Chapter 7 Probability

Size: px
Start display at page:

Download "Chapter 7 Probability"

Transcription

1 Chapter 7 Probability Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

2 7.1 Random Circumstances Random circumstance is one in which the outcome is unpredictable. Case Study 1.1 Alicia Has a Bad Day Doctor Visit: Diagnostic test comes back positive for a disease (D). Test is 95% accurate. About 1 out of 1000 women actually have D. Statistics Class: Professor randomly selects 3 separate students at the beginning of each class to answer questions. Alicia is picked to answer the third question. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 2

3 Random Circumstances in Alicia s Day Random Circumstance 1: Disease status Alicia has D. Alicia does not have D. Random Circumstance 2: Test result Test is positive. Test is negative. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 3

4 Random Circumstances in Alicia s Day Random Circumstance 3: 1 st student s name is drawn Alicia is selected. Alicia is not selected. Random Circumstance 4: 2 nd student s name is drawn Alicia is selected. Alicia is not selected. Random Circumstance 5: 3 rd student s name is drawn Alicia is selected. Alicia is not selected. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 4

5 Assigning Probabilities A probability is a value between 0 and 1 and is written either as a fraction or as a decimal fraction. A probability simply is a number between 0 and 1 that is assigned to a possible outcome of a random circumstance. For the complete set of distinct possible outcomes of a random circumstance, the total of the assigned probabilities must equal 1. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 5

6 7.2 Interpretations of Probability The Relative Frequency Interpretation of Probability In situations that we can imagine repeating many times, we define the probability of a specific outcome as the proportion of times it would occur over the long run -- called the relative frequency of that particular outcome. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 6

7 Example 7.1 Probability of Male versus Female Births Long-run relative frequency of males born in the United States is about.512. Information Please Almanac (1991, p. 815). Table provides results of simulation: the proportion is far from.512 over the first few weeks but in the long run settles down around.512. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 7

8 Determining the Relative Frequency Probability of an Outcome Method 1: Make an Assumption about the Physical World Example 7.2 A Simple Lottery Choose a three-digit number between 000 and 999. Player wins if his or her three-digit number is chosen. Suppose the 1000 possible 3-digit numbers (000, 001, 002,..., 999) are equally likely. In long run, a player should win about 1 out of 1000 times. This does not mean a player will win exactly once in every thousand plays. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8

9 Determining the Relative Frequency Probability of an Outcome Method 1: Make an Assumption about the Physical World Example 7.3 Probability Alicia has to Answer a Question There are 50 student names in a bag. If names mixed well, can assume each student is equally likely to be selected. Probability Alicia will be selected to answer the first question is 1/50. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 9

10 Determining the Relative Frequency Probability of an Outcome Method 2: Observe the Relative Frequency Example 7.4 The Probability of Lost Luggage 1 in 176 passengers on U.S. airline carriers will temporarily lose their luggage. This number is based on data collected over the long run. So the probability that a randomly selected passenger on a U.S. carrier will temporarily lose luggage is 1/176 or about.006. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 10

11 Proportions and Percentages as Probabilities Ways to express the relative frequency of lost luggage: The proportion of passengers who lose their luggage is 1/176 or about.006. About 0.6% of passengers lose their luggage. The probability that a randomly selected passenger will lose his/her luggage is about.006. The probability that you will lose your luggage is about.006. Last statement is not exactly correct your probability depends on other factors (how late you arrive at the airport, etc.). Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 11

12 Estimating Probabilities from Observed Categorical Data Assuming data are representative, the probability of a particular outcome is estimated to be the relative frequency (proportion) with which that outcome was observed. Approximate margin of error for the estimated probability is 1 n Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 12

13 Example 7.5 Nightlights and Myopia Revisited Assuming these data are representative of a larger population, what is the approximate probability that someone from that population who sleeps with a nightlight in early childhood will develop some degree of myopia? Note: = 79 of the 232 nightlight users developed some degree of myopia. So we estimate the probability to be 79/232 =.34. This estimate is based on a sample of 232 people with a margin of error of about.066 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 13

14 The Personal Probability Interpretation Personal probability of an event = the degree to which a given individual believes the event will happen. Sometimes subjective probability used because the degree of belief may be different for each individual. Restrictions on personal probabilities: Must fall between 0 and 1 (or between 0 and 100%). Must be coherent. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 14

15 7.3 Probability Definitions and Relationships Sample space: the collection of unique, nonoverlapping possible outcomes of a random circumstance. Simple event: one outcome in the sample space; a possible outcome of a random circumstance. Event: a collection of one or more simple events in the sample space; often written as A, B, C, and so on. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 15

16 Example 7.6 Days per Week of Drinking Random sample of college students. Q: How many days do you drink alcohol in a typical week? Simple Events in the Sample Space are: 0 days, 1 day, 2 days,, 7 days Event 4 or more is comprised of the simple events {4 days, 5 days, 6 days, 7 days} Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 16

17 Assigning Probabilities to Simple Events P(A) = probability of the event A Conditions for Valid Probabilities 1. Each probability is between 0 and The sum of the probabilities over all possible simple events is 1. Equally Likely Simple Events If there are k simple events in the sample space and they are all equally likely, then the probability of the occurrence of each one is 1/k. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 17

