Credibility. Chapters Stat Loss Models. Chapters (Stat 477) Credibility Brian Hartman - BYU 1 / 31

Size: px
Start display at page:

Download "Credibility. Chapters Stat Loss Models. Chapters (Stat 477) Credibility Brian Hartman - BYU 1 / 31"

Transcription

1 Credibility Chapters Stat Loss Models Chapters (Stat 477) Credibility Brian Hartman - BYU 1 / 31

2 Why Credibility? You purchase an auto insurance policy and it costs $150. That price is mainly the expected cost of a policyholder with your characteristics (car make and model, age, driving record, etc.). After three years, you have no claims. You call the insurer to explain how you are better than the average driver with your characteristics, so should be charged less. Is your record a sign of your good driving, or just random chance? Chapters (Stat 477) Credibility Brian Hartman - BYU 2 / 31

3 Full Credibility If the sample mean X n is a stable estimator of, the true mean, then we should only use X n. We say the data is fully credible in this situation. More specically, P r( r X r) p which says that the dierence between the estimated mean and the true mean is proportionally small, with high probability (common choices of p and r are 0.9 and 0.05, respectively) Chapters (Stat 477) Credibility Brian Hartman - BYU 3 / 31

4 Full Credibility cont. We can restate that previous formula as Pr and nd the minimum value y p = inf y X = p n rp n Pr p X y p = p n If it is continuous then Pr X = p n y p = p Therefore, for full credibility, y p r p n= Chapters (Stat 477) Credibility Brian Hartman - BYU 4 / 31

5 Full Credibility cont. For full credibility, y p rp n In many cases, we can assume that! n X = p n follows a standard normal distribution. And yp 2 r p = Pr(jZj y p ) = 2 (y p ) 1 Therefore y p is the (1 + p)=2 percentile of the standard normal distribution. Chapters (Stat 477) Credibility Brian Hartman - BYU 5 / 31

6 Central Limit Example Suppose 10 past years' losses are available from a policyholder The sample mean is used to estimate = E(X j ). Determine the full credibility standard with r = 0:05 and p = 0:9. yp 2 n r 2 (1:645)(267:89) = (0:05)(184:6) = 2279:51 Note that we used the sample mean and standard deviation to estimate and and that 10 samples fall far short of the full credibility standard. Chapters (Stat 477) Credibility Brian Hartman - BYU 6 / 31

7 Poisson Example Assume that we are interested in estimating the number of claims and assume the follow a Poisson() distribution. Find the number of policies necessary for full credibility. We know that = E(N j ) = and 2 = V ar(n j ) = so the full credibility standard is n y p p r! 2 = y 2 p r 2 and will need to be estimated from the data. Chapters (Stat 477) Credibility Brian Hartman - BYU 7 / 31

8 Aggregate Payments Example Assume further that each claim size has a mean of Y and a variance of Y 2. What is the standard for full credibility in terms of the average aggregate claim amount? = E(S j ) = Y 2 = V ar(s j ) = ( 2 Y + 2 Y ) yp 2 (Y 2 n + 2 Y ) r 2 Y " 2 = y 2 p r Y Y 2 # Chapters (Stat 477) Credibility Brian Hartman - BYU 8 / 31

9 SOA Practice #2 You are given: The number of claims has a Poisson distribution. Claim sizes have a Pareto distribution with parameters = 0:5 and = 6. The number of claims and claim sizes are independent. The observed pure premium should be within 2% of the expected pure premium 90% of the time. Calculate the expected number of claims needed for full credibility. [16,913] Chapters (Stat 477) Credibility Brian Hartman - BYU 9 / 31

10 Partial Credibility Rather than either using either only the data or the manual rate, how about a weighted average? The partial credibility estimate (or credibility premium) is: P c = Z X + (1 Z)M where Z is the credibility factor. Chapters (Stat 477) Credibility Brian Hartman - BYU 10 / 31

11 Partial Credibility It can be shown that 2 r 2 y 2 p = V ar(p c ) = V ar[z X + (1 Z)M ] = Z 2 V ar( X) = Z 2 2 n ) Z = rp n y p It turns out that the credibility factor is the square root of the ratio of the actual count to the count needed for full credibility. Chapters (Stat 477) Credibility Brian Hartman - BYU 11 / 31

