shifted exponential family. (a) Obtain a minimal sufficient statistic for θ. Is your minimal sufficient statistic complete for this family of distributions? (b) Show that X 1 µ σ Exp(1), hence (or otherwise) show that X (1) µ σ Exp ( 1 n). (c) Show that ( X X (1) )/(X (n) X (1) ) is an ancillary statistic. (d) Obtain the MME 1 of θ. Is the MME of θ unbiased? (e) Obtain the MLE 2 of θ. Is the MLE of θ unbiased? (f) Obtain the UMVUE 3 of θ. (g) Compute the MSE 4 of the MLE and UMVUE of σ. Which estimator is better in terms of having smaller MSE? (h) Obtain a class of conjugate prior distributions for θ. (i) Obtain the Bayes estimators, E[µ X 1,..., X n ] and E[σ X 1,..., X n ] of µ and σ, respectively, under the conjugate prior your derived in the previous part. 1 MME=Method of Moments Estimator 2 MLE=Maximum Likelihood Estimator 3 UMVUE=Uniformly Minimum Variance Unbiased Estimator 4 MSE=Mean Squared Error ST 522: Practice Problems for Midterm Exam Page 1 c Sujit Ghosh, NCSU Statistics

2 3. Provide examples of the following cases: (a) A minimal sufficient statistic that is of same dimension as that of the parameter. (b) A minimal sufficient statistic that is of larger dimension than that of the parameter. (c) A sufficient statistic that is of smaller dimension than that of the parameter. 4. Suppose X i f(x µ, σ) = 1 x µ φ( ) + 1 x µ exp{ } for i = 1, 2,..., n where 2σ σ 4σ σ µ R, σ > 0 are both unknown and φ( ) denotes the density of a standard normal distribution. State if the following statistics are ancillary (and provide justifications to your answers): (a) T 1 = X X (1) X (n) X (1) (b) T 2 = X X (1) X (n) +X (1) (c) T 3 = X X (1) S 1 where S 1 = 1 n n i=1 X i X (d) T 4 = 2 X X (1) X (n) S 1 5. Suppose X i U( 1, θ) for i = 1,..., n where θ > 1 is unknown. θ (a) Show that (X (1), X (n) ) is sufficient for θ (b) Is the statistic in part (a) above minimal sufficient? If yes, prove it otherwise exhibit a minimal sufficient statistic. (c) Is the minimal sufficient statistic that you found in part (b) above complete? Provide justifications. (d) Obtain the MLE and UMVUE of θ 6. Suppose X i U(0, θ) for i = 1,..., n where θ 1 is unknown. (a) Obtain the MLE of θ. Is the MLE unbiased? (b) Show that X (n) is not complete for this family of uniform distributions. (c) Obtain a minimal sufficient statistic for θ. Is your minimal sufficient statistic complete? (d) Obtain the UMVUE of θ (bit tricky!) ST 522: Practice Problems for Midterm Exam Page 2 c Sujit Ghosh, NCSU Statistics