18 Example 7.2 A Simple Lottery (cont) Random Circumstance: A three-digit winning lottery number is selected. Sample Space: {000,001,002,003,...,997,998,999}. There are 1000 simple events. Probabilities for Simple Event: Probability any specific three-digit number is a winner is 1/1000. Assume all three-digit numbers are equally likely. Event A = last digit is a 9 = {009,019,...,999}. Since one out of ten numbers in set, P(A) = 1/10. Event B = three digits are all the same = {000, 111, 222, 333, 444, 555, 666, 777, 888, 999}. Since event B contains 10 events, P(B) = 10/1000 = 1/100. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 18

19 Complementary Events One event is the complement of another event if the two events do not contain any of the same simple events and together they cover the entire sample space. Notation: A C represents the complement of A. Note: P(A) + P(A C ) = 1 Example 7.2 A Simple Lottery (cont) A = player buying single ticket wins A C = player does not win P(A) = 1/1000 so P(A C ) = 999/1000 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 19

20 Mutually Exclusive Events Two events are mutually exclusive, or equivalently disjoint, if they do not contain any of the same simple events (outcomes). Example 7.2 A Simple Lottery (cont) A = all three digits are the same. B = the first and last digits are different The events A and B are mutually exclusive (disjoint), but they are not complementary. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 20

21 Independent and Dependent Events Two events are independent of each other if knowing that one will occur (or has occurred) does not change the probability that the other occurs. Two events are dependent if knowing that one will occur (or has occurred) changes the probability that the other occurs. The definitions can apply either to events within the same random circumstance or to events from two separate random circumstances. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 21

22 Example 7.7 Winning a Free Lunch Customers put business card in restaurant glass bowl. Drawing held once a week for free lunch. You and Vanessa put a card in two consecutive weeks. Event A = You win in week 1. Event B = Vanessa wins in week 1. Event C = Vanessa wins in week 2. Events A and B refer to the same random circumstance and are not independent. Events A and C refer to to different random circumstances and are independent. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 22

23 Example 7.3 Alicia Answering (cont) Event A = Alicia is selected to answer Question 1. Event B = Alicia is selected to answer Question 2. Events A and B refer to different random circumstances, but are A and B independent events? P(A) = 1/50. If event A occurs, her name is no longer in the bag, so P(B) = 0. If event A does not occur, there are 49 names in the bag (including Alicia s name), so P(B) = 1/49. Knowing whether A occurred changes P(B). Thus, the events A and B are not independent. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 23

24 Conditional Probabilities Conditional probability of the event B, given that the event A occurs, is the long-run relative frequency with which event B occurs when circumstances are such that A also occurs; written as P(B A). P(B) = unconditional probability event B occurs. P(B A) = probability of B given A = conditional probability event B occurs given that we know A has occurred or will occur. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 24

25 Example 7.8 Probability That a Teenager Gambles Depends upon Gender Survey: 78,564 students (9 th and 12 th graders) The proportions of males and females admitting they gambled at least once a week during the previous year were reported. Results for 9 th grade: P(student is weekly gambler teen is boy) =.20 P(student is weekly gambler teen is girl) =.05 Notice dependence between weekly gambling habit and gender. Knowledge of a 9 th grader s gender changes probability that he/she is a weekly gambler. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 25

26 7.4 Basic Rules for Finding Probabilities Probability an Event Does Not Occur Rule 1 (for not the event ): P(A C ) = 1 P(A) Example 7.9 Probability a Stranger Does Not Share Your Birth Date P(next stranger you meet will share your birthday) = 1/365. P(next stranger you meet will not share your birthday) = 1 1/365 = 364/365 = Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 26

27 Probability That Either of Two Events Happen Rule 2 (addition rule for either/or ): Rule 2a (general): P(A or B) = P(A) + P(B) P(A and B) Rule 2b (for mutually exclusive events): If A and B are mutually exclusive events, P(A or B) = P(A) + P(B) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 27

28 Example 7.10 Roommate Compatibility Brett is off to college. There are 1000 male students. Brett hopes his roommate will not like to party and not snore. Snores? Yes No Total Likes to Yes Party? No A = likes to party P(A) = 250/1000 =.25 B = snores P(B) = 350/1000 =.35 Probability Brett will be assigned a roommate who either likes to party or snores, or both is: P(A or B) = P(A) + P(B) P(A and B) = =.45 So the probability his roommate is acceptable is 1.45 =.55 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 28

29 Example 7.11 Probability of Two Boys or Two Girls in Two Births What is the probability that a woman who has two children has either two girls or two boys? Recall that the probability of a boy is.512 and probability of a girl is.488. Then we have (using Rule 3b): Event A = two girls P(A) = (.488)(.488) =.2381 Event B = two boys P(B) = (.512)(.512) =.2621 Note: Events A and B are mutually exclusive (disjoint). Probability woman has either two boys or two girls is: P(A or B) = P(A) + P(B) = =.5002 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 29

30 Probability That Two or More Events Occur Together Rule 3 (multiplication rule for and ): Rule 3a (general): P(A and B) = P(A)P(B A) Rule 3b (for independent events): If A and B are independent events, P(A and B) = P(A)P(B) Extension of Rule 3b (for > 2 indep events): For several independent events, P(A 1 and A 2 and and A n ) = P(A 1 )P(A 2 ) P(A n ) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 30

