Computer Statistics with R

Size: px
Start display at page:

Download "Computer Statistics with R"

Transcription

1 MAREK GAGOLEWSKI KONSTANCJA BOBECKA-WESO LOWSKA PRZEMYS LAW GRZEGORZEWSKI Computer Statistics with R 5. Point Estimation Faculty of Mathematics and Information Science Warsaw University of Technology [] Copyright Marek G agolewski This work is licensed under a Creative Commons Attribution 3.0 Unported License.

2 CONTENTS 0 Contents 5.1 Examples Exercises Hints and Answers Info These tutorials are likely to contain bugs and typos. hesitate to contact us! Thanks in advance! In case you find any don t

3 5.1. EXAMPLES Examples Remarks. MVUE = minimum-variance unbiased estimator, MME = method-of-moments estimator, MQE = method-of-quantiles estimator, MLE = maximal-likelihood estimator. Ex Generate a random sample Y = (Y 1,..., Y n, n = 500, from the standard Cauchy distribution C(a, b with a = 0, b = Compute mean(y i and median(y i of each subsample Y i = (Y 1,..., Y i, i = 1,..., n, and plot the following sets of points: {(i, mean(y i : i = 1,..., n}, and {(i, median(y i : i = 1,..., n}. Comment whether the sample mean and the sample median may be used as reasonable estimators of the a parameter. 2. Compute the standard deviation sd(y i and the half interquartile range IQR(Y i /2. May these sample statistics be considered as well-behaving estimators of the b parameter? Solution. First let us compare the two estimators of the location parameter a = 0. n <- 500 X <- rcauchy(n # sample of size n from the standardized Cauchy distribution mn <- numeric(n # means of all subsamples md <- numeric(n # medians of all subsamples for (i in 1:n { } mn[i] <- mean(x[1:i] md[i] <- median(x[1:i] plot(1:i, mn, type="l", col="blue", xlab="", ylab="", lty=1 lines(1:i, md, col="red", lty=2 abline(h=0, col="gray", lty=3 legend("bottom", c("mean.i", "median.i", "a=0", col=c("blue", "red", "gray", lty=1:3

4 5.1. EXAMPLES mean.i median.i a= Next we compare the two estimators of the scale parameter b = 1. n <- 500 X <- rcauchy(n s <- numeric(n-1 r <- numeric(n-1 for (i in 2:n { s[i-1] <- sd(x[1:i] r[i-1] <- IQR(X[1:i]*0.5 } plot(2:i, s, type="l", col="blue", xlab="", ylab="", ylim=c(0,max(s lines(2:i, r, col="red", lty=2 abline(h=1, col="gray", lty=3 legend("topleft", c("s.i", "r.i", "b=1", col=c("blue", "red", "gray", lty=1: s.i r.i b= Draw conclusions.

5 5.1. EXAMPLES 3 Ex We are given an i.i.d. random sample of size n = 20 from the uniform distribution U ([0, θ], where θ = 1. Determine method of moments (MME, and maximum likelihood (MLE estimators of θ. Compare their bias and mean square errors. Solution. Let X = (X 1,..., X n be a sample from the uniform distribution U ([0, θ]. It may be shown that the estimators of θ are of the form: The MME estimator: The MLE estimator: ˆθ 1 = 2 X, (5.1 ˆθ 2 = X n:n, (5.2 The minimum variance unbiased (MVUE estimator: ˆθ 3 = n + 1 n X n:n = n + 1 n ˆθ 2. (5.3 Moreover, the bias b (ˆθ = E (ˆθ θ = E (ˆθ θ (5.4 and the mean square errors (MSE of the above estimators are as follows: 2 [ (ˆθ] 2 MSE (ˆθ = E (ˆθ θ = Var (ˆθ + b (5.5 i b (ˆθi MSE (ˆθi 1 0 θ 2 3n 2 θ n+1 2θ 2 (n+1(n θ 2 n(n+2 Let θ = 1. We will illustrate how to approximate these values using MC simulation. Let us generate m = random samples of size n = 20 from the uniform distribution U ([0, 1] and calculate the value of the three estimators of θ. The results will be stored in a m 3 matrix. m < n <- 20 theta <- 1 results <- replicate(m, { } X <- runif(n, 0, theta c(2 * mean(x, max(x, max(x * (n + 1/n # result of a single experiment results[, 1:5] # show the results of the first 5 experiments: ## [,1] [,2] [,3] [,4] [,5] ## [1,] ## [2,] ## [3,] Let us compute the empirical bias and mean square errors of our estimators. empirical bias: The

