The Binomial Distribution

Size: px
Start display at page:

Download "The Binomial Distribution"

Transcription

1 AQR Reading: Binomial Probability Reading #1: The Binomial Distribution A. It would be very tedious if, every time we had a slightly different problem, we had to determine the probability distributions from scratch. Luckily, there are enough similarities between certain types, or families, of experiments, to make it possible to develop formulas representing their general characteristics. For example, many experiments share the common element that their outcomes can be classified into one of two events, e.g. a coin can come up heads or tails; a child can be male or female; a person can die or not die; a person can be employed or unemployed. These outcomes are often labeled as success or failure. Note that there is no connotation of goodness here - for example, when looking at births, the statistician might label the birth of a boy as a success and the birth of a girl as a failure, but the parents wouldn t necessarily see things that way. The usual notation is p = probability of success, q = probability of failure = 1 - p. Note that p + q = 1. In statistical terms, A Bernoulli trial is each repetition of an experiment involving only 2 outcomes. We are often interested in the result of independent, repeated bernoulli trials, i.e. the number of successes in repeated trials. 1. independent - the result of one trial does not affect the result of another trial. 2. repeated - conditions are the same for each trial, i.e. p and q remain constant across trials. Hayes refers to this as a stationary process. If p and q can change from trial to trial, the process is nonstationary. The term identically distributed is also often used. B. A binomial distribution gives us the probabilities associated with independent, repeated Bernoulli trials. In a binomial distribution the probabilities of interest are those of receiving a certain number of successes, r, in n independent trials each having only two possible outcomes and the same probability, p, of success. So, for example, using a binomial distribution, we can determine the probability of getting 4 heads in 10 coin tosses. How does the binomial distribution do this? Basically, a two part process is involved. First, we have to determine the probability of one possible way the event can occur, and then determine the number of different ways the event can occur. That is, P(Event) = (Number of ways event can occur) * P(One occurrence). Suppose, for example, we want to find the probability of getting 4 heads in 10 tosses. In this case, we ll call getting a heads a success. Also, in this case, n = 10, the number of successes is r = 4, and the number of failures (tails) is n r = 10 4 = 6. One way this can occur is if the first 4 tosses are heads and the last 6 are tails, i.e.

2 S S S S F F F F F F The likelihood of this occurring is P(S) * P(S) * P(S) * P(S) * P(F) * P(F) * P(F) * P(F) * P(F) * P(F) More generally, if p = probability of success and q = 1 p = probability of failure, the probability of a specific sequence of outcomes where there are r successes and n-r failures is n r p r q So, in this particular case, p = q =.5, r = 4, n-r = 6, so the probability of 4 straight heads followed by 6 straight tails is = (or 1 out of 1024). Of course, this is just one of many ways that you can get 4 heads; further, because the repeated trials are all independent and identically distributed, each way of getting 4 heads is equally likely, e.g. the sequence S S S S F F F F F F is just as likely as the sequence S F S F F S F F S F. So, we also need to know how many different combinations produce 4 heads. Well, we could just write them all out but life will be much simpler if we take advantage of two counting rules: 1. The number of different ways that N distinct things may be arranged in order is N! = (1)(2)(3)...(N-1)(N), (where 0! = 1). An arrangement in order is called a permutation, so that the total number of permutations of N objects is N!. The symbol N! is called N factorial. EXAMPLE. Rank candidates A, B, and C in order. The possible permutations are: ABC ACB BAC BCA CBA CAB. Hence, there are 6 possible orderings. Note that 3! = (1)(2)(3) = The total number of ways of selecting r distinct combinations of N objects, irrespective of order, is N! N N = = r!(n - r)! r N r We refer to this as N choose r. Sometimes the number of combinations is known as a binomial coefficient, and sometimes the notation N C r is used. So, in the present example,

3 Reading/Examples #2: The Binomial Distribution Formula: Binomial Distribution Overview The binomial distribution is a type of distribution in statistics that has two possible outcomes (the prefix bi means two, or twice). For example, a coin toss has only two possible outcomes: heads or tails and taking a test could have two possible outcomes: pass or fail (for more information, see What is a Binomial distribution?). A Binomial Distribution shows either (S)uccess or (F)ailure. Binomial distributions must also meet the following three criteria: 1. The number of observations or trials is fixed. In other words, you can only figure out the probability of something happening if you do it a certain number of times. This is common sense if you toss a coin once, your probability of getting a tails is 50%. IF you toss a coin a 20 times, your probability of getting a tails is very, very close to 100%. 2. Each observation or trial is independent. In other words, none of your trials have an effect on the probability of the next trial. 3. The probability of success (tails, heads, fail or pass) is exactly the same from one trial to another. Once you know that your distribution is binomial, you can apply the binomial distribution formula to calculate the probability. The Binomial Distribution Formula The binomial distribution formula is: b(x; n, P) = nc x * P x * (1 P) n x Where: b = binomial probability x = total number of successes (pass or fail, heads or tails etc.) P = probability of a success on an individual trial n = number of trials Note: The binomial distribution formula can also be written in a slightly different way, because nc x = n!/x!(n-x)! (this binomial distribution formula uses factorials. q in this formula is just the probability of failure (subtract your probability of success from 1).