31 Example 7.8 Probability of Male and Gambler (cont) For 9 th graders, 22.9% of the boys and 4.5% of the girls admitted they gambled at least once a week during the previous year. The population consisted of 50.9% girls and 49.1% boys. Event A = male Event B = weekly gambler P(A) =.491 P(B A) =.229 P(male and gambler) = P(A and B) = P(A)P(B A) = (.491)(.229) =.1124 About 11% of all 9 th graders are males and weekly gamblers. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 31

32 Example 7.12 Probability Two Strangers Both Share Your Birth Month Assume all 12 birth months are equally likely. What is the probability that the next two unrelated strangers you meet both share your birth month? Event A = 1 st stranger shares your birth month P(A) = 1/12 Event B = 2 nd stranger shares your birth month P(B) = 1/12 Note: Events A and B are independent. P(both strangers share your birth month) = P(A and B) = P(A)P(B) = (1/12)(1/12) =.007 Note: The probability that 4 unrelated strangers all share your birth month would be (1/12) 4. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 32

33 Determining a Conditional Probability Rule 4 (conditional probability): P(B A) = P(A and B)/P(A) P(A B) = P(A and B)/P(B) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 33

34 Example 7.13 Alicia Answering If we know Alicia is picked to answer one of the questions, what is the probability it was the first question? A = Alicia selected to answer Question 1, P(A) = 1/50 B = Alicia is selected to answer any one of the questions, P(B) = 3/50 Since A is a subset of B, P(A and B) = 1/50 P(A B) = P(A and B)/P(B) = (1/50)/(3/50) = 1/3 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 34

35 In Summary Students sometimes confuse the definitions of independent and mutually exclusive events. When two events are mutually exclusive and one happens, it turns the probability of the other one to 0. When two events are independent and one happens, it leaves the probability of the other one alone. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 35

36 In Summary When Events Are: P(A or B) is: P(A and B) is: P(A B) is: Mutually P(A)+P(B) 0 0 Exclusive Independent P(A)+P(B)-P(A)P(B) P(A)P(B) P(A) Any P(A)+P(B)-P(A and B) P(A)P(B A) P(A and B)/P(B) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 36

37 Sampling with and without Replacement A sample is drawn with replacement if individuals are returned to the eligible pool for each selection. A sample is drawn without replacement if sampled individuals are not eligible for subsequent selection. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 37

38 7.5 Strategies for Finding Complicated Probabilities Example 7.2 Winning the Lottery Event A = winning number is 956. What is P(A)? Method 1: With physical assumption that all 1000 possibilities are equally likely, P(A) = 1/1000. Method 2: Define three events, B 1 = 1 st digit is 9, B 2 = 2 nd digit is 5, B 3 = 3 rd digit is 6 Event A occurs if and only if all 3 of these events occur. Note: P(B 1 ) = P(B 2 ) = P(B 3 ) = 1/10. Since these events are all independent, we have P(A) = (1/10) 3 = 1/1000. * Can be more than one way to find a probability. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 38

39 Hints and Advice for Finding Probabilities P(A and B): define event in physical terms and see if know probability. Else try multiplication rule (Rule 3). Series of independent events all happen: multiply all individual probabilities (Extension of Rule 3b) One of a collection of mutually exclusive events happens: add all individual probabilities (Rule 2b extended). Check if probability of complement easier, then subtract it from 1 (applying Rule 1). Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 39

40 Hints and Advice for Finding Probabilities None of a collection of mutually exclusive events happens: find probability one happens, then subtract that from 1. Conditional probability: define event in physical terms and see if know probability. Else try Rule 4 or next bullet as well. Know P(B A) but want P(A B): Use Rule 3a to find P(B) = P(A and B) + P(A C and B), then use Rule 4. P( A and B) P( A B) = C C P( B A) P( A) + P( B A ) P( A ) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 40

41 Steps for Finding Probabilities Step 1: List each separate random circumstance involved in the problem. Step 2: List the possible outcomes for each random circumstance. Step 3: Assign whatever probabilities you can with the knowledge you have. Step 4: Specify the event for which you want to determine the probability. Step 5: Determine which of the probabilities from step 3 and which probability rules can be combined to find the probability of interest. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 41

42 Example 7.17 Alicia Is Probably Healthy What is the probability that Alicia has the disease given that the test was positive? Steps 1 to 3: Random circumstances, outcomes, probabilities. Random circumstance 1: Alicia s disease status Possible Outcomes: A = disease; A C = no disease Probabilities: P(A) = 1/1000 =.001; P(A C ) =.999 Random circumstance 2: Alicia s test results Possible Outcomes: B = test is positive, B C = test is negative Probabilities: P(B A) =.95 (positive test given disease) P(B C A) =.05 (negative test given disease) P(B A C ) =.05 (positive test given no disease) P(B C A C ) =.95 (negative test given no disease) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 42

43 Example 7.17 Alicia Healthy? (cont) Step 4: Specify event you want to determine the probability. P(disease positive test) = P(A B). Step 5: Determine which probabilities and probability rules can be combined to find the probability of interest. Note we have P(B A) and we want P(A B). Hints tell us to use P(B) = P(A and B) + P(A C and B). Note P(A and B) = P(B A)P(A), similarly for P(A C and B). So P(A C and B) = P(B A C )P(A C ) = (.05)(.999) = P(A and B) = P(B A)P(A) = (.95)(.001) = P(B) = =.0509 P( A and B) P( A B) = = =.019 P( B).0509 There is less than a 2% chance that Alicia has the disease, even though her test was positive. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 43