6 5.1. EXAMPLES 4 mean(results[1, ] - theta ## [1] mean(results[2, ] - theta ## [1] mean(results[3, ] - theta ## [1] The empirical MSEs: var(results[1, ] + (mean(results[1, ] - theta^2 ## [1] var(results[2, ] + (mean(results[2, ] - theta^2 ## [1] var(results[3, ] + (mean(results[3, ] - theta^2 ## [1] Compare them to the theoretical (exact bias and mean square errors of our estimators: The bias of b (ˆθ2 : -theta/(n + 1 ## [1] MSE (ˆθ1 : (theta^2/(3 * n ## [1] MSE (ˆθ2 : 2 * (theta^2/(n + 1/(n + 2 ## [1] MSE (ˆθ3 : (theta^2/n/(n + 2 ## [1] Monte Carlo simulation methods are often used to examine the properties of estimators in cases where analytic solutions are unavailable. By the law of large numbers, we expect that as m increases, the approximation error becomes smaller.

7 5.2. EXERCISES Exercises Preliminaries Ex Generate a random sample Y = (Y 1,..., Y n, n = 500, from the standard Normal distribution N(µ, σ with µ = 0, σ = Compute mean(y i and median(y i of each subsample Y i = (Y 1,..., Y i, i = 1,..., n, and plot the following sets of points: {(i, mean(y i : i = 1,..., n}, and {(i, median(y i : i = 1,..., n}. Comment whether we can use the sample mean and the sample median as reasonable estimators of µ. 2. Compute the scaled interquartile range IQR(Y i /1.35 and the standard deviation sd(y i. May these sample statistics be considered as well-behaving estimators of σ? Ex Given a statistical space (X, σ(x, P = {P θ : θ Θ} n, show that if θ is an unbiased estimator of θ, then MSE θ θ = Var θ ( θ. Ex Given a sequence (X 1,..., X n of i.i.d. random variables from the Exponential distribution Exp(λ, show that the statistic T (X 1,..., X n = n i=1 Xi 2 /2n is an unbiased estimator of the distribution variance. Ex Given a sequence (X 1,..., X n of i.i.d. random variables from the Uniform distribution U[a, a + 1], check whether the statistic T (X 1,..., X n = n i=1 X i /n 0.5 is an unbiased estimator of the parameter a. Ex Let X = (X 1, X 2,..., X n denote an i.i.d. random sample with finite (known expectation µ and finite (unknown variance σ 2. Let s 2 = 1 n (X i µ 2. (5.6 n i=1 Show that s 2 is an unbiased estimator of variance σ 2. Ex Let X = (X 1, X 2,..., X n denote a sample of i.i.d. random variables with finite variance σ 2. Show that 1. s 2 n = 1 ( ni=1 2 n X i X is a biased estimator of σ 2, and 2. s 2 = 1 ( ni=1 2 n 1 X i X is an unbiased estimator of σ 2. Ex Let T 1 = T 1 (X 1, X 2,..., X n and T 2 = T 2 (X 1, X 2,..., X n denote two independent unbiased estimators of a parameter θ. 1. Show that for each γ [0, 1], the statistic T = γt 1 + (1 γt 2 is also an unbiased estimator of θ. 2. Find such γ that leads to the smallest mean squared error of θ. Ex Let X = (X 1, X 2,..., X n denote a sample of independent Bern(θ-distributed random variables, θ (0, 1. Show that: 1. θ(x = i X i/n is an unbiased estimator of θ, 2. T (X = n n 1 ( θ(x θ(x 2 is an unbiased estimator of g(θ = θ(1 θ.