4 Sample Problem Using the First Binomial Distribution Formula Q. A coin is tossed 10 times. What is the probability of getting exactly 6 heads? I m going to use this formula: b(x; n, P) nc x * P x * (1 P) n x The number of trials (n) is 10 The odds of success ( tossing a heads ) is 0.5 (So 1-p = 0.5) x = 6 P(x=6) = 10C 6 * 0.5^6 * 0.5^4 = 210 * * = How to Work a Binomial Distribution Formula: Example #2 The binomial distribution formula can calculate the probability of success for binomial distributions. Often you ll be told to plug in the numbers to the formula and calculate. This is easy to say, but not so easy to do unless you are very careful with order of operations, you won t get the right answer. If you have a Ti-83 or Ti-89, the calculator can do much of the work for you. If not, here s how to break down the problem into simple steps so you get the answer right every time. Step 1:: Read the question carefully. Sample question: 80% of people who purchase pet insurance are women. If 9 pet insurance owners are randomly selected, find the probability that exactly 6 are women. Step 2:: Identify n and X from the problem. Using our sample question, n (the number of randomly selected items) is 9, and X (the number you are asked to find the probability for) is 6. Step 3: Work the first part of the formula. The first part of the formula is n! / (n X)! X! Substitute your variables: 9! / ((9 6)! 6!) Which equals 84. Set this number aside for a moment. Step 4: Find p and q. p is the probability of success and q is the probability of failure. We are given p = 80%, or.8. So the probability of failure is 1.8 =.2 (20%). Step 5: Work the second part of the formula. p X =.8 6 = Set this number aside for a moment. Step 6: Work the third part of the formula. (n X) q =.2 (9-6) =.2 3 =.008 Step 7: Multiply your answer from step 3, 5, and 6 together =

5 Reading #3: If the distribution of a random variable, x, fulfills the following requirements, then it is referred to as a "binomial distribution." We will learn how to compute binomial probabilities and characteristics of the binomial distribution. There are four requirements for a binomial experiment: 1. Each trial must have exactly TWO categories for outcomes (success and failure). 2. Experiment must have a fixed number of trials. (n) 3. Each trial must be independent of the others. 4. The probabilities for each trial must remain constant. p - probability of a success q = probability of a failure Success and failure are complementary events so p * Q = 1. The binomial formula states... P(x) =,C,'p"'qn-*! n is the number of trials (must be fixed). x is the number of successes out of n trials (remember that x may be any whole number between 0 and n, inclusive: x = 0, 1, 2... n). p is the probability of success on any given trial. q is the probability of failure on any given trial (q = I - p). P(x) is the probability of getting exactly x successes out of n trials., C" should be done on your calculator if possible. If not... nc, n! = (n - x)l xl Problems: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following is not a property of a Binomial Experiment? a. All trials are identical. b. Each trial has only two possible outcomes. c. The probability of success may change from trial to trial. d. The purpose of the experiment is to determine the number of successes that occurs during the n trials. 2. In the expression, which value represents the number of trials? a. 2 c. 5 b. 3 d In the expression, which value represents the probability of failure? a. 0.6 c. (0.4) 2 b. 0.4 d. (0.6) 5 4. In the expression, which value represents the number of successes? a. 3 c. 5 b. 10 d Which expression describes the probability of k 3s being rolled on 20 successive rolls of a six-sided die?