44 Two-Way Table: Hypothetical Hundred Thousand Example 7.8 Teens and Gambling (cont) Sample of 9 th grade teens: 49.1% boys, 50.9% girls. Results: 22.9% of boys and 4.5% of girls admitted they gambled at least once a week during previous year. Start with hypothetical 100,000 teens (.491)(100,000) = 49,100 boys and thus 50,900 girls Of the 49,100 boys, (.229)(49,100) = 11,244 would be weekly gamblers. Of the 50,900 girls, (.045)(50,900) = 2,291 would be weekly gamblers. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 44

45 Example 7.8 Teens and Gambling (cont) Weekly Gambler Not Weekly Gambler Total Boy 11,244 37,856 49,100 Girl 2,291 48,609 50,900 Total 13,535 86, ,000 P(boy and gambler) = 11,244/100,000 =.1124 P(boy gambler) = 11,244/13,535 =.8307 P(gambler) = 13,535/100,000 = Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 45

46 Tree Diagrams Step 1: Determine first random circumstance in sequence, and create first set of branches for possible outcomes. Create one branch for each outcome, write probability on branch. Step 2: Determine next random circumstance and append branches for possible outcomes to each branch in step 1. Write associated conditional probabilities on branches. Step 3: Continue this process for as many steps as necessary. Step 4: To determine the probability of following any particular sequence of branches, multiply the probabilities on those branches. This is an application of Rule 3a. Step 5: To determine the probability of any collection of sequences of branches, add the individual probabilities for those sequences, as found in step 4. This is an application of Rule 2b. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 46

47 Example 7.18 Alicia s Possible Fates P(Alicia has D and has a positive test) = P(test is positive) = = P(Alicia has D positive test) =.00095/.0509 =.019 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 47

48 Example 7.8 Teens and Gambling (cont) P(boy and gambler) = (.491)(.229) =.1124 P(girl and not gambler) = (.509)(.955) =.4861 P(gambler) = =.1353 P(boy gambler) =.1124/.1353 =.8307 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 48

49 7.6 Using Simulation to Estimate Probabilities Some probabilities so difficult or timeconsuming to calculate easier to simulate. If you simulate the random circumstance n times and the outcome of interest occurs in x out of those n times, then the estimated probability for the outcome of interest is x/n. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 49

50 Example 7.19 Getting All the Prizes Cereal boxes each contain one of four prizes. Any box is equally likely to contain each of the four prizes. If buy 6 boxes, what is the probability you get all 4 prizes? Shown above are 50 simulations of generating a set of 6 digits, each equally likely to be 1, 2, 3, or 4. There are 19 bold outcomes in which all 4 prizes were collected. The estimated probability is 19/50 =.38. (Actual probability is.3809.) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 50

51 7.7 Coincidences & Intuitive Judgments about Probability Confusion of the Inverse Example: Diagnostic Testing Confuse the conditional probability have the disease given a positive test result -- P(Disease Positive), with the conditional probability of a positive test result given have the disease -- P(Positive Disease), also known as the sensitivity of the test. Often forget to incorporate the base rate for a disease. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 51

52 Specific People versus Random Individuals The chance that your marriage will end in divorce is 50%. Does this statement apply to you personally? If you have had a terrific marriage for 30 years, your probability of ending in divorce is surely less than 50%. Two correct ways to express the aggregate divorce statistics: In long run, about 50% of marriages end in divorce. At the beginning of a randomly selected marriage, the probability it will end in divorce is about.50. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 52

53 Coincidences A coincidence is a surprising concurrence of events, perceived as meaningfully related, with no apparent causal connection. Example 7.23 Winning the Lottery Twice In 1986, Ms. Adams won the NJ lottery twice in a short time period. NYT claimed odds of one person winning the top prize twice were about 1 in 17 trillion. Then in 1988, Mr. Humphries won the PA lottery twice. 1 in 17 trillion = probability that a specific individual who plays the lottery exactly twice will win both times. Millions of people play the lottery. It is not surprising that someone, somewhere, someday would win twice. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 53

54 The Gambler s Fallacy The gambler s fallacy is the misperception of applying a long-run frequency in the short-run. Primarily applies to independent events. Independent chance events have no memory. Example: Making ten bad gambles in a row doesn t change the probability that the next gamble will also be bad. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 54

Chapter Six Probability

Chapter Six Probability Chapter Six Probability Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc. 6.1 Random Experiment a random experiment is an action or process that leads to one of several possible outcomes.

More information

1 / * / * / * / * / * The mean winnings are $1.80

1 / * / * / * / * / * The mean winnings are $1.80 DISCRETE vs. CONTINUOUS BASIC DEFINITION Continuous = things you measure Discrete = things you count OFFICIAL DEFINITION Continuous data can take on any value including fractions and decimals You can zoom

More information

Exam II Math 1342 Capters 3-5 HCCS. Name

Exam II Math 1342 Capters 3-5 HCCS. Name Exam II Math 1342 Capters 3-5 HCCS Name Date Provide an appropriate response. 1) A single six-sided die is rolled. Find the probability of rolling a number less than 3. A) 0.5 B) 0.1 C) 0.25 D 0.333 1)

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

EXERCISES ACTIVITY 6.7

EXERCISES ACTIVITY 6.7 762 CHAPTER 6 PROBABILITY MODELS EXERCISES ACTIVITY 6.7 1. Compute each of the following: 100! a. 5! I). 98! c. 9P 9 ~~ d. np 9 g- 8Q e. 10^4 6^4 " 285^1 f-, 2 c 5 ' sq ' sq 2. How many different ways

More information

Ex 1) Suppose a license plate can have any three letters followed by any four digits.