8 5.2. EXERCISES 6 Ex Let X = (X 1, X 2,..., X n denote an i.i.d. sample from the Poisson distribution with a parameter λ > 0. Show that X = 1 ni=1 n X i is a consistent MVUE estimator of λ. Ex Let X = (X 1, X 2,..., X n denote an i.i.d. random sample from the normal distribution with finite (known expectation µ and finite (unknown variance σ 2. Show that s 2 is a MVUE estimator of σ 2. Show that s 2 is an unbiased, but only asymptotically effective estimator of σ 2. Ex Let X = (X 1, X 2,..., X n denote an i.i.d. random sample from the exponential distribution with a parameter λ > 0. Let g(λ = 1/λ. Show that X is a consistent UMVU estimator of g(λ. Ex Let X = (X 1, X 2,..., X n denote an i.i.d. random sample from the exponential distribution with a parameter λ > 0. Let g(λ = 1/λ. Show that although T (X = nx 1:n is an unbiased estimator of g(λ, it is not consistent. Ex Let X = (X 1, X 2,..., X n denote an i.i.d. random sample from the normal distribution N(µ, σ. Compare the effectiveness of two estimators of µ the sample average and sample median. MLE, MME, MQE Ex A terrorist tapped the line of a very important person (V.I.P.. He noted down the times between successive calls [in minutes] of his victim: 1.74, 21.26, 11.19, 6.64, 0.07, 8.67, 43.25, 55.03, 7.64, 12.54, 39.19, 3.42, 4.89, 2.32, The attacker suspects that the V.I.P. is going to make a very important call (V.I.C.. Unfortunately, he needs to go to the toilet!!! He calls you because he is truly in state of emergency and you are famous of being a great statistician. You assume the data follow exponential distribution with an unknown parameter λ > Find estimators of λ using MME, MLE and MQE. 2. Calculate the probability that the V.I.P. will make a V.I.C. in next 5 minutes. Ex Find the MME and MLE of the parameter λ > 0 of the Poisson distribution. Ex Find the MME and MLE of the probability of success θ, in n independent Bernoulli trials. Ex Generate a random sample of size 25 for the uniform distribution U[0, θ], where θ = 1. Find the MME, MLE and a unbiased estimator of θ. Compare their bias, MSE and variance. Evaluate the estimators for the sample. Ex Find the MME, MLE and MQE of mean and variance of the normal distribution. Ex Find the MME and MLE of the shape a and scale b parameters of the gamma distribution Γ(a, b. Ex Let X = (X 1, X 2,..., X n denote an i.i.d. random sample from the Rayleigh distribution with unknown parameter σ > 0. The probability distribution function is: f(x = x exp( x2 for x 0. EX σ 2 2σ 2 i = σ 0.5π for i = 1,..., n. Find the MME and MLE of σ and compute their values for the following data: 4.93, 2.79, 7.19, 10.50, 9.19, 13.13, 0.47, 5.89, 9.90, 11.70, 6.83, 9.36, 2.04, Ex Let (X 1,..., X n denote the sequence of observations of proper operation times of n devices, each working independently. We assume that the time of proper work is exponentially distributed with an unknown parameter θ. The devices are not observed continuously, but the measurements are performed at discrete moments 1, 2,..., k. Hence, we observe only Y 1,..., Y n where { i if i 1 < Xj i, for some i = 1,..., k, Y j = k + 1 if X j > k,

9 5.3. HINTS AND ANSWERS 7 where j = 1,..., n. Let N i = # {j : Y j = i}, i = 1,..., k+1. Find the maximum likelihood estimator of the parameter θ. Perform the calculations for n = 10, k = 2 and N 1 = 5, N 2 = 2 i N 3 = Hints and Answers Hint to Ex n s 2 σ 2 χ 2 n Γ(n/2, 1/2. Hint to Ex (n 1s 2 σ 2 χ 2 n 1. Hint to Ex X N(µ, σ Y = X µ σ N(0, 1. Then EY 2k+1 = 0 and EY 2k = (2k 1. Hint to Ex πσ If X N(µ, σ, then Med X N(µ, 2 2n.

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased.

