Chapter 5: Probability

Size: px
Start display at page:

Download "Chapter 5: Probability"

Transcription

1 Chapter 5: These notes reflect material from our text, Exploring the Practice of Statistics, by Moore, McCabe, and Craig, published by Freeman, quantifies randomness. It is a formal framework with a very specific vocabulary and notation. Imagine an experiment with a specific set of outcomes (say, flipping a fair coin twice). S is the sample space of all possible outcomes. Subsets of S are called events and are denoted with letters like A and B. The empty set, φ, is the event that contains no outcomes. Two events are disjoint if their intersection is empty. The Russian mathematician Kolmogorov helped to clarify the essential properties of a probability function, P. P(S) = 1 for the entire sample space S 0 P(A) 1 for any event A S P( n i=1 A i) = n i=1 P(A i) for disjoint events A i First examples : flip a coin, flip three coins, roll a die, roll two dice If you roll a die once the result is completely uncertain, because the individual outcomes are equally likely. But now begin to methodically roll the die and after each toss calculate the total number of 6 s observed so far divided by the total number of rolls at this point. Call this a cumulative proportion and graph these cumulative proportions for a large number of rolls of the die, say 100,000 rolls. A computer did this and displayed the following graph. In this particular simulation, the first ten rolls of the die produced the sequence , where 1 means a 6 was rolled and 0 means something else appeared. Calculate the first ten cumulative sums for this short sequence and compare your results to the following chart. What is the height of the dotted red line? p^n ,000 10, ,000 n (number of rolls) Fig. Cumulative proportions of a 6 in 100,000 rolls of a fair die, from OpenIntro Statistics, chapter 2 Display discrete probabilities in a table Flip a fair coin outcome h t probability Spring 2017 Page 1 of 12

2 Venn diagram A B Rules of Mutually exclusive events. A B = φ Unions. P(A B) = P(A) + P(B) P(A B). Complements. P(A c ) = 1 P(A). Independent events. P(A B) = P(A)P(B) when A and B are independent. Conditional probability. P(A B) = P(A B)/P(B) when P(B) 0 Intersections. P(A B) = P(A B)P(B) Spring 2017 Page 2 of 12

3 Contingency tables and conditional probabilities Vocabulary for diagnostic testing, S medical state present, P OS test positive : sensitivity P(P OS S), specificity P(NEG S c ), incidence P(S) Consider the Triple Blood Test for Down Syndrome (Agresti and Franklin, chapter 5, pp ) Blood Test Status P OS NEG T otal D (Down) D c (unaffected) T otal Calculate the following probabilities based on the figures in this study: sensitivity P(P OS D), specificity P(NEG D c ), incidence P(D) false positives P(P OS D c ), false negatives P(NEG D) An individual being tested would be most concerned about P(D P OS). What is this probability? Why is it so small? Hint: Calculate P(D c P OS). Again, an individual being tested would want to know P(D N EG). How would that probability compare to the a priori P(D)? Triple Blood Test POS NEG status unaffected Down blood test Spring 2017 Page 3 of 12

4 Using R to Compute Conditional Probabilities Construct a data frame named down to represent the Down Syndrome contingency table, and then use addmargins(down) to compute its row and column totals. down <- c(48, 1307, 6, 3921) dim(down) <- c(2, 2) dimnames(down) <- list(status=c("down", "unaffected"), "blood test"=c("pos", "neg")) down # blood test # status pos neg # down 48 6 # unaffected addmargins(down) # blood test # status pos neg Sum # down # unaffected # Sum Then prop.table(down, 1) will divide each row by its row sum. The numbers in each row are conditional probabilities. And prop.table(down, 2) will divide each column by its column sum. The numbers in each column are conditional probabilities. Therefore, each of the eight numbers shown below is a conditional probability of the form P(A B) for some A and B. Identify the correct A and B for each number. prop.table(down, 1) # blood test # status pos neg # down # unaffected prop.table(down, 2) # blood test # status pos neg # down # unaffected What values do these tables indicate for P(pos down) and P(down pos)? Spring 2017 Page 4 of 12