Ex 1) Suppose a license plate can have any three letters followed by any four digits. AFM Notes, Unit 1 Probability Name 1-1 FPC and Permutations Date Period ------------------------------------------------------------------------------------------------------- The Fundamental Principle

More information

(c) The probability that a randomly selected driver having a California drivers license

(c) The probability that a randomly selected driver having a California drivers license Statistics Test 2 Name: KEY 1 Classify each statement as an example of classical probability, empirical probability, or subjective probability (a An executive for the Krusty-O cereal factory makes an educated

More information

Lecture 6 Probability

Lecture 6 Probability Faculty of Medicine Epidemiology and Biostatistics الوبائيات واإلحصاء الحيوي (31505204) Lecture 6 Probability By Hatim Jaber MD MPH JBCM PhD 3+4-7-2018 1 Presentation outline 3+4-7-2018 Time Introduction-

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1324 Review for Test 4 November 2016 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Prepare a probability distribution for the experiment. Let x

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Shade the Venn diagram to represent the set. 1) B A 1) 2) (A B C')' 2) Determine whether the given events

More information

7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set?

7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? 7.1: Sets What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? Example 1: Write the elements belonging to each set. a. {x x is a natural

More information

PRACTICE PROBLEMS CHAPTERS 14 & 15

PRACTICE PROBLEMS CHAPTERS 14 & 15 PRACTICE PROBLEMS CHAPTERS 14 & 15 Chapter 14 1. Sample spaces. For each of the following, list the sample space and tell whether you think the events are equally likely: a) Toss 2 coins; record the order

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

Part 10: The Binomial Distribution

Part 10: The Binomial Distribution Part 10: The Binomial Distribution The binomial distribution is an important example of a probability distribution for a discrete random variable. It has wide ranging applications. One readily available

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Chapter 15 Trade-offs Involving Time and Risk. Outline. Modeling Time and Risk. The Time Value of Money. Time Preferences. Probability and Risk

Chapter 15 Trade-offs Involving Time and Risk. Outline. Modeling Time and Risk. The Time Value of Money. Time Preferences. Probability and Risk Involving Modeling The Value Part VII: Equilibrium in the Macroeconomy 23. Employment and Unemployment 15. Involving Web 1. Financial Decision Making 24. Credit Markets 25. The Monetary System 1 / 36 Involving

More information

PROBABILITY and BAYES THEOREM

PROBABILITY and BAYES THEOREM PROBABILITY and BAYES THEOREM From: http://ocw.metu.edu.tr/pluginfile.php/2277/mod_resource/content/0/ ocw_iam530/2.conditional%20probability%20and%20bayes%20theorem.pdf CONTINGENCY (CROSS- TABULATION)

More information

Expectation Exercises.

Expectation Exercises. Expectation Exercises. Pages Problems 0 2,4,5,7 (you don t need to use trees, if you don t want to but they might help!), 9,-5 373 5 (you ll need to head to this page: http://phet.colorado.edu/sims/plinkoprobability/plinko-probability_en.html)

More information

2. Modeling Uncertainty

2. Modeling Uncertainty 2. Modeling Uncertainty Models for Uncertainty (Random Variables): Big Picture We now move from viewing the data to thinking about models that describe the data. Since the real world is uncertain, our

More information

Chapter 6: Probability: What are the Chances?

Chapter 6: Probability: What are the Chances? + Chapter 6: Probability: What are the Chances? Section 6.1 Randomness and Probability The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE + Section 6.1 Randomness and Probability Learning

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Descrip(ve Sta(s(cs Chapter 4 1) The collection of all possible events is called A) a sample space. B) a simple probability. C) a joint probability. D) the null set. 1) 2) All the events in the sample

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

Chapter 10 Estimating Proportions with Confidence

Chapter 10 Estimating Proportions with Confidence Chapter 10 Estimating Proportions with Confidence Copyright 2011 Brooks/Cole, Cengage Learning Principle Idea: Confidence interval: an interval of estimates that is likely to capture the population value.

More information

STA Module 3B Discrete Random Variables

STA Module 3B Discrete Random Variables STA 2023 Module 3B Discrete Random Variables Learning Objectives Upon completing this module, you should be able to 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS I. INTRODUCTION TO RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS A. Random Variables 1. A random variable x represents a value

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Mathematical Concepts Joysheet 1 MAT 117, Spring 2011 D. Ivanšić. Name: Show all your work!

Mathematical Concepts Joysheet 1 MAT 117, Spring 2011 D. Ivanšić. Name: Show all your work! Mathematical Concepts Joysheet 1 Use your calculator to compute each expression to 6 significant digits accuracy. Write down thesequence of keys youentered inorder to compute each expression. Donot roundnumbers

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space.