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased. 1 Evaluating estimators Suppose you observe data X 1,..., X n that are iid observations with distribution F θ indexed by some parameter θ. When trying to estimate θ, one may be interested in determining

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Section 2.4. Properties of point estimators 135

Section 2.4. Properties of point estimators 135 Section 2.4. Properties of point estimators 135 The fact that S 2 is an estimator of σ 2 for any population distribution is one of the most compelling reasons to use the n 1 in the denominator of the definition

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Learning From Data: MLE. Maximum Likelihood Estimators

Learning From Data: MLE. Maximum Likelihood Estimators Learning From Data: MLE Maximum Likelihood Estimators 1 Parameter Estimation Assuming sample x1, x2,..., xn is from a parametric distribution f(x θ), estimate θ. E.g.: Given sample HHTTTTTHTHTTTHH of (possibly

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved.

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 Chapter 4 Commonly Used Distributions 2014 by The Companies, Inc. All rights reserved. Section 4.1: The Bernoulli Distribution 4-2 We use the Bernoulli distribution when we have an experiment which

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Point Estimation. Copyright Cengage Learning. All rights reserved.

Point Estimation. Copyright Cengage Learning. All rights reserved. 6 Point Estimation Copyright Cengage Learning. All rights reserved. 6.2 Methods of Point Estimation Copyright Cengage Learning. All rights reserved. Methods of Point Estimation The definition of unbiasedness

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

STRESS-STRENGTH RELIABILITY ESTIMATION

STRESS-STRENGTH RELIABILITY ESTIMATION CHAPTER 5 STRESS-STRENGTH RELIABILITY ESTIMATION 5. Introduction There are appliances (every physical component possess an inherent strength) which survive due to their strength. These appliances receive

More information

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions UNIVERSITY OF VICTORIA Midterm June 04 Solutions NAME: STUDENT NUMBER: V00 Course Name & No. Inferential Statistics Economics 46 Section(s) A0 CRN: 375 Instructor: Betty Johnson Duration: hour 50 minutes

More information

Chapter 6: Point Estimation

Chapter 6: Point Estimation Chapter 6: Point Estimation Professor Sharabati Purdue University March 10, 2014 Professor Sharabati (Purdue University) Point Estimation Spring 2014 1 / 37 Chapter Overview Point estimator and point estimate

More information

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example...

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example... Chapter 4 Point estimation Contents 4.1 Introduction................................... 2 4.2 Estimating a population mean......................... 2 4.2.1 The problem with estimating a population mean

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Point Estimation. Edwin Leuven

Point Estimation. Edwin Leuven Point Estimation Edwin Leuven Introduction Last time we reviewed statistical inference We saw that while in probability we ask: given a data generating process, what are the properties of the outcomes?

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

The Bernoulli distribution

The Bernoulli distribution This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2013 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2013 1 / 31

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Module 4: Point Estimation Statistics (OA3102)

Module 4: Point Estimation Statistics (OA3102) Module 4: Point Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.1-8.4 Revision: 1-12 1 Goals for this Module Define

More information

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE)

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE) CSE 312 Winter 2017 Learning From Data: Maximum Likelihood Estimators (MLE) 1 Parameter Estimation Given: independent samples x1, x2,..., xn from a parametric distribution f(x θ) Goal: estimate θ. Not

More information

Analysis of truncated data with application to the operational risk estimation

Analysis of truncated data with application to the operational risk estimation Analysis of truncated data with application to the operational risk estimation Petr Volf 1 Abstract. Researchers interested in the estimation of operational risk often face problems arising from the structure

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006 Random Samples Mathematics 47: Lecture 6 Dan Sloughter Furman University March 13, 2006 Dan Sloughter (Furman University) Random Samples March 13, 2006 1 / 9 Random sampling Definition We call a sequence

More information

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according STAT 345 Spring 2018 Homework 9 - Point Estimation Name: Please adhere to the homework rules as given in the Syllabus. 1. Mean Squared Error. Suppose that X 1, X 2 and X 3 are independent random variables

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices Bachelier Finance Society Meeting Toronto 2010 Henley Business School at Reading Contact Author : d.ledermann@icmacentre.ac.uk Alexander

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

A New Hybrid Estimation Method for the Generalized Pareto Distribution

A New Hybrid Estimation Method for the Generalized Pareto Distribution A New Hybrid Estimation Method for the Generalized Pareto Distribution Chunlin Wang Department of Mathematics and Statistics University of Calgary May 18, 2011 A New Hybrid Estimation Method for the GPD