6 b. 10 d Which expression describes the probability of k 3s being rolled on 20 successive rolls of a six-sided die? a. c. b. d. 6. The probability of a computer memory chip being defective is Which of the following statements is true? a. In a shipment of 100 chips, two will be defective. b. The expected number of defective chips in a shipment of 500 is ten. c. In a shipment of 1000 chips, it is certain that at least one will be defective. d. All statements above are false. 7. A young couple plans to have a family with four children. Assuming that the behaviour of their first child does not cause them to alter their plans, what is the expected number of girls for their family? a. 2.5 c. 2 b d. 1.5 #8-12: Please show work below or on scratch paper for additional space 8. A hockey goaltender has a save percentage of This means that the probability of any single shot taken on the goaltender being a goal is What would be the expected number of goals scored on this goaltender in a game where she faced 35 shots? 9. A manufacturer of halogen bulbs knows that 3% of the production of their 100 W bulbs will be defective. What is the probability that exactly 5 bulbs in a carton of 144 bulbs will be defective? 10. A fair die has four faces numbered one to four. What is the probability of rolling a two exactly three times in ten rolls of the die? 11. A packet of carrot seeds has a germination rate of 92%. In other words, the probability of any seed sprouting is How many seedlings would you expect in a row of 50 seeds? 12. A packet of vegetable seeds has a germination rate of 96%. What is the probability that exactly 10 of 12 seeds planted will sprout?

guessing Bluman, Chapter 5 2

guessing Bluman, Chapter 5 2 Bluman, Chapter 5 1 guessing Suppose there is multiple choice quiz on a subject you don t know anything about. 15 th Century Russian Literature; Nuclear physics etc. You have to guess on every question.

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Binomial Probability

Binomial Probability Binomial Probability Features of a Binomial Experiment 1. There are a fixed number of trials. We denote this number by the letter n. Features of a Binomial Experiment 2. The n trials are independent and

More information

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Discrete Probability Distributions McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Overview Introduction 5-1 Probability Distributions 5-2 Mean, Variance, Standard Deviation, and Expectation

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

1 / * / * / * / * / * The mean winnings are $1.80

1 / * / * / * / * / * The mean winnings are $1.80 DISCRETE vs. CONTINUOUS BASIC DEFINITION Continuous = things you measure Discrete = things you count OFFICIAL DEFINITION Continuous data can take on any value including fractions and decimals You can zoom

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers 6.3 Reading Quiz (T or F) 1.

More information

Statistics Chapter 8

Statistics Chapter 8 Statistics Chapter 8 Binomial & Geometric Distributions Time: 1.5 + weeks Activity: A Gaggle of Girls The Ferrells have 3 children: Jennifer, Jessica, and Jaclyn. If we assume that a couple is equally

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43 chapter 13: Binomial Distribution ch13-links binom-tossing-4-coins binom-coin-example ch13 image Exercises (binomial)13.6, 13.12, 13.22, 13.43 CHAPTER 13: Binomial Distributions The Basic Practice of Statistics

More information

4.2 Bernoulli Trials and Binomial Distributions

4.2 Bernoulli Trials and Binomial Distributions Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 4.2 Bernoulli Trials and Binomial Distributions A Bernoulli trial 1 is an experiment with exactly two outcomes: Success and

More information

Ex 1) Suppose a license plate can have any three letters followed by any four digits.

Ex 1) Suppose a license plate can have any three letters followed by any four digits. AFM Notes, Unit 1 Probability Name 1-1 FPC and Permutations Date Period ------------------------------------------------------------------------------------------------------- The Fundamental Principle

More information

EXERCISES ACTIVITY 6.7

EXERCISES ACTIVITY 6.7 762 CHAPTER 6 PROBABILITY MODELS EXERCISES ACTIVITY 6.7 1. Compute each of the following: 100! a. 5! I). 98! c. 9P 9 ~~ d. np 9 g- 8Q e. 10^4 6^4 " 285^1 f-, 2 c 5 ' sq ' sq 2. How many different ways

More information

Probability & Statistics Chapter 5: Binomial Distribution

Probability & Statistics Chapter 5: Binomial Distribution Probability & Statistics Chapter 5: Binomial Distribution Notes and Examples Binomial Distribution When a variable can be viewed as having only two outcomes, call them success and failure, it may be considered

More information

2. Modeling Uncertainty

2. Modeling Uncertainty 2. Modeling Uncertainty Models for Uncertainty (Random Variables): Big Picture We now move from viewing the data to thinking about models that describe the data. Since the real world is uncertain, our

More information

BINOMIAL EXPERIMENT SUPPLEMENT

BINOMIAL EXPERIMENT SUPPLEMENT BINOMIAL EXPERIMENT SUPPLEMENT Binomial Experiment - 1 A binomial experiment is any situation that involves n trials with each trial having one of two possible outcomes (Success or Failure) and the probability

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

Binomial Coefficient

Binomial Coefficient Binomial Coefficient This short text is a set of notes about the binomial coefficients, which link together algebra, combinatorics, sets, binary numbers and probability. The Product Rule Suppose you are

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Binomial and Geometric Random

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Part 10: The Binomial Distribution

Part 10: The Binomial Distribution Part 10: The Binomial Distribution The binomial distribution is an important example of a probability distribution for a discrete random variable. It has wide ranging applications. One readily available