12 SOA Example #65 You are given the following information about a general liability book of business comprised of 2500 insureds: X i = P N i j=1 Y ij is a random variable representing the annual loss of the ith insured. N 1 ; N 2 ; : : : ; N 2500 are independent and identically distributed random variables following a negative binomial distribution with parameters r = 2 and = 0:2. Y i1 ; Y i2 ; : : : ; Y ini are independent and identically distributed random variables following a Pareto distribution with = 3 and = The full credibility standard is to be within 5% of the expected aggregate losses 90% of the time. Using limited uctuation credibility theory, calculate the partial credibility of the annual loss experience for this book of business. [0.47] Chapters (Stat 477) Credibility Brian Hartman - BYU 12 / 31

13 Greatest Accuracy Credibility Example 1 Assume there are two dierent types of drivers, good and bad drivers. The variable x is the number of claims in any one year. x P r(xjg) P r(xjb) P r(g) = 0: P r(b) = 0: Chapters (Stat 477) Credibility Brian Hartman - BYU 13 / 31

14 Example 1 cont. Suppose a policyholder had 0 claims the rst year and 1 claim the second year. Determine the predictive distribution of his claims in the third year [0.65, 0.23, 0.13] the posterior probability of him being a good driver. [0.737] the Bayesian premium [0.479] Chapters (Stat 477) Credibility Brian Hartman - BYU 14 / 31

15 Greatest Accuracy Credibility Example 2 Assume that the amount of a claim has an exponential distribution with mean 1=. The parameter follows a gamma distribution with = 4 and = 1=1000. f (xj) =e x f () = e 1000 Chapters (Stat 477) Credibility Brian Hartman - BYU 15 / 31

16 Example 2 cont. Suppose a policyholder had claims of 100, 950, and 450. Determine the predictive distribution of the fourth claim. the posterior distribution of. the Bayesian premium [416.67] Chapters (Stat 477) Credibility Brian Hartman - BYU 16 / 31

17 Buhlmann Model The Buhlmann model is the simplest credibility model. Under this model, past losses X 1 ; : : : ; X n have the same mean and variance and are i.i.d. conditional on. We dene () = E(X j j = ) () = V ar(x j j = ) [hypothetical mean] [process variance] We further dene = E[( )] = E[( )] a = V ar[( )] Chapters (Stat 477) Credibility Brian Hartman - BYU 17 / 31

18 Buhlmann Model continued With the denitions on the previous slide, we can nd the mean, variance, and covariance of the X j s. E(X j ) = V ar(x j ) = + a Cov(X i ; X j ) = a for i 6= j Chapters (Stat 477) Credibility Brian Hartman - BYU 18 / 31

19 Buhlmann Model continued The credibility premium follows a familiar form Z X + (1 Z) where and Z = n n + k k = a = E[V ar(x jj )] V ar[e(x j j )] Chapters (Stat 477) Credibility Brian Hartman - BYU 19 / 31

20 Buhlmann Example Recall example 1, x P r(xjg) P r(xjb) P r(g) = 0: P r(b) = 0: Find the Buhlmann estimate of E(X 3 j0; 1). = 0:475; a = 0:016875; = 0:4825 k = 28:5926; Z = 0:0654; E(X 3 j0; 1) = 0:4766 Chapters (Stat 477) Credibility Brian Hartman - BYU 20 / 31

21 SOA Example #18 Two risks have the following severity distributions: Probability of Claim Probability of Claim Amount of Claim Amount for Risk 1 Amount for Risk , , Risk 1 is twice as likely to be observed as Risk 2. A claim of 250 is observed. Calculate the Bhlmann credibility estimate of the second claim amount from the same risk. [10,622] Chapters (Stat 477) Credibility Brian Hartman - BYU 21 / 31

22 Buhlmann-Straub Model The Buhlmann model assumes that all the past claims are i.i.d. but what if they are not. The Buhlmann-Straub model generalizes the Buhlmann model to allow each of the X i to be eected by its own exposure, m i. The X i are independent, conditional on, with common mean but with conditional variances () = E(X j j = ) V ar(x j j = ) = () m j Chapters (Stat 477) Credibility Brian Hartman - BYU 22 / 31