5 Boston Smallpox Epidemic of 1721 The following contingency table (OpenIntro Statistics, pp.83 87) refers to the Boston smallpox epidemic of A total of 6224 residents of Boston contracted smallpox in this epidemic and 850 of them died. The epidemic was marked by vigorous public debate of the value (or lack thereof) of a type of inoculation known as variolation (which was dangerous). The Reverend Cotton Mather advocated inoculation but the physician William Douglass was firmly against it. See the article in Harvard s Contagion for more details. An effective smallpox vaccination procedure was eventually demonstrated by Edward Jenner in England in 1796, and succeeding efforts to eradicate smallpox from the world were finally declared to be successful in 1980 by the World Health Organization. Cotton Mather, on the other hand, lives on in infamy for his role in the Salem witch trials. Inoculated Result yes no T otal lived died T otal Smallpox Epidemic, Boston, 1721 yes no died result lived innoculated Spring 2017 Page 5 of 12

6 Tree Diagrams The following tree diagram, generated by OpenIntro software, summarizes the relevant statistics for the Boston smallpox epidemic of Here Inoculated is a categorical explanatory variable with levels yes and no. In the Inoculated column of the tree diagram are the probabilities P(yes) and P(no). The categorical response variable Result has levels lived and died. The conditional probabilities in the Result column are P(lived yes), P(died yes), P(lived no), P(died no). The probabilities calculated by the software in the third column are P(lived and yes), P(died and yes), P(lived and no), P(died and no), because P(A) P(B A) = P(A B). Innoculated yes, Result lived, died, * = * = no, lived, died, * = * = Fig. Smallpox in Boston, 1721, from OpenIntro Statistics, chapter 2, pp Spring 2017 Page 6 of 12

7 Random variables A random variable is a function from the sample space, S, of an experiment to the real numbers, X : S R, so we might characterize a random variable as a function which assigns a numerical value to an outcome of an experiment. Random variables can be defined on discrete and on continuous sample spaces. discrete: flip a coin, flip three coins, roll a die, roll two dice, roulette wheel, spinner continuous: random number generators: U[0, 1], N(0, 1), N(µ, σ) Expected value of a random variable, E(X) = µ X Variance of a random variable, Var(X) = σ 2 X Linear combinations of random variables, Y = ax 1 + bx 2 Expected value and variance of a linear combination of random variables. If Y = ax 1 + bx 2, then E(Y ) = ae(x 1 ) + be(x 2 ), and Var(Y ) = a 2 Var(X 1 ) + b 2 V(X 2 ). Distributions of random variables Calculation of probability using a continuous distribution, P(X x). The area of the blue region in the following figure is the probability that the random variable X N(µ, σ) takes on a value less than or equal to 5. That probability is denoted P(X 5). X ~ N(µ, σ) y x Normal distributions Normal random variable, X N(µ, σ). z-score, z = (x µ)/σ. If z = (x µ)/σ, then x = µ + z σ. Spring 2017 Page 7 of 12

8 Standardized normal random variable, Z N(0, 1). If X N(µ, σ) and Z = (X µ)/σ, then Z N(0, 1). This is why our textbook need only contain a table of values for the standard normal distribution. Areas of regions under a normal distribution curve. Percentiles. The % rule. Q-Q plots. Calculations with X N(0, 1) Suppose that the random variable X has a standard normal distribution, X N(0, 1). X ~ N(0, 1) There are four useful procedures in R for working with normal distributions: dnorm, pnorm, qnorm, rnorm. a. pnorm(2) P(X 2) b. pnorm(2) - pnorm(-2) P( 2 X 2) c. 1 - pnorm(2) P(X 2) d. qnorm(0.60) q 60 such that P(X q 60 ) = 0.60, the 60th percentile e. rnorm(3) three random numbers from the standard normal distribution, for instance f. dnorm() used for drawing the graph of the bell curve Spring 2017 Page 8 of 12

