Bradley-Terry Models. Stat 557 Heike Hofmann

Size: px
Start display at page:

Download "Bradley-Terry Models. Stat 557 Heike Hofmann"

Transcription

1 Bradley-Terry Models Stat 557 Heike Hofmann

2 Outline Definition: Bradley-Terry Fitting the model Extension: Order Effects Extension: Ordinal & Nominal Response Repeated Measures

3 Bradley-Terry Model (1952) Idea: based on pairwise comparisons, find overall ranking e.g. sports teams, wine tasting,,...

4 Example: American League Baseball 1987 Season each team played every other 13 times losing team winning Baltimore Cleveland Boston NY Toronto Detroit Milwaukee Baltimore Cleveland Boston NY Toronto Detroit Milwaukee This table translates into a matrix of = 21 columns: standings.shtml

5 Bradley-Terry Model Let πab = probability that a beats b assume πab+πba = 1 i.e. no ties are allowed (for now) logit model log πab/πba = µa - µb with µ1 = 0 (estimability)

6 Bradley-Terry Model πab = exp(µa)/(exp(µb)+exp(µa)) πab > 0.5, if µa > µb Bradley-Terry Model is quasi-symmetric model

7 ABL - logit model data abl$pair <- fsym(abl$winner, abl$loser) require(plyr) abl.new <- ddply(abl,.(pair), function(x) { dummy <- as.numeric(teams==x$winner[1]) - as.numeric(teams==x$loser[1]) return(c(dummy, x$times)) }) names(abl.new) <- c("pair", as.character(teams), "scorea", "scoreb") abl.tb <- glm(cbind(scorea, scoreb)~milwaukee + Detroit + Toronto + + NY + Boston + Cleveland-1, data=abl.new, family=binomial(link=logit)) summary(abl.tb)

8 ABL - logit model data > head(abl.new) pair Milwaukee Detroit Toronto NY Boston Cleveland Baltimore scorea scoreb 1 Baltimore,Boston Baltimore,Cleveland Baltimore,Detroit Baltimore,Milwaukee Baltimore,NY Baltimore,Toronto

9 glm(formula = cbind(scorea, scoreb) ~ Milwaukee + Detroit + Toronto + NY + Boston + Cleveland - 1, family = binomial(link = logit), data = abl.new) ALB - logit model Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) Milwaukee e-06 *** Detroit e-05 *** Toronto *** NY *** Boston *** Cleveland * --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 21 degrees of freedom Residual deviance: on 15 degrees of freedom AIC: Number of Fisher Scoring iterations: 4

10 ABL - QS model data > head(abl) loser winner times pair 2 Detroit Milwaukee 7 Detroit,Milwaukee 3 Toronto Milwaukee 9 Milwaukee,Toronto 4 NY Milwaukee 7 Milwaukee,NY 5 Boston Milwaukee 7 Boston,Milwaukee 6 Cleveland Milwaukee 9 Cleveland,Milwaukee 7 Baltimore Milwaukee 11 Baltimore,Milwaukee

11 glm(formula = times ~ pair winner, family = poisson(link = log), data = abl) ABL - QS model Coefficients: Estimate Std. Error z value Pr(> z ) pairbaltimore,boston e-12 *** pairbaltimore,cleveland e-14 ***... pairmilwaukee,ny e-11 *** pairmilwaukee,toronto e-11 *** pairny,toronto e-08 *** winnerdetroit winnertoronto winnerny winnerboston winnercleveland ** winnerbaltimore e-06 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for poisson family taken to be 1) Null deviance: on 42 degrees of freedom Residual deviance: on 15 degrees of freedom AIC: Number of Fisher Scoring iterations: 5

12 ABL - TB model data > library(bradleyterry2) > > data(baseball, package = "BradleyTerry2") > head(baseball) home.team away.team home.wins away.wins 1 Milwaukee Detroit Milwaukee Toronto Milwaukee New York Milwaukee Boston Milwaukee Cleveland Milwaukee Baltimore 6 0