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Problem Set 07 Discrete Random Variables

Problem Set 07 Discrete Random Variables Name Problem Set 07 Discrete Random Variables MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean of the random variable. 1) The random

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 Transforming and

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

OCR Statistics 1. Discrete random variables. Section 2: The binomial and geometric distributions. When to use the binomial distribution

OCR Statistics 1. Discrete random variables. Section 2: The binomial and geometric distributions. When to use the binomial distribution Discrete random variables Section 2: The binomial and geometric distributions Notes and Examples These notes contain subsections on: When to use the binomial distribution Binomial coefficients Worked examples

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

Lecture 6 Probability

Lecture 6 Probability Faculty of Medicine Epidemiology and Biostatistics الوبائيات واإلحصاء الحيوي (31505204) Lecture 6 Probability By Hatim Jaber MD MPH JBCM PhD 3+4-7-2018 1 Presentation outline 3+4-7-2018 Time Introduction-

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Binomial distribution

Binomial distribution Binomial distribution Jon Michael Gran Department of Biostatistics, UiO MF9130 Introductory course in statistics Tuesday 24.05.2010 1 / 28 Overview Binomial distribution (Aalen chapter 4, Kirkwood and

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

Probability Distributions: Discrete

Probability Distributions: Discrete Probability Distributions: Discrete INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber FEBRUARY 19, 2017 INFO-2301: Quantitative Reasoning 2 Paul and Boyd-Graber Probability Distributions:

More information

Probability Distributions

Probability Distributions 4.1 Probability Distributions Random Variables A random variable x represents a numerical value associated with each outcome of a probability distribution. A random variable is discrete if it has a finite

More information

Definitions Chapter 4. Section 4-3. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman 1 Monday, March 18, 2013

Definitions Chapter 4. Section 4-3. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman 1 Monday, March 18, 2013 Definitions Chapter 4. Section 4-3. Triola, Elementary Statistics, Eighth Edition. Copyright 2001. Addison Wesley Longman 1 Definitions Binomial Probability Distribution Chapter 4. Section 4-3. Triola,

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Section Random Variables

Section Random Variables Section 6.2 - Random Variables According to the Bureau of the Census, the latest family data pertaining to family size for a small midwestern town, Nomore, is shown in Table 6.. If a family from this town

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Math Tech IIII, Apr 25

Math Tech IIII, Apr 25 Math Tech IIII, Apr 25 The Binomial Distribution I Book Sections: 4.2 Essential Questions: How can I compute the probability of any event? What is the binomial distribution and how can I use it? Standards:

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

The Binomial Theorem 5.4

The Binomial Theorem 5.4 54 The Binomial Theorem Recall that a binomial is a polynomial with just two terms, so it has the form a + b Expanding (a + b) n becomes very laborious as n increases This section introduces a method for

More information

STOR Lecture 7. Random Variables - I

STOR Lecture 7. Random Variables - I STOR 435.001 Lecture 7 Random Variables - I Shankar Bhamidi UNC Chapel Hill 1 / 31 Example 1a: Suppose that our experiment consists of tossing 3 fair coins. Let Y denote the number of heads that appear.

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Name Period AP Statistics Unit 5 Review

Name Period AP Statistics Unit 5 Review Name Period AP Statistics Unit 5 Review Multiple Choice 1. Jay Olshansky from the University of Chicago was quoted in Chance News as arguing that for the average life expectancy to reach 100, 18% of people

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

Unit 4 Bernoulli and Binomial Distributions Week #6 - Practice Problems. SOLUTIONS Revised (enhanced for q4)

Unit 4 Bernoulli and Binomial Distributions Week #6 - Practice Problems. SOLUTIONS Revised (enhanced for q4) PubHlth 540 Introductory Biostatistics Page 1 of 6 Unit 4 Bernoulli and Binomial Distributions Week #6 - Practice Problems SOLUTIONS Revised (enhanced for q4) 10-29-2008 1. This exercise gives you practice

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Chapter Five. The Binomial Distribution and Related Topics

Chapter Five. The Binomial Distribution and Related Topics Chapter Five The Binomial Distribution and Related Topics Section 2 Binomial Probabilities Essential Question What are the three methods for solving binomial probability questions? Explain each of the

More information

Chapter 8: Binomial and Geometric Distributions

Chapter 8: Binomial and Geometric Distributions Chapter 8: Binomial and Geometric Distributions Section 8.1 Binomial Distributions The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Section 8.1 Binomial Distribution Learning Objectives

More information

Binomial Distributions

Binomial Distributions Binomial Distributions (aka Bernouli s Trials) Chapter 8 Binomial Distribution an important class of probability distributions, which occur under the following Binomial Setting (1) There is a number n