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space. Chapter 12: From randomness to probability 350 Terminology Sample space p351 The sample space of a random phenomenon is the set of all possible outcomes. Example Toss a coin. Sample space: S = {H, T} Example:

More information

Chapter 9: Markov Chain

Chapter 9: Markov Chain Chapter 9: Markov Chain Section 9.1: Transition Matrices In Section 4.4, Bernoulli Trails: The probability of each outcome is independent of the outcome of any previous experiments and the probability

More information

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables STA 2023 Module 5 Discrete Random Variables Learning Objectives Upon completing this module, you should be able to: 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information

Probability and Sampling Distributions Random variables. Section 4.3 (Continued)

Probability and Sampling Distributions Random variables. Section 4.3 (Continued) Probability and Sampling Distributions Random variables Section 4.3 (Continued) The mean of a random variable The mean (or expected value) of a random variable, X, is an idealization of the mean,, of quantitative

More information

Problem Set #4. Econ 103. (b) Let A be the event that you get at least one head. List all the basic outcomes in A.

Problem Set #4. Econ 103. (b) Let A be the event that you get at least one head. List all the basic outcomes in A. Problem Set #4 Econ 103 Part I Problems from the Textbook Chapter 3: 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 Part II Additional Problems 1. Suppose you flip a fair coin twice. (a) List all the

More information

Discrete Random Variables; Expectation Spring 2014

Discrete Random Variables; Expectation Spring 2014 Discrete Random Variables; Expectation 18.05 Spring 2014 https://en.wikipedia.org/wiki/bean_machine#/media/file: Quincunx_(Galton_Box)_-_Galton_1889_diagram.png http://www.youtube.com/watch?v=9xubhhm4vbm

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

AP Stats ~ Lesson 6B: Transforming and Combining Random variables

AP Stats ~ Lesson 6B: Transforming and Combining Random variables AP Stats ~ Lesson 6B: Transforming and Combining Random variables OBJECTIVES: DESCRIBE the effects of transforming a random variable by adding or subtracting a constant and multiplying or dividing by a

More information

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Discrete Probability Distributions McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Overview Introduction 5-1 Probability Distributions 5-2 Mean, Variance, Standard Deviation, and Expectation

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Examples: On a menu, there are 5 appetizers, 10 entrees, 6 desserts, and 4 beverages. How many possible dinners are there?

Examples: On a menu, there are 5 appetizers, 10 entrees, 6 desserts, and 4 beverages. How many possible dinners are there? Notes Probability AP Statistics Probability: A branch of mathematics that describes the pattern of chance outcomes. Probability outcomes are the basis for inference. Randomness: (not haphazardous) A kind

More information

Math 251: Practice Questions Hints and Answers. Review II. Questions from Chapters 4 6

Math 251: Practice Questions Hints and Answers. Review II. Questions from Chapters 4 6 Math 251: Practice Questions Hints and Answers Review II. Questions from Chapters 4 6 II.A Probability II.A.1. The following is from a sample of 500 bikers who attended the annual rally in Sturgis South

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

Let d denote a distorted bit, and g and non-distorted bit.

Let d denote a distorted bit, and g and non-distorted bit. EXERCISES 4.1 1 1. Four bits are transmitted over a digital communication channel. Each bit is either distorted or received without distortion. List the sample space S and the event of interest E so that

More information

Chapter 9. Idea of Probability. Randomness and Probability. Basic Practice of Statistics - 3rd Edition. Chapter 9 1. Introducing Probability

Chapter 9. Idea of Probability. Randomness and Probability. Basic Practice of Statistics - 3rd Edition. Chapter 9 1. Introducing Probability Chapter 9 Introducing Probability BPS - 3rd Ed. Chapter 9 1 Idea of Probability Probability is the science of chance behavior Chance behavior is unpredictable in the short run but has a regular and predictable

More information

Probability. Logic and Decision Making Unit 1

Probability. Logic and Decision Making Unit 1 Probability Logic and Decision Making Unit 1 Questioning the probability concept In risky situations the decision maker is able to assign probabilities to the states But when we talk about a probability

More information

STT 315 Practice Problems Chapter 3.7 and 4

STT 315 Practice Problems Chapter 3.7 and 4 STT 315 Practice Problems Chapter 3.7 and 4 Answer the question True or False. 1) The number of children in a family can be modelled using a continuous random variable. 2) For any continuous probability

More information

NMAI059 Probability and Statistics Exercise assignments and supplementary examples October 21, 2017

NMAI059 Probability and Statistics Exercise assignments and supplementary examples October 21, 2017 NMAI059 Probability and Statistics Exercise assignments and supplementary examples October 21, 2017 How to use this guide. This guide is a gradually produced text that will contain key exercises to practise

More information

The Binomial Distribution

The Binomial Distribution AQR Reading: Binomial Probability Reading #1: The Binomial Distribution A. It would be very tedious if, every time we had a slightly different problem, we had to determine the probability distributions

More information

Determine whether the given events are disjoint. 1) Drawing a face card from a deck of cards and drawing a deuce A) Yes B) No

Determine whether the given events are disjoint. 1) Drawing a face card from a deck of cards and drawing a deuce A) Yes B) No Assignment 8.-8.6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the given events are disjoint. 1) Drawing a face card from

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333 Review In most card games cards are dealt without replacement. What is the probability of being dealt an ace and then a 3? Choose the closest answer. a) 0.0045 b) 0.0059 c) 0.0060 d) 0.1553 Review What

More information

N(A) P (A) = lim. N(A) =N, we have P (A) = 1.