13 BTm(outcome = cbind(home.wins, away.wins), player1 = home.team, player2 = away.team, id = "team", data = baseball) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) teamboston *** teamcleveland * teamdetroit e-05 *** teammilwaukee e-06 *** teamnew York *** teamtoronto *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 42 degrees of freedom Residual deviance: on 36 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 ABL - TB model

14 ABL Three different solutions: same fits different residual/null deviances different degrees of freedom???

15 Terry Bradley Model Assume, X has J categories (number of teams) There are a total of J(J-1)/2 pairs of categories (J-1) parameters are fit degrees of freedom: (J-1)(J-2)/2

16 ABL For 7 teams we have 21 pairs of teams we fit 6 parameters resulting in 15 degrees of freedom

17 ABL logit has correct deviance and degrees of freedom BTm uses extended data set (comes with package, regards home/away teams) loglinear model computes deviances and degrees of freedom differently, residual deviance and degrees of freedom as with logit model (i.e. correct)

18 Home Advantage most sports show a home advantage 1987 season Away Team Home Team Milwaukee Detroit Toronto New York Boston Cleveland Baltimore Milwaukee Detroit Toronto New York Boston Cleveland Baltimore NY vs Boston lost 4 2 at Boston, and won 4 3 at New York

19 Bradley Terry with Order Effects assume that first team plays at home let πab be the probability that team a beats team b when team a goes first logit model log πab/πba = µ + µa - µb if µ significantly > 0 there is a home advantage

20 ABL TerryBradley2 package baseball$home.team <- data.frame(team = baseball$home.team, at.home = 1) baseball$away.team <- data.frame(team = baseball$away.team, at.home = 0) baseballmodel2 <- update(baseballmodel1, formula = ~ team + at.home) summary(baseballmodel2) > anova(baseballmodel1, baseballmodel2) Analysis of Deviance Table Response: cbind(home.wins, away.wins) Model 1: ~team Model 2: ~team + at.home Resid. Df Resid. Dev Df Deviance

21 BTm(outcome = cbind(home.wins, away.wins), player1 = home.team, player2 = away.team, formula = ~team + at.home, id = "team", data = baseball) Coefficients: Estimate Std. Error z value Pr(> z ) teamboston *** teamcleveland * teamdetroit e-05 *** teammilwaukee e-06 *** teamnew York *** teamtoronto e-05 *** at.home * --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 42 degrees of freedom Residual deviance: on 35 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 ABL

22 ABL - logit with order response<-cbind( c(4,4,4,6,4,6, 3,4,4,6,6,4, 2,4,2,4,4,6, 3,5,2,4,4,6, 5,2,3,4,5,6, 2,3,3,4,4,2, 2,1,1,2,1,3), c(3,2,3,1,2,0, 3,2,3,0,1,3, 5,3,4,3,2,0, 3,1,5,3,2,1, 1,5,3,2,2,0, 5,3,4,3,2,4, 5,5,6,4,6,4)) # 42 pair sets xabl <- expand.grid(teamb=teams, teama=teams) idx <- with(xabl, which(teama==teamb)) xabl <- xabl[-idx,] X <- matrix(0, nrow=nrow(xabl), ncol=length(teams)) for (i in 1:nrow(X)) { X[i,as.numeric(xabl$teamA)[i]] <- 1 X[i,as.numeric(xabl$teamB)[i]] <- -1 } X <- data.frame(x) names(x) <- as.character(teams)

23 ABL - home advantage teamb teama scorea scoreb Milwaukee Detroit Toronto NY Boston Cleveland Baltimore 2 Detroit Milwaukee Toronto Milwaukee NY Milwaukee Boston Milwaukee Cleveland Milwaukee Baltimore Milwaukee fit.bto<-glm(cbind(scorea, scoreb)~1+milwaukee + Detroit + Toronto + NY + Boston + Cleveland, family=binomial(link=logit), data=xabl)

24 glm(formula = cbind(scorea, scoreb) ~ 1 + Milwaukee + Detroit + Toronto + NY + Boston + Cleveland, family = binomial(link = logit), data = xabl) ABL - home advantage Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) * Milwaukee e-06 *** Detroit e-05 *** Toronto e-05 *** NY *** Boston *** Cleveland * --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 41 degrees of freedom Residual deviance: on 35 degrees of freedom AIC: Number of Fisher Scoring iterations: 4

25 Bradley Terry - Extensions Ordinal Response: cumulative logit model logit P(Y j) = µj + µa - µb e.g. loss, tie, win Nominal Response: baseline categorical model log P(Y = j)/p(y = J) = µj + µaj - µbj

26 Repeated Measures Models Extension of matched pairs data Multiple (T 3) measurements observed for same individual, e.g. individuals weekly progress Measurements for cluster of individuals (T 3), e.g. one litter, teeth at dentist s visit,...