23 Buhlmann-Straub Model Similar to the Buhlmann model, dene = E[( )] = E[( )] a = V ar[( )] Then we can nd the mean, variance, and covariance of the X j s. E(X j ) = V ar(x j ) = m j + a Cov(X i ; X j ) = a for i 6= j Chapters (Stat 477) Credibility Brian Hartman - BYU 23 / 31

24 Buhlmann-Straub Model continued For convenience, let m = m 1 + m m n The credibility premium again follows a familiar form Z X + (1 Z); X = nx j=1 m j m X j where Z = m m + =a Chapters (Stat 477) Credibility Brian Hartman - BYU 24 / 31

25 SOA Example #21 You are given: (i) The number of claims incurred in a month by any insured has a Poisson distribution with mean. (ii) The claim frequencies of dierent insureds are independent. (iii) The prior distribution of is gamma with probability density function: (iv) f () = (100)6 e Month Number of Insureds Number of Claims ? Calculate the Buhlmann-Straub credibility estimate of the number of claims in Month 4. [16.9] Chapters (Stat 477) Credibility Brian Hartman - BYU 25 / 31

26 Nonparametric Estimation We may want to make as few distributional assumptions as possible. We can then simply use nonparametric, unbiased estimators of the Buhlmann quantities as follows: ^ = X 1 ^ = r(n 1) ^a = 1 r 1 rx i=1 rx nx i=1 j=1 (X ij X i ) 2 ( X i X) 2 1 rn(n 1) rx nx i=1 j=1 (X ij X i ) 2 Chapters (Stat 477) Credibility Brian Hartman - BYU 26 / 31

27 SOA Example #12 You are given total claims for two policyholders: Year Policyholder X Y Using the nonparametric empirical Bayes method, calculate the Buhlmann credibility premium for Policyholder Y. [687.4] Chapters (Stat 477) Credibility Brian Hartman - BYU 27 / 31

28 Nonparametric Estimation Cont. We can similarly nd nonparametric, unbiased estimators of the Buhlmann-Straub quantities as follows: ^ = X ^ = P r i=1 P ni m j=1 ij(x ij X i ) P 2 r (n i=1 i 1) ^a = (P r i=1 m i( X i X) 2 ^(r 1) P r i=1 m m 1 P r i=1 m2 i m i m ( X i ) 2 r m ^ if is unknown if is known Chapters (Stat 477) Credibility Brian Hartman - BYU 28 / 31

29 Example For a group policyholder, we have the data in the table below. Year 1 Year 2 Year 3 Total Claims 60,000 70,000 - Number in Group If the manual rate is 500 per year per member, estimate the total credibility premium for year 3. [94,874] Chapters (Stat 477) Credibility Brian Hartman - BYU 29 / 31

30 Semiparametric Estimation Sometimes it makes sense to assume a parametric distribution. For example, if claim counts (m ij X ij ) are assumed to follow a Poisson(m ij i ) distribution. In that case, E(m ij X ij j i ) = V ar(m ij X ij j i ) = m ij i Implying that ( i ) = ( i ) = i and = which means that we could use X to estimate. Chapters (Stat 477) Credibility Brian Hartman - BYU 30 / 31

31 Example In the past year, the distribution of automobile insurance policyholders by number of claims is Claims Insureds For each policyholder, nd a credibility estimate of the number of claims next year based on the past year's experience, assuming a (conditional) Poisson distribution on the number of claims. [(0:14)X i + 0:86(0:194)] Chapters (Stat 477) Credibility Brian Hartman - BYU 31 / 31

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS Questions 1-307 have been taken from the previous set of Exam C sample questions. Questions no longer relevant

More information

TABLE OF CONTENTS - VOLUME 2

TABLE OF CONTENTS - VOLUME 2 TABLE OF CONTENTS - VOLUME 2 CREDIBILITY SECTION 1 - LIMITED FLUCTUATION CREDIBILITY PROBLEM SET 1 SECTION 2 - BAYESIAN ESTIMATION, DISCRETE PRIOR PROBLEM SET 2 SECTION 3 - BAYESIAN CREDIBILITY, DISCRETE