N(A) P (A) = lim. N(A) =N, we have P (A) = 1. Chapter 2 Probability 2.1 Axioms of Probability 2.1.1 Frequency definition A mathematical definition of probability (called the frequency definition) is based upon the concept of data collection from an

More information

Chapter 5: Probability

Chapter 5: Probability Chapter 5: These notes reflect material from our text, Exploring the Practice of Statistics, by Moore, McCabe, and Craig, published by Freeman, 2014. quantifies randomness. It is a formal framework with

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

Probability Review. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE

Probability Review. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Probability Review The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Probability Models In Section 5.1, we used simulation to imitate chance behavior. Fortunately, we don t have to

More information

Chapter 14. From Randomness to Probability. Copyright 2010 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2010 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2010 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen, but we don

More information

Let X be the number that comes up on the next roll of the die.

Let X be the number that comes up on the next roll of the die. Chapter 6 - Discrete Probability Distributions 6.1 Random Variables Introduction If we roll a fair die, the possible outcomes are the numbers 1, 2, 3, 4, 5, and 6, and each of these numbers has probability

More information

Stat 210 Exam Two. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Stat 210 Exam Two. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Stat 210 Exam Two Read these directions carefully. Take your time and check your work. Many students do not take enough time on their tests. Each problem is worth four points. You may choose exactly question

More information

Homework Assignment Section 1

Homework Assignment Section 1 Homework Assignment Section 1 Carlos M. Carvalho Statistics McCombs School of Business Problem 1 X N(5, 10) (Read X distributed Normal with mean 5 and var 10) Compute: (i) Prob(X > 5) ( P rob(x > 5) =

More information

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom Section 5-1 Probability Distributions I. Random Variables A variable x is a if the value that it assumes, corresponding to the of an experiment, is a or event. A random variable is if it potentially can

More information

Probability and Expected Utility

Probability and Expected Utility Probability and Expected Utility Economics 282 - Introduction to Game Theory Shih En Lu Simon Fraser University ECON 282 (SFU) Probability and Expected Utility 1 / 12 Topics 1 Basic Probability 2 Preferences

More information

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow.

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow. General Education Statistics Class Notes Conditional Probability (Section 5.4) What is the probability you get a sum of 5 on two dice? Now assume one die is a 4. Does that affect the probability the sum

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

Math M118 Class Notes For Chapter 9 By: Maan Omran

Math M118 Class Notes For Chapter 9 By: Maan Omran Math M118 Class Notes For Chapter 9 By: Maan Omran Section 9.1: Transition Matrices In Section 4.4, Bernoulli Trails: The probability of each outcome is independent of the outcome of any previous experiments

More information

Price Theory Lecture 9: Choice Under Uncertainty

Price Theory Lecture 9: Choice Under Uncertainty I. Probability and Expected Value Price Theory Lecture 9: Choice Under Uncertainty In all that we have done so far, we've assumed that choices are being made under conditions of certainty -- prices are

More information

6.2.1 Linear Transformations

6.2.1 Linear Transformations 6.2.1 Linear Transformations In Chapter 2, we studied the effects of transformations on the shape, center, and spread of a distribution of data. Recall what we discovered: 1. Adding (or subtracting) a

More information

Life expectancy: A statistical measure of the average length of life from birth to death.

Life expectancy: A statistical measure of the average length of life from birth to death. STUDENT MODULE 6.2 RETIREMENT PLANNING PAGE 1 Standard 6: The student will explain and evaluate the importance of planning for retirement. Longevity and Retirement Keisha, are you ready for the party?

More information

Problem Set 07 Discrete Random Variables

Problem Set 07 Discrete Random Variables Name Problem Set 07 Discrete Random Variables MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean of the random variable. 1) The random

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level STATISTICS 4040/01

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level STATISTICS 4040/01 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level STATISTICS 4040/01 Paper 1 Additional Materials: Answer Booklet/Paper Graph paper (2 sheets) Mathematical

More information

STUDY SET 1. Discrete Probability Distributions. x P(x) and x = 6.

STUDY SET 1. Discrete Probability Distributions. x P(x) and x = 6. STUDY SET 1 Discrete Probability Distributions 1. Consider the following probability distribution function. Compute the mean and standard deviation of. x 0 1 2 3 4 5 6 7 P(x) 0.05 0.16 0.19 0.24 0.18 0.11

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

What is the probability of success? Failure? How could we do this simulation using a random number table?

What is the probability of success? Failure? How could we do this simulation using a random number table? Probability Ch.4, sections 4.2 & 4.3 Binomial and Geometric Distributions Name: Date: Pd: 4.2. What is a binomial distribution? How do we find the probability of success? Suppose you have three daughters.

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

Mathematical Statistics İST2011 PROBABILITY THEORY (3) DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017.