9 Calculations with X N(µ, σ) Agresti and Franklin report that female students at the University of Georgia have an approximately normal height distribution, with mean µ W = 65 inches and standard deviation σ W =3.5 inches. Male students have an approximately normal height distribution, with mean µ M = 70 inches and standard deviation σ M =4.0 inches. Let W N(µ W, σ W ), and M N(µ M, σ M ), and calculate the following (using R and using Agresti and Franklin, Appendix A, pp.a-1 and A-2): P(W 66), P(M 72), q such that P(W q) = 0.30, q such that P(M q) = 0.25 Calculate the z-score of a person with W = 63, of a person with M = 67. How tall is a woman with z-score 0.6? How tall is a man with z-score -0.7? See page 11 of these notes for R expressions which will calculate the answers to these questions. Men's and Women's Heights men women Student s t, Chi-Square, F height (in) Student s t, Chi-Square, and F distributions play key roles in the sequel. All of them are families of continuous distributions. Student s t distributions resemble Normal distributions but they have fatter tails. Chi-Square and F distributions have domains the half line [0, ), so neither one is symmetric. Discrete distributions For X to be a Bernoulli random variable, and hence have a Bernoulli distribution, X Bernoulli(p), we require i. a binary outcome for a single event (generally coded as success, 1, or failure, 0) ii. a fixed probability of success, P(X = 1) = p, and failure, P(X = 0) = 1 p, for that event iii. exactly one event Examples of Bernoulli random variables include the outcome of a coin flip (h or t), or driver was wearing a seat belt (yes or no), or basketball player made a basket (1 or 0). Spring 2017 Page 9 of 12

10 Expected value and variance of a Bernoulli random variable, X Bernoulli(p): Expected value, µ X = p. Variance, σx 2 = p(1 p). Bernoulli distribution, p=1/6 probability density k Binomial random variable, X Binomial(n, p). The probability of k successes in n trials. Expected value, µ X = np. Variance, σx 2 = np(1 p). Normal approximation to a binomial distribution. binomial distribution, p=1/6, n=10 probability density k Spring 2017 Page 10 of 12

11 Conditions for a binomial distribution For X to be a binomial random variable, and hence have a binomial distribution, X Binomial(n, p), we require i. a binary outcome for each event (coin flip produces h or t) ii. a single fixed probability of success for each event (p = 0.5) iii. a fixed number of events (n = 10 coin flips) Normal approximations to binomial distributions The distribution of a binomial random variable, X Binomial(n, p), has mean np and standard deviation np(1 p). It can be approximated by a normal probability distribution with the same mean and standard deviation, Y N(µ = np, σ = np(1 p)). The fit improves as n gets larger. binomial distribution, p=1/6, n=10 binomial distribution, p=1/6, n=30 probability density probability density k k binomial distribution, p=1/6, n=50 binomial distribution, p=1/6, n=100 probability density probability density k k Answers The following R expressions calculate the answers to the questions about heights of men and women at the University of Georgia posed above. For each calculation, draw a corresponding normal curve and shade the area or mark the measurement in question. pnorm(66, mean = 65, sd = 3.5), 1 pnorm(72, mean = 70, sd = 4.0), qnorm(0.30, mean = 65, sd = 3.5), qnorm(1 0.25, mean = 70, sd = 4.0), z, z, x , x Spring 2017 Page 11 of 12

12 Exercises We will attempt to solve some of the following exercises as a community project in class today. Finish these solutions as homework exercises, write them up carefully and clearly, and hand them in at the beginning of class next Friday. Homework 5a probability models Exercises from Sections 5.1, 5.2: 5.2 (graduation rates), 5.3 (free throws), 5.24 (blood types), 5.26 (Canada) Homework 5b random variables Exercises from Sections 5.3, 5.4: 5.46 (households), 5.54 (foreign-born), 5.65 (fruits and veggies), 5.75 (sums) Homework 5c binomial distributions and probability rules Exercises from Sections 5.5, 5.6 and Chapter 5 exercises: 5.94 (music), (die), (tree diagram), (SAT scores) Spring 2017 Page 12 of 12

Chapter 6: Random Variables and Probability Distributions

Chapter 6: Random Variables and Probability Distributions Chapter 6: Random Variables and Distributions These notes reflect material from our text, Statistics, Learning from Data, First Edition, by Roxy Pec, published by CENGAGE Learning, 2015. Random variables

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Continuous RVs (Normal); Confidence Intervals Outline Continuous random variables Normal distribution CLT Point estimation Confidence intervals http://www.isrec.isb-sib.ch/~darlene/geneve/

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

(c) The probability that a randomly selected driver having a California drivers license