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

Sampling Distributions For Counts and Proportions

Sampling Distributions For Counts and Proportions Sampling Distributions For Counts and Proportions IPS Chapter 5.1 2009 W. H. Freeman and Company Objectives (IPS Chapter 5.1) Sampling distributions for counts and proportions Binomial distributions for

More information

Chapter 8 Additional Probability Topics

Chapter 8 Additional Probability Topics Chapter 8 Additional Probability Topics 8.6 The Binomial Probability Model Sometimes experiments are simulated using a random number function instead of actually performing the experiment. In Problems

More information

***SECTION 8.1*** The Binomial Distributions

***SECTION 8.1*** The Binomial Distributions ***SECTION 8.1*** The Binomial Distributions CHAPTER 8 ~ The Binomial and Geometric Distributions In practice, we frequently encounter random phenomenon where there are two outcomes of interest. For example,

More information

Problem A Grade x P(x) To get "C" 1 or 2 must be 1 0.05469 B A 2 0.16410 3 0.27340 4 0.27340 5 0.16410 6 0.05470 7 0.00780 0.2188 0.5468 0.2266 Problem B Grade x P(x) To get "C" 1 or 2 must 1 0.31150 be

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

binomial day 1.notebook December 10, 2013 Probability Quick Review of Probability Distributions!

binomial day 1.notebook December 10, 2013 Probability Quick Review of Probability Distributions! Probability Binomial Distributions Day 1 Quick Review of Probability Distributions! # boys born in 4 births, x 0 1 2 3 4 Probability, P(x) 0.0625 0.25 0.375 0.25 0.0625 TWO REQUIREMENTS FOR A PROBABILITY

More information

Probability Distributions: Discrete

Probability Distributions: Discrete Probability Distributions: Discrete Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SEPTEMBER 27, 2016 Introduction to Data Science Algorithms Boyd-Graber and Paul Probability

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

STT315 Chapter 4 Random Variables & Probability Distributions AM KM

STT315 Chapter 4 Random Variables & Probability Distributions AM KM Before starting new chapter: brief Review from Algebra Combinations In how many ways can we select x objects out of n objects? In how many ways you can select 5 numbers out of 45 numbers ballot to win

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

We use probability distributions to represent the distribution of a discrete random variable.

We use probability distributions to represent the distribution of a discrete random variable. Now we focus on discrete random variables. We will look at these in general, including calculating the mean and standard deviation. Then we will look more in depth at binomial random variables which are

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1324 Review for Test 4 November 2016 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Prepare a probability distribution for the experiment. Let x

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow.

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow. General Education Statistics Class Notes Conditional Probability (Section 5.4) What is the probability you get a sum of 5 on two dice? Now assume one die is a 4. Does that affect the probability the sum

More information

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions 5/31/11 Lecture 14 1 Statistic & Its Sampling Distribution

More information

What do you think "Binomial" involves?

What do you think Binomial involves? Learning Goals: * Define a binomial experiment (Bernoulli Trials). * Applying the binomial formula to solve problems. * Determine the expected value of a Binomial Distribution What do you think "Binomial"

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Binomial and Geometric Random

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Chapter 6 Section 3: Binomial and Geometric Random Variables

Chapter 6 Section 3: Binomial and Geometric Random Variables Name: Date: Period: Chapter 6 Section 3: Binomial and Geometric Random Variables When the same chance process is repeated several times, we are often interested whether a particular outcome does or does

More information

Math 243 Section 4.3 The Binomial Distribution

Math 243 Section 4.3 The Binomial Distribution Math 243 Section 4.3 The Binomial Distribution Overview Notation for the mean, standard deviation and variance The Binomial Model Bernoulli Trials Notation for the mean, standard deviation and variance

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

What is the probability of success? Failure? How could we do this simulation using a random number table?

What is the probability of success? Failure? How could we do this simulation using a random number table? Probability Ch.4, sections 4.2 & 4.3 Binomial and Geometric Distributions Name: Date: Pd: 4.2. What is a binomial distribution? How do we find the probability of success? Suppose you have three daughters.

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

8.1 Binomial Situations

8.1 Binomial Situations 8.1 Binomial Situations "Dumb Dora" didn't study for her final exam. It was a true/false test, so she decided to flip a coin for the answers. The statistics professor watched her the entire two hours as

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

S = 1,2,3, 4,5,6 occurs

S = 1,2,3, 4,5,6 occurs Chapter 5 Discrete Probability Distributions The observations generated by different statistical experiments have the same general type of behavior. Discrete random variables associated with these experiments

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information