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

SYLLABUS OF BASIC EDUCATION SPRING 2018 Construction and Evaluation of Actuarial Models Exam 4

SYLLABUS OF BASIC EDUCATION SPRING 2018 Construction and Evaluation of Actuarial Models Exam 4 The syllabus for this exam is defined in the form of learning objectives that set forth, usually in broad terms, what the candidate should be able to do in actual practice. Please check the Syllabus Updates

More information

Cambridge University Press Risk Modelling in General Insurance: From Principles to Practice Roger J. Gray and Susan M.

Cambridge University Press Risk Modelling in General Insurance: From Principles to Practice Roger J. Gray and Susan M. adjustment coefficient, 272 and Cramér Lundberg approximation, 302 existence, 279 and Lundberg s inequality, 272 numerical methods for, 303 properties, 272 and reinsurance (case study), 348 statistical

More information

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 2008 by the Society of Actuaries and the Casualty Actuarial Society

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

Exam STAM Practice Exam #1

Exam STAM Practice Exam #1 !!!! Exam STAM Practice Exam #1 These practice exams should be used during the month prior to your exam. This practice exam contains 20 questions, of equal value, corresponding to about a 2 hour exam.

More information

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90.

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90. Two hours MATH39542 UNIVERSITY OF MANCHESTER RISK THEORY 23 May 2016 14:00 16:00 Answer ALL SIX questions The total number of marks in the paper is 90. University approved calculators may be used 1 of

More information

Introduction Models for claim numbers and claim sizes

Introduction Models for claim numbers and claim sizes Table of Preface page xiii 1 Introduction 1 1.1 The aim of this book 1 1.2 Notation and prerequisites 2 1.2.1 Probability 2 1.2.2 Statistics 9 1.2.3 Simulation 9 1.2.4 The statistical software package

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Business Statistics 41000: Homework # 2

Business Statistics 41000: Homework # 2 Business Statistics 41000: Homework # 2 Drew Creal Due date: At the beginning of lecture # 5 Remarks: These questions cover Lectures #3 and #4. Question # 1. Discrete Random Variables and Their Distributions

More information

EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES SHORT-TERM ACTUARIAL MATHEMATICS STUDY NOTE CHAPTER 8 FROM

EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES SHORT-TERM ACTUARIAL MATHEMATICS STUDY NOTE CHAPTER 8 FROM EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES SHORT-TERM ACTUARIAL MATHEMATICS STUDY NOTE CHAPTER 8 FROM FOUNDATIONS OF CASUALTY ACTUARIAL SCIENCE, FOURTH EDITION Copyright 2001, Casualty Actuarial Society.

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

Lecture 3 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia.

Lecture 3 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia. Principles and Lecture 3 of 4-part series Spring School on Risk, Insurance and Finance European University at St. Petersburg, Russia 2-4 April 2012 University of Connecticut, USA page 1 Outline 1 2 3 4

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 7.315. The amount of each claim is distributed as a Pareto distribution with

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: STK4540 Non-Life Insurance Mathematics Day of examination: Wednesday, December 4th, 2013 Examination hours: 14.30 17.30 This

More information

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers?

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 1 451/551 - Final Review Problems 1 Probability by Sample Points 1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 2. A box contains

More information

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y )) Correlation & Estimation - Class 7 January 28, 2014 Debdeep Pati Association between two variables 1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by Cov(X, Y ) = E(X E(X))(Y

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Institute of Actuaries of India Subject CT6 Statistical Methods

Institute of Actuaries of India Subject CT6 Statistical Methods Institute of Actuaries of India Subject CT6 Statistical Methods For 2014 Examinations Aim The aim of the Statistical Methods subject is to provide a further grounding in mathematical and statistical techniques

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Proxies. Glenn Meyers, FCAS, MAAA, Ph.D. Chief Actuary, ISO Innovative Analytics Presented at the ASTIN Colloquium June 4, 2009