(c) The probability that a randomly selected driver having a California drivers license Statistics Test 2 Name: KEY 1 Classify each statement as an example of classical probability, empirical probability, or subjective probability (a An executive for the Krusty-O cereal factory makes an educated

More information

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) Normal and Binomial Distribution Applied to Construction Management Sampling and Confidence Intervals Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile:

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution Chapter 11 Data Descriptions and Probability Distributions Section 4 Bernoulli Trials and Binomial Distribution 1 Learning Objectives for Section 11.4 Bernoulli Trials and Binomial Distributions The student

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions Bernoulli and Binomial Distributions Bernoulli Distribution a flipped coin turns up either heads or tails an item on an assembly line is either defective or not defective a piece of fruit is either damaged

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

MATH 446/546 Homework 1:

MATH 446/546 Homework 1: MATH 446/546 Homework 1: Due September 28th, 216 Please answer the following questions. Students should type there work. 1. At time t, a company has I units of inventory in stock. Customers demand the

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

Lecture 6 Probability

Lecture 6 Probability Faculty of Medicine Epidemiology and Biostatistics الوبائيات واإلحصاء الحيوي (31505204) Lecture 6 Probability By Hatim Jaber MD MPH JBCM PhD 3+4-7-2018 1 Presentation outline 3+4-7-2018 Time Introduction-

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

Probability Review. Pages Lecture 1: Probability Theory 1 Main Ideas 2 Trees 4 Additional Examples 5

Probability Review. Pages Lecture 1: Probability Theory 1 Main Ideas 2 Trees 4 Additional Examples 5 Probability Review Pages Lecture 1: Probability Theory 1 Main Ideas 2 Trees 4 Additional Examples 5 Lecture 2: Random Variables (RVs) & Distributions 8 Definitions, Notation, & Ideas 8 Additional Examples

More information

Probability: Week 4. Kwonsang Lee. University of Pennsylvania February 13, 2015

Probability: Week 4. Kwonsang Lee. University of Pennsylvania February 13, 2015 Probability: Week 4 Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu February 13, 2015 Kwonsang Lee STAT111 February 13, 2015 1 / 21 Probability Sample space S: the set of all possible

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

Inverse Normal Distribution and Approximation to Binomial

Inverse Normal Distribution and Approximation to Binomial Inverse Normal Distribution and Approximation to Binomial Section 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 16-3339 Cathy Poliak,

More information

= 0.35 (or ˆp = We have 20 independent trials, each with probability of success (heads) equal to 0.5, so X has a B(20, 0.5) distribution.

= 0.35 (or ˆp = We have 20 independent trials, each with probability of success (heads) equal to 0.5, so X has a B(20, 0.5) distribution. Chapter 5 Solutions 51 (a) n = 1500 (the sample size) (b) The Yes count seems like the most reasonable choice, but either count is defensible (c) X = 525 (or X = 975) (d) ˆp = 525 1500 = 035 (or ˆp = 975

More information

Probability Distributions II

Probability Distributions II Probability Distributions II Summer 2017 Summer Institutes 63 Multinomial Distribution - Motivation Suppose we modified assumption (1) of the binomial distribution to allow for more than two outcomes.

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 2: Probability and Distributions) GY Zou gzou@robarts.ca Reporting of continuous data If approximately symmetric, use mean (SD), e.g., Antibody titers ranged from

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

Unit2: Probabilityanddistributions. 3. Normal distribution

Unit2: Probabilityanddistributions. 3. Normal distribution Announcements Unit: Probabilityanddistributions 3 Normal distribution Sta 101 - Spring 015 Duke University, Department of Statistical Science February, 015 Peer evaluation 1 by Friday 11:59pm Office hours:

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 4: May 2, Abstract

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 4: May 2, Abstract Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 4: May 2, 2013 Abstract Introduct the normal distribution. Introduce basic notions of uncertainty, probability, events,

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

x is a random variable which is a numerical description of the outcome of an experiment.

x is a random variable which is a numerical description of the outcome of an experiment. Chapter 5 Discrete Probability Distributions Random Variables is a random variable which is a numerical description of the outcome of an eperiment. Discrete: If the possible values change by steps or jumps.