More information

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making May 30, 2016 The purpose of this case study is to give a brief introduction to a heavy-tailed distribution and its distinct behaviors in

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 is a uniform distribution from 0 to 100. Determine the table entries for a generalized uniform distribution covering the range from a to b where a < b. 2. Let X be a discrete random

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

Qualifying Exam Solutions: Theoretical Statistics

Qualifying Exam Solutions: Theoretical Statistics Qualifying Exam Solutions: Theoretical Statistics. (a) For the first sampling plan, the expectation of any statistic W (X, X,..., X n ) is a polynomial of θ of degree less than n +. Hence τ(θ) cannot have

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

STA 532: Theory of Statistical Inference

STA 532: Theory of Statistical Inference STA 532: Theory of Statistical Inference Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 2 Estimating CDFs and Statistical Functionals Empirical CDFs Let {X i : i n}

More information

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice.

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice. Methods of Inference Toss coin 6 times and get Heads twice. p is probability of getting H. Probability of getting exactly 2 heads is 15p 2 (1 p) 4 This function of p, is likelihood function. Definition:

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #3 1 Maximum likelihood of the exponential distribution 1. We assume

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS

FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS Available Online at ESci Journals Journal of Business and Finance ISSN: 305-185 (Online), 308-7714 (Print) http://www.escijournals.net/jbf FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS Reza Habibi*

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Introduction to Algorithmic Trading Strategies Lecture 8

Introduction to Algorithmic Trading Strategies Lecture 8 Introduction to Algorithmic Trading Strategies Lecture 8 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 45: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 018 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 018 1 / 37 Lectures 9-11: Multi-parameter

More information

Hardy Weinberg Model- 6 Genotypes

Hardy Weinberg Model- 6 Genotypes Hardy Weinberg Model- 6 Genotypes Silvelyn Zwanzig Hardy -Weinberg with six genotypes. In a large population of plants (Mimulus guttatus there are possible alleles S, I, F at one locus resulting in six

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

Module 2: Monte Carlo Methods

Module 2: Monte Carlo Methods Module 2: Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 2 p. 1 Greeks In Monte Carlo applications we don t just want to know the expected

More information

1/2 2. Mean & variance. Mean & standard deviation

1/2 2. Mean & variance. Mean & standard deviation Question # 1 of 10 ( Start time: 09:46:03 PM ) Total Marks: 1 The probability distribution of X is given below. x: 0 1 2 3 4 p(x): 0.73? 0.06 0.04 0.01 What is the value of missing probability? 0.54 0.16

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Bayesian Linear Model: Gory Details

Bayesian Linear Model: Gory Details Bayesian Linear Model: Gory Details Pubh7440 Notes By Sudipto Banerjee Let y y i ] n i be an n vector of independent observations on a dependent variable (or response) from n experimental units. Associated

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

6. Genetics examples: Hardy-Weinberg Equilibrium

6. Genetics examples: Hardy-Weinberg Equilibrium PBCB 206 (Fall 2006) Instructor: Fei Zou email: fzou@bios.unc.edu office: 3107D McGavran-Greenberg Hall Lecture 4 Topics for Lecture 4 1. Parametric models and estimating parameters from data 2. Method

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

9. Statistics I. Mean and variance Expected value Models of probability events

9. Statistics I. Mean and variance Expected value Models of probability events 9. Statistics I Mean and variance Expected value Models of probability events 18 Statistic(s) Consider a set of distributed data (values) E.g., age of first marriage and average salary of Japanese If we

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

STATISTICAL LABORATORY, May 18th, 2010 CENTRAL LIMIT THEOREM ILLUSTRATION

STATISTICAL LABORATORY, May 18th, 2010 CENTRAL LIMIT THEOREM ILLUSTRATION STATISTICAL LABORATORY, May 18th, 2010 CENTRAL LIMIT THEOREM ILLUSTRATION Mario Romanazzi 1 BINOMIAL DISTRIBUTION The binomial distribution Bi(n, p), being the sum of n independent Bernoulli distributions,

More information