27 Example: Drug Comparisons Cross-over effect of drugs A, B, C Interested in marginal distributions P(A=S), P(B=S), P(C=S) A B C count S S S 6 S S F 16 S F S 2 S F F 4 F S S 2 F S F 4 F F S 6 F F F 6 Total 46

28 Multiple Binary Response Yt binary response for time points t=1,..., T logit model logit P (Y t = 1) = α + β t estimability: β T = 0 (or α = 0) = = 0 we ob Marginal ithhomogeneity constraint T = 0 (or β 1 = β 2 =... = β T = 0 ( = 1).

29 Drugs Crossover > head(drugs.m) count id variable value A Y A Y A Y A Y A N A N

30 glm(formula = value ~ variable - 1, family = binomial(link = logit), data = drugsm, weights = count) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) variablea variableb variablec * --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 24 degrees of freedom Residual deviance: on 21 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 Drugs Crossover

31 Marginal Homogeneity > anova(drugs.null, drugs.mh, test="chisq") Analysis of Deviance Table Model 1: value ~ 1 Model 2: value ~ variable - 1 Resid. Df Resid. Dev Df Deviance P(> Chi ) * --- Signif. codes: 0 *** ** 0.01 *

############################ ### toxo.r ### ############################

############################ ### toxo.r ### ############################ ############################ ### toxo.r ### ############################ toxo < read.table(file="n:\\courses\\stat8620\\fall 08\\toxo.dat",header=T) #toxo < read.table(file="c:\\documents and Settings\\dhall\\My

More information

Multiple Regression and Logistic Regression II. Dajiang 525 Apr

Multiple Regression and Logistic Regression II. Dajiang 525 Apr Multiple Regression and Logistic Regression II Dajiang Liu @PHS 525 Apr-19-2016 Materials from Last Time Multiple regression model: Include multiple predictors in the model = + + + + How to interpret the

More information

> budworm$samplogit < log((budworm$y+0.5)/(budworm$m budworm$y+0.5))

> budworm$samplogit < log((budworm$y+0.5)/(budworm$m budworm$y+0.5)) budworm < read.table(file="n:\\courses\\stat8620\\fall 08\\budworm.dat",header=T) #budworm < read.table(file="c:\\documents and Settings\\dhall\\My Documents\\Dan's Work Stuff\\courses\\STAT8620\\Fall

More information

Logistic Regression. Logistic Regression Theory

Logistic Regression. Logistic Regression Theory Logistic Regression Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Logistic Regression The linear probability model.

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Scott Creel Wednesday, September 10, 2014 This exercise extends the prior material on using the lm() function to fit an OLS regression and test hypotheses about effects on a parameter.

More information

Negative Binomial Model for Count Data Log-linear Models for Contingency Tables - Introduction

Negative Binomial Model for Count Data Log-linear Models for Contingency Tables - Introduction Negative Binomial Model for Count Data Log-linear Models for Contingency Tables - Introduction Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Negative Binomial Family Example: Absenteeism from

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - IIIb Henrik Madsen March 18, 2012 Henrik Madsen () Chapman & Hall March 18, 2012 1 / 32 Examples Overdispersion and Offset!

More information

Ordinal Multinomial Logistic Regression. Thom M. Suhy Southern Methodist University May14th, 2013

Ordinal Multinomial Logistic Regression. Thom M. Suhy Southern Methodist University May14th, 2013 Ordinal Multinomial Logistic Thom M. Suhy Southern Methodist University May14th, 2013 GLM Generalized Linear Model (GLM) Framework for statistical analysis (Gelman and Hill, 2007, p. 135) Linear Continuous

More information

STA 4504/5503 Sample questions for exam True-False questions.