Mathematical Statistics İST2011 PROBABILITY THEORY (3) DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017. Mathematical Statistics İST2011 PROBABILITY THEORY (3) 1 DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017 If the five balls are places in five cell at random, find the probability

More information

Chapter 6: Probability

Chapter 6: Probability Chapter 6: Probability Name 1. A small ferryboat transports vehicles from one island to another. Consider the chance experiment where the type of vehicle -- passenger (P) or recreational (R) vehicle --

More information

Probability Part #3. Expected Value

Probability Part #3. Expected Value Part #3 Expected Value Expected Value expected value involves the likelihood of a gain or loss in a situation that involves chance it is generally used to determine the likelihood of financial gains and

More information

Binomial Distributions

Binomial Distributions Binomial Distributions A binomial experiment is a probability experiment that satisfies these conditions. 1. The experiment has a fixed number of trials, where each trial is independent of the other trials.

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Binomial distribution

Binomial distribution Binomial distribution Jon Michael Gran Department of Biostatistics, UiO MF9130 Introductory course in statistics Tuesday 24.05.2010 1 / 28 Overview Binomial distribution (Aalen chapter 4, Kirkwood and

More information

Homework Problems In each of the following situations, X is a count. Does X have a binomial distribution? Explain. 1. You observe the gender of the next 40 children born in a hospital. X is the number

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Math 227 Practice Test 2 Sec Name

Math 227 Practice Test 2 Sec Name Math 227 Practice Test 2 Sec 4.4-6.2 Name Find the indicated probability. ) A bin contains 64 light bulbs of which 0 are defective. If 5 light bulbs are randomly selected from the bin with replacement,

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

Chapter 6: Probability

Chapter 6: Probability Chapter 6: Probability Name 1. At Beth & Mary's Ice Cream Emporium customers always choose one topping to sprinkle on their ice cream. The toppings are classified as either candy (C) or fruit (F) toppings.

More information

Chapter 1 Discussion Problem Solutions D1. D2. D3. D4. D5.

Chapter 1 Discussion Problem Solutions D1. D2. D3. D4. D5. Chapter 1 Discussion Problem Solutions D1. Reasonable suggestions at this stage include: compare the average age of those laid off with the average age of those retained; compare the proportion of those,

More information

Should Win Limits Become a Part of Responsible Gambling?

Should Win Limits Become a Part of Responsible Gambling? Should Win Limits Become a Part of Responsible Gambling? Presented by Doug Walker College of Charleston Responsible Gambling Council Discovery 2017 20 April Toronto, Canada A typical casino visit Consider

More information

MATH 008 LECTURE NOTES Dr JASON SAMUELS. Ch1 Whole Numbers $55. Solution: =81+495= = 36$

MATH 008 LECTURE NOTES Dr JASON SAMUELS. Ch1 Whole Numbers $55. Solution: =81+495= = 36$ MATH 008 LECTURE NOTES Dr JASON SAMUELS Ch1 Whole Numbers $55 Solution: 81+9 55=81+495=576 576-540 = 36$ This alternate way to multiply is called the lattice method, because the boxes make a lattice. The

More information

Chapter 4 and Chapter 5 Test Review Worksheet

Chapter 4 and Chapter 5 Test Review Worksheet Name: Date: Hour: Chapter 4 and Chapter 5 Test Review Worksheet You must shade all provided graphs, you must round all z-scores to 2 places after the decimal, you must round all probabilities to at least

More information

EDCC charges $50 per credit. Let T = tuition charge for a randomly-selected fulltime student. T = 50X. Tuit. T $600 $650 $700 $750 $800 $850 $900

EDCC charges $50 per credit. Let T = tuition charge for a randomly-selected fulltime student. T = 50X. Tuit. T $600 $650 $700 $750 $800 $850 $900 Chapter 7 Random Variables n 7.1 Discrete and Continuous Random Variables n 6.2 n Example: El Dorado Community College El Dorado Community College considers a student to be full-time if he or she is taking

More information

Final Exam Review Problems Math 13 Statistics Summer 2013

Final Exam Review Problems Math 13 Statistics Summer 2013 Final Exam Review Problems Math 13 Statistics Summer 2013 These problems are due on the day of the final exam. Name: (Please PRINT) Problem 1: (a) Find the following for this data set {9, 1, 5, 3, 6, 8,

More information

the number of correct answers on question i. (Note that the only possible values of X i

the number of correct answers on question i. (Note that the only possible values of X i 6851_ch08_137_153 16/9/02 19:48 Page 137 8 8.1 (a) No: There is no fixed n (i.e., there is no definite upper limit on the number of defects). (b) Yes: It is reasonable to believe that all responses are

More information

Homework Assignment Section 1

Homework Assignment Section 1 Homework Assignment Section 1 Tengyuan Liang Business Statistics Booth School of Business Problem 1 X N(5, 10) (Read X distributed Normal with mean 5 and var 10) Compute: (i) Prob(X > 5) ( P rob(x > 5)

More information

Exercises for Chapter (5)

Exercises for Chapter (5) Exercises for Chapter (5) MULTILE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) 500 families were interviewed and the number of children per family was

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 200 -Lecture 2 Instructor: Aylin ALIN 02/19/2014 Midterm # 1 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

Thank you very much for your participation. This survey will take you about 15 minutes to complete.

Thank you very much for your participation. This survey will take you about 15 minutes to complete. This appendix provides sample surveys used in the experiments. Our study implements the experiment through Qualtrics, and we use the Qualtrics functionality to randomize participants to different treatment

More information