More information

PROBABILITY DISTRIBUTIONS. Chapter 6

PROBABILITY DISTRIBUTIONS. Chapter 6 PROBABILITY DISTRIBUTIONS Chapter 6 6.1 Summarize Possible Outcomes and their Probabilities Random Variable Random variable is numerical outcome of random phenomenon www.physics.umd.edu 3 Random Variable

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Density curves. (James Madison University) February 4, / 20

Density curves. (James Madison University) February 4, / 20 Density curves Figure 6.2 p 230. A density curve is always on or above the horizontal axis, and has area exactly 1 underneath it. A density curve describes the overall pattern of a distribution. Example

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space.

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space. Chapter 12: From randomness to probability 350 Terminology Sample space p351 The sample space of a random phenomenon is the set of all possible outcomes. Example Toss a coin. Sample space: S = {H, T} Example:

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted Figure 1: Math 223 Lecture Notes 4/1/04 Section 4.10 The normal distribution Recall that a continuous random variable X with probability distribution function f(x) = 1 µ)2 (x e 2σ 2πσ is said to have a

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Review. Binomial random variable

Review. Binomial random variable Review Discrete RV s: prob y fctn: p(x) = Pr(X = x) cdf: F(x) = Pr(X x) E(X) = x x p(x) SD(X) = E { (X - E X) 2 } Binomial(n,p): no. successes in n indep. trials where Pr(success) = p in each trial If

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

Discrete Random Variables; Expectation Spring 2014

Discrete Random Variables; Expectation Spring 2014 Discrete Random Variables; Expectation 18.05 Spring 2014 https://en.wikipedia.org/wiki/bean_machine#/media/file: Quincunx_(Galton_Box)_-_Galton_1889_diagram.png http://www.youtube.com/watch?v=9xubhhm4vbm

More information

7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set?

7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? 7.1: Sets What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? Example 1: Write the elements belonging to each set. a. {x x is a natural

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016 Probability Theory Probability and Statistics for Data Science CSE594 - Spring 2016 What is Probability? 2 What is Probability? Examples outcome of flipping a coin (seminal example) amount of snowfall

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 6 Exam A Name The given values are discrete. Use the continuity correction and describe the region of the normal distribution that corresponds to the indicated probability. 1) The probability of

More information

Binomial Distribution. Normal Approximation to the Binomial

Binomial Distribution. Normal Approximation to the Binomial Binomial Distribution Normal Approximation to the Binomial /29 Homework Read Sec 6-6. Discussion Question pg 337 Do Ex 6-6 -4 2 /29 Objectives Objective: Use the normal approximation to calculate 3 /29

More information

Consumer Guide Dealership Word of Mouth Internet

Consumer Guide Dealership Word of Mouth Internet 8.1 Graphing Data In this chapter, we will study techniques for graphing data. We will see the importance of visually displaying large sets of data so that meaningful interpretations of the data can be

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Binomial and normal distributions

Binomial and normal distributions Binomial and normal distributions Business Statistics 41000 Fall 2015 1 Topics 1. Sums of random variables 2. Binomial distribution 3. Normal distribution 4. Vignettes 2 Topic: sums of random variables

More information

Distributions and Intro to Likelihood

Distributions and Intro to Likelihood Distributions and Intro to Likelihood Gov 2001 Section February 4, 2010 Outline Meet the Distributions! Discrete Distributions Continuous Distributions Basic Likelihood Why should we become familiar with

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333 Review In most card games cards are dealt without replacement. What is the probability of being dealt an ace and then a 3? Choose the closest answer. a) 0.0045 b) 0.0059 c) 0.0060 d) 0.1553 Review What

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics.

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics. ENM 207 Lecture 12 Some Useful Continuous Distributions Normal Distribution The most important continuous probability distribution in entire field of statistics. Its graph, called the normal curve, is

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Name Period AP Statistics Unit 5 Review

Name Period AP Statistics Unit 5 Review Name Period AP Statistics Unit 5 Review Multiple Choice 1. Jay Olshansky from the University of Chicago was quoted in Chance News as arguing that for the average life expectancy to reach 100, 18% of people

More information

Probability Review. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE

Probability Review. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Probability Review The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Probability Models In Section 5.1, we used simulation to imitate chance behavior. Fortunately, we don t have to

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information