3 7. Suppose X i f(x θ) for i = 1,..., n where θ Θ R d for some integer d 1. Let T = T (X 1,..., X n ) be a minimal sufficient statistic. (a) Show that the MLE of θ (if it exists uniquely) is a function of T only. (b) Consider a prior distribution of θ π(θ). Show that the posterior distribution of θ given (X 1,..., X n ) is same as that of θ given T. Conclude that any Bayes estimator is a function of T only. (c) Suppose d = 1. Show that the UMVUE of θ (if it exists) is a function of T only. (d) Give an example to show that MME need not be a function of T only. 8. Suppose X i f(x θ) for i = 1,..., n where θ Θ R d for some integer d 1. Let T 1 = T (X 1,..., X n ) and T 2 = T (X 1,..., X n ) be real-valued statistics to estimate η = τ(θ) (a real-valued function of θ). Assume that for each θ Θ, T 1 η is stochastically smaller 5 than T 2 η. (a) Show that MSE θ (T 1 ) = E θ [(T 1 η) 2 ] E[(T 2 η) 2 ] = MSE θ (T 2 ) for all θ Θ. (b) More generally, given any non-negative valued increasing continuous function G( ), show that E θ [G( T 1 η )] E[G( T 2 η )] for all θ Θ. 9. Suppose X i f(x θ) for i = 1,..., n where θ Θ R d for some integer d 1. Let T = T (X 1,..., X n ) be an UMVUE of η = τ(θ), a real valued function of θ. (a) Suppose U = U(X 1,..., X n ) is another unbiased estimator of η. Show that Cor θ [T, U] > 0. (b) Suppose T 2 is another UMVUE of η. Show that Cor θ [T 1, T 2 ] = 1. (c) Show that T 2 is the UMVUE of E θ [T 2 ], provided E θ [T 4 ] <. More generally, show that T k is the UMVUE of E θ [T k ], provided E θ [T 2k ] < for k = 2, 3,... (d) Suppose T = g(s) where S is a complete sufficient statistic for θ and let T 2 another unbiased estimate of η. Show that E[T 2 S] = g(s). 5 A real-valued random variable U is said to be stochastically smaller than another real-valued random variable V if Pr[U ɛ] > Pr[V ɛ] for all ɛ R ST 522: Practice Problems for Midterm Exam Page 3 c Sujit Ghosh, NCSU Statistics

4 10. Two statistics T 1 and T 2 are said to be equivalent if we can write T 2 = H(T 1 ) for some 1 1 transformation H( ) of the range of T 1 into the range of T 2. Which of the following statistics are equivalent? (Prove or disprove) (a) n i=1 X i and n i=1 log X i (b) n i=1 X i and n i=1 log X i (c) ( n i=1 X i, n i=1 X2 i ) and ( X, S 2 ) where X is the sample mean and S 2 is the sample variance. (d) ( n i=1 X i, n i=1 X3 i ) and ( X, n i=1 (X i X) 3 ) 11. Suppose X i N(µ 1, σ 2 1) and Y j N(µ 2, σ 2 2) for i = 1,..., n and j = 1,..., m. Find minimal sufficient statistics and compute the MLE for the following cases: (a) µ 1, µ 2 R and σ 1, σ 2 (0, ) are arbitrary (b) µ 1 = µ 2 R and σ 1, σ 2 (0, ) are arbitrary (c) σ 1 = σ 2 (0, ) and µ 1, µ 2 R arbitrary 12. Suppose X i f(x θ) for i = 1,..., n where θ Θ R. In the following cases show that there are no unbiased estimators of η = τ(θ). (a) f(x θ) = θ x (1 θ) 1 x for x = 0, 1 and θ (0, 1) and η = θ, the odds 1 θ (b) f(x θ) = θx e θ x! for x {0, 1,...} and θ > 0 and η = θ, the standard deviation of X. 13. Suppose X i f(x θ) for i = 1,..., n where θ Θ R d for some integer d 1 where f(x θ) is integrable as a function of θ. Assume that the support S = {x : f(x θ) > 0} does not involve θ. Show that the following class of prior densities is conjugate: π(θ) = N j=1 where ξ j S and N {1, 2,...}. f(ξ j θ)/ Θ N f(ξ j θ)dθ, 14. Suppose X i U(θ 1, θ + 1) for i = 1,..., n where θ R. (a) Obtain the MME of θ. (b) Obtain MLE of θ. Is it unique? j=1 ST 522: Practice Problems for Midterm Exam Page 4 c Sujit Ghosh, NCSU Statistics