Proxies. Glenn Meyers, FCAS, MAAA, Ph.D. Chief Actuary, ISO Innovative Analytics Presented at the ASTIN Colloquium June 4, 2009 Proxies Glenn Meyers, FCAS, MAAA, Ph.D. Chief Actuary, ISO Innovative Analytics Presented at the ASTIN Colloquium June 4, 2009 Objective Estimate Loss Liabilities with Limited Data The term proxy is used

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright Faculty and Institute of Actuaries Claims Reserving Manual v.2 (09/1997) Section D7 [D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright 1. Introduction

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Actuarial Society of India EXAMINATIONS

Actuarial Society of India EXAMINATIONS Actuarial Society of India EXAMINATIONS 7 th June 005 Subject CT6 Statistical Models Time allowed: Three Hours (0.30 am 3.30 pm) INSTRUCTIONS TO THE CANDIDATES. Do not write your name anywhere on the answer

More information

Frequency and Severity with Coverage Modifications

Frequency and Severity with Coverage Modifications Frequency and Severity with Coverage Modifications Chapter 8 Stat 477 - Loss Models Chapter 8 (Stat 477) Coverage Modifications Brian Hartman - BYU 1 / 23 Introduction Introduction In the previous weeks,

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

The Bernoulli distribution

The Bernoulli distribution This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 7.3125. The amount of each claim is distributed as a Pareto distribution with

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 12, 2018 CS 361: Probability & Statistics Inference Binomial likelihood: Example Suppose we have a coin with an unknown probability of heads. We flip the coin 10 times and observe 2 heads. What can

More information

Chapter 7: Random Variables and Discrete Probability Distributions

Chapter 7: Random Variables and Discrete Probability Distributions Chapter 7: Random Variables and Discrete Probability Distributions 7. Random Variables and Probability Distributions This section introduced the concept of a random variable, which assigns a numerical

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Lecture 3: Probability Distributions (cont d)

Lecture 3: Probability Distributions (cont d) EAS31116/B9036: Statistics in Earth & Atmospheric Sciences Lecture 3: Probability Distributions (cont d) Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition

More information

MS-E2114 Investment Science Exercise 10/2016, Solutions

MS-E2114 Investment Science Exercise 10/2016, Solutions A simple and versatile model of asset dynamics is the binomial lattice. In this model, the asset price is multiplied by either factor u (up) or d (down) in each period, according to probabilities p and

More information

STAT 479 Test 3 Spring 2016 May 3, 2016

STAT 479 Test 3 Spring 2016 May 3, 2016 The final will be set as a case study. This means that you will be using the same set up for all the problems. It also means that you are using the same data for several problems. This should actually

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 12: Continuous Distributions Uniform Distribution Normal Distribution (motivation) Discrete vs Continuous

More information

Changes to Exams FM/2, M and C/4 for the May 2007 Administration

Changes to Exams FM/2, M and C/4 for the May 2007 Administration Changes to Exams FM/2, M and C/4 for the May 2007 Administration Listed below is a summary of the changes, transition rules, and the complete exam listings as they will appear in the Spring 2007 Basic

More information

1. The probability that a visit to a primary care physician s (PCP) office results in neither

1. The probability that a visit to a primary care physician s (PCP) office results in neither 1. The probability that a visit to a primary care physician s (PCP) office results in neither lab work nor referral to a specialist is 35%. Of those coming to a PCP s office, 30% are referred to specialists

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

SOCIETY OF ACTUARIES Advanced Topics in General Insurance. Exam GIADV. Date: Thursday, May 1, 2014 Time: 2:00 p.m. 4:15 p.m.

SOCIETY OF ACTUARIES Advanced Topics in General Insurance. Exam GIADV. Date: Thursday, May 1, 2014 Time: 2:00 p.m. 4:15 p.m. SOCIETY OF ACTUARIES Exam GIADV Date: Thursday, May 1, 014 Time: :00 p.m. 4:15 p.m. INSTRUCTIONS TO CANDIDATES General Instructions 1. This examination has a total of 40 points. This exam consists of 8

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 is a uniform distribution from 0 to 100. Determine the table entries for a generalized uniform distribution covering the range from a to b where a < b. 2. Let X be a discrete random

More information

We use probability distributions to represent the distribution of a discrete random variable.