5 15. The Kullback-Liebler divergence (KLD) between two densities f and g is defined as:. KLD(f, g) = f(x) log f(x) g(x) dx (a) Show that KLD(f, g) 0 and the equality holds if and only if f g (i.e., f(x) = g(x) for all x {x : f(x) > 0}). (b) Suppose f(x) = 1 σ 0 φ( x µ 0 σ 0 ) and g(x) = 1 x µ φ( ) where φ( ) denotes the density σ σ of the standard normal distribution. Compute KLD(f, g). (c) In part (b) above suppose σ = σ 0. Show that KLD(f, g) = 0 if and only if µ = µ 0 (d) In part (b) above suppose KLD(f, g) = 0. Can you conclude µ = µ 0 and σ = σ 0? (e) Suppose X i f 0 (x) for i = 1,..., n where f 0 ( ) is an unknown density. Suppose we use a statistical model that assumes X i f(x θ). i. Show that if X i f 0 (x) then it follows by SLLN that KLD n (θ) = 1 n n i=1 log f 0(X i ) f(x i θ) a.s. KLD(f 0, f( θ)) as n ii. Show that the MLE of θ under the assumed statistical model minimizes KLD n (θ). 16. Review all the problems solved during Lab hours (ST 522L) and Home assignments Hint for Exercise#2(a): You may assume (or prove) that for the given family of distributions, 2n( X X (1) ) and 2n(X (1) µ) are independently distributed as χ 2 σ σ 2(n 1) and χ2 2 distributions. ST 522: Practice Problems for Midterm Exam Page 5 c Sujit Ghosh, NCSU Statistics

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Qualifying Exam Solutions: Theoretical Statistics

Qualifying Exam Solutions: Theoretical Statistics Qualifying Exam Solutions: Theoretical Statistics. (a) For the first sampling plan, the expectation of any statistic W (X, X,..., X n ) is a polynomial of θ of degree less than n +. Hence τ(θ) cannot have

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Computer Statistics with R

Computer Statistics with R MAREK GAGOLEWSKI KONSTANCJA BOBECKA-WESO LOWSKA PRZEMYS LAW GRZEGORZEWSKI Computer Statistics with R 5. Point Estimation Faculty of Mathematics and Information Science Warsaw University of Technology []

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

12 The Bootstrap and why it works

12 The Bootstrap and why it works 12 he Bootstrap and why it works For a review of many applications of bootstrap see Efron and ibshirani (1994). For the theory behind the bootstrap see the books by Hall (1992), van der Waart (2000), Lahiri

More information

Decision theoretic estimation of the ratio of variances in a bivariate normal distribution 1

Decision theoretic estimation of the ratio of variances in a bivariate normal distribution 1 Decision theoretic estimation of the ratio of variances in a bivariate normal distribution 1 George Iliopoulos Department of Mathematics University of Patras 26500 Rio, Patras, Greece Abstract In this

More information

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions UNIVERSITY OF VICTORIA Midterm June 04 Solutions NAME: STUDENT NUMBER: V00 Course Name & No. Inferential Statistics Economics 46 Section(s) A0 CRN: 375 Instructor: Betty Johnson Duration: hour 50 minutes

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

Point Estimation. Copyright Cengage Learning. All rights reserved.

Point Estimation. Copyright Cengage Learning. All rights reserved. 6 Point Estimation Copyright Cengage Learning. All rights reserved. 6.2 Methods of Point Estimation Copyright Cengage Learning. All rights reserved. Methods of Point Estimation The definition of unbiasedness

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Bayesian Linear Model: Gory Details

Bayesian Linear Model: Gory Details Bayesian Linear Model: Gory Details Pubh7440 Notes By Sudipto Banerjee Let y y i ] n i be an n vector of independent observations on a dependent variable (or response) from n experimental units. Associated

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Multi-armed bandit problems

Multi-armed bandit problems Multi-armed bandit problems Stochastic Decision Theory (2WB12) Arnoud den Boer 13 March 2013 Set-up 13 and 14 March: Lectures. 20 and 21 March: Paper presentations (Four groups, 45 min per group). Before

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according STAT 345 Spring 2018 Homework 9 - Point Estimation Name: Please adhere to the homework rules as given in the Syllabus. 1. Mean Squared Error. Suppose that X 1, X 2 and X 3 are independent random variables

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 12, 2018 CS 361: Probability & Statistics Inference Binomial likelihood: Example Suppose we have a coin with an unknown probability of heads. We flip the coin 10 times and observe 2 heads. What can

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Objective Bayesian Analysis for Heteroscedastic Regression