We use probability distributions to represent the distribution of a discrete random variable. Now we focus on discrete random variables. We will look at these in general, including calculating the mean and standard deviation. Then we will look more in depth at binomial random variables which are

More information

Severity, Frequency, and Aggregate Loss

Severity, Frequency, and Aggregate Loss Part I Severity, Frequency, and Aggregate Loss 1 Basic Probability Raw moments Central moments µ n = E[X n ] µ n = E[(X µ) n ] Skewness γ 1 = µ 3 /σ 3 Kurtosis γ 2 = µ 4 /σ 4 Coefficient of variation CV

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Contents Utility theory and insurance The individual risk model Collective risk models

Contents Utility theory and insurance The individual risk model Collective risk models Contents There are 10 11 stars in the galaxy. That used to be a huge number. But it s only a hundred billion. It s less than the national deficit! We used to call them astronomical numbers. Now we should

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

3 3 Measures of Central Tendency and Dispersion from grouped data.notebook October 23, 2017

3 3 Measures of Central Tendency and Dispersion from grouped data.notebook October 23, 2017 Warm Up a. Determine the sample standard deviation weight. Express your answer rounded to three decimal places. b. Use the Empirical Rule to determine the percentage of M&Ms with weights between 0.803

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

STK 3505/4505: Summary of the course

STK 3505/4505: Summary of the course November 22, 2016 CH 2: Getting started the Monte Carlo Way How to use Monte Carlo methods for estimating quantities ψ related to the distribution of X, based on the simulations X1,..., X m: mean: X =

More information

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making May 30, 2016 The purpose of this case study is to give a brief introduction to a heavy-tailed distribution and its distinct behaviors in

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Exam P Flashcards exams. Key concepts. Important formulas. Efficient methods. Advice on exam technique

Exam P Flashcards exams. Key concepts. Important formulas. Efficient methods. Advice on exam technique Exam P Flashcards 01 exams Key concepts Important formulas Efficient methods Advice on exam technique All study material produced by BPP Professional Education is copyright and is sold for the exclusive

More information

Multivariate Statistics Lecture Notes. Stephen Ansolabehere

Multivariate Statistics Lecture Notes. Stephen Ansolabehere Multivariate Statistics Lecture Notes Stephen Ansolabehere Spring 2004 TOPICS. The Basic Regression Model 2. Regression Model in Matrix Algebra 3. Estimation 4. Inference and Prediction 5. Logit and Probit

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example...

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example... Chapter 4 Point estimation Contents 4.1 Introduction................................... 2 4.2 Estimating a population mean......................... 2 4.2.1 The problem with estimating a population mean

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

STAT 509: Statistics for Engineers Dr. Dewei Wang. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. STAT 509: Statistics for Engineers Dr. Dewei Wang Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger 7 Point CHAPTER OUTLINE 7-1 Point Estimation 7-2

More information

LONG-TERM CARE CREDIBILITY MONOGRAPH

LONG-TERM CARE CREDIBILITY MONOGRAPH AUGUST 2016 LONG-TERM CARE CREDIBILITY MONOGRAPH American Academy of Actuaries Long-Term Care Credibility Monograph Work Group of the Health Practice Council ACTUARY.ORG LONG-TERM CARE CREDIBILITY MONOGRAPH

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

Chapter 17. The. Value Example. The Standard Error. Example The Short Cut. Classifying and Counting. Chapter 17. The.

Chapter 17. The. Value Example. The Standard Error. Example The Short Cut. Classifying and Counting. Chapter 17. The. Context Short Part V Chance Variability and Short Last time, we learned that it can be helpful to take real-life chance processes and turn them into a box model. outcome of the chance process then corresponds

More information

8.1 Binomial Distributions

8.1 Binomial Distributions 8.1 Binomial Distributions The Binomial Setting The 4 Conditions of a Binomial Setting: 1.Each observation falls into 1 of 2 categories ( success or fail ) 2 2.There is a fixed # n of observations. 3.All

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii) Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information