Objective Bayesian Analysis for Heteroscedastic Regression Analysis for Heteroscedastic Regression & Esther Salazar Universidade Federal do Rio de Janeiro Colóquio Inter-institucional: Modelos Estocásticos e Aplicações 2009 Collaborators: Marco Ferreira and Thais

More information

CSC 411: Lecture 08: Generative Models for Classification

CSC 411: Lecture 08: Generative Models for Classification CSC 411: Lecture 08: Generative Models for Classification Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 08-Generative Models 1 / 23 Today Classification

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS Questions 1-307 have been taken from the previous set of Exam C sample questions. Questions no longer relevant

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 14th February 2006 Part VII Session 7: Volatility Modelling Session 7: Volatility Modelling

More information

EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS. Rick Katz

EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS. Rick Katz 1 EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

Section 7.1: Continuous Random Variables

Section 7.1: Continuous Random Variables Section 71: Continuous Random Variables Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 71: Continuous Random Variables

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Estimation after Model Selection

Estimation after Model Selection Estimation after Model Selection Vanja M. Dukić Department of Health Studies University of Chicago E-Mail: vanja@uchicago.edu Edsel A. Peña* Department of Statistics University of South Carolina E-Mail:

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Common one-parameter models

Common one-parameter models Common one-parameter models In this section we will explore common one-parameter models, including: 1. Binomial data with beta prior on the probability 2. Poisson data with gamma prior on the rate 3. Gaussian

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

STAT 111 Recitation 4

STAT 111 Recitation 4 STAT 111 Recitation 4 Linjun Zhang http://stat.wharton.upenn.edu/~linjunz/ September 29, 2017 Misc. Mid-term exam time: 6-8 pm, Wednesday, Oct. 11 The mid-term break is Oct. 5-8 The next recitation class

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

Additional questions for chapter 3

Additional questions for chapter 3 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 })

More information

Continuous Probability Distributions & Normal Distribution

Continuous Probability Distributions & Normal Distribution Mathematical Methods Units 3/4 Student Learning Plan Continuous Probability Distributions & Normal Distribution 7 lessons Notes: Students need practice in recognising whether a problem involves a discrete

More information

Exam STAM Practice Exam #1

Exam STAM Practice Exam #1 !!!! Exam STAM Practice Exam #1 These practice exams should be used during the month prior to your exam. This practice exam contains 20 questions, of equal value, corresponding to about a 2 hour exam.

More information

Understanding Tail Risk 1

Understanding Tail Risk 1 Understanding Tail Risk 1 Laura Veldkamp New York University 1 Based on work with Nic Kozeniauskas, Julian Kozlowski, Anna Orlik and Venky Venkateswaran. 1/2 2/2 Why Study Information Frictions? Every

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Learning From Data: MLE. Maximum Likelihood Estimators

Learning From Data: MLE. Maximum Likelihood Estimators Learning From Data: MLE Maximum Likelihood Estimators 1 Parameter Estimation Assuming sample x1, x2,..., xn is from a parametric distribution f(x θ), estimate θ. E.g.: Given sample HHTTTTTHTHTTTHH of (possibly

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Conjugate s: Beta and normal Class 15, 18.05 Jeremy Orloff and Jonathan Bloom 1. Understand the benefits of conjugate s.. Be able to update a beta given a Bernoulli, binomial, or geometric

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate ECSE 304-305B Assignment 5 Solutions Fall 2008 Question 5.1 A positive scalar random variable X with a density is such that EX = µ

More information

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx 1 Cumulants 1.1 Definition The rth moment of a real-valued random variable X with density f(x) is µ r = E(X r ) = x r f(x) dx for integer r = 0, 1,.... The value is assumed to be finite. Provided that

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

PROBABILITY AND STATISTICS

PROBABILITY AND STATISTICS Monday, January 12, 2015 1 PROBABILITY AND STATISTICS Zhenyu Ye January 12, 2015 Monday, January 12, 2015 2 References Ch10 of Experiments in Modern Physics by Melissinos. Particle Physics Data Group Review

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information