STA 4504/5503 Sample questions for exam True-False questions. STA 4504/5503 Sample questions for exam 2 1. True-False questions. (a) For General Social Survey data on Y = political ideology (categories liberal, moderate, conservative), X 1 = gender (1 = female, 0

More information

Stat 401XV Exam 3 Spring 2017

Stat 401XV Exam 3 Spring 2017 Stat 40XV Exam Spring 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Statistics 175 Applied Statistics Generalized Linear Models Jianqing Fan

Statistics 175 Applied Statistics Generalized Linear Models Jianqing Fan Statistics 175 Applied Statistics Generalized Linear Models Jianqing Fan Example 1 (Kyhposis data): (The data set kyphosis consists of measurements on 81 children following corrective spinal surgery. Variable

More information

Chapter 8 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (May 1, 2010)

Chapter 8 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (May 1, 2010) Chapter 8 Exercises 1 Data Analysis & Graphics Using R Solutions to Exercises (May 1, 2010) Preliminaries > library(daag) Exercise 1 The following table shows numbers of occasions when inhibition (i.e.,

More information

boxcox() returns the values of α and their loglikelihoods,

boxcox() returns the values of α and their loglikelihoods, Solutions to Selected Computer Lab Problems and Exercises in Chapter 11 of Statistics and Data Analysis for Financial Engineering, 2nd ed. by David Ruppert and David S. Matteson c 2016 David Ruppert and

More information

Logistic Regression with R: Example One

Logistic Regression with R: Example One Logistic Regression with R: Example One math = read.table("http://www.utstat.toronto.edu/~brunner/appliedf12/data/mathcat.data") math[1:5,] hsgpa hsengl hscalc course passed outcome 1 78.0 80 Yes Mainstrm

More information

CREDIT RISK MODELING IN R. Logistic regression: introduction

CREDIT RISK MODELING IN R. Logistic regression: introduction CREDIT RISK MODELING IN R Logistic regression: introduction Final data structure > str(training_set) 'data.frame': 19394 obs. of 8 variables: $ loan_status : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1

More information

Credit Risk Modelling

Credit Risk Modelling Credit Risk Modelling Tiziano Bellini Università di Bologna December 13, 2013 Tiziano Bellini (Università di Bologna) Credit Risk Modelling December 13, 2013 1 / 55 Outline Framework Credit Risk Modelling

More information

Step 1: Load the appropriate R package. Step 2: Fit a separate mixed model for each independence claim in the basis set.

Step 1: Load the appropriate R package. Step 2: Fit a separate mixed model for each independence claim in the basis set. Step 1: Load the appropriate R package. You will need two libraries: nlme and lme4. Step 2: Fit a separate mixed model for each independence claim in the basis set. For instance, in Table 2 the first basis

More information

Dummy Variables. 1. Example: Factors Affecting Monthly Earnings

Dummy Variables. 1. Example: Factors Affecting Monthly Earnings Dummy Variables A dummy variable or binary variable is a variable that takes on a value of 0 or 1 as an indicator that the observation has some kind of characteristic. Common examples: Sex (female): FEMALE=1

More information

σ e, which will be large when prediction errors are Linear regression model

σ e, which will be large when prediction errors are Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the population of (x, y) pairs are related by an ideal population regression line y = α + βx +

More information

Projects for Bayesian Computation with R

Projects for Bayesian Computation with R Projects for Bayesian Computation with R Laura Vana & Kurt Hornik Winter Semeter 2018/2019 1 S&P Rating Data On the homepage of this course you can find a time series for Standard & Poors default data

More information

Case Study: Applying Generalized Linear Models

Case Study: Applying Generalized Linear Models Case Study: Applying Generalized Linear Models Dr. Kempthorne May 12, 2016 Contents 1 Generalized Linear Models of Semi-Quantal Biological Assay Data 2 1.1 Coal miners Pneumoconiosis Data.................

More information

Lecture 21: Logit Models for Multinomial Responses Continued

Lecture 21: Logit Models for Multinomial Responses Continued Lecture 21: Logit Models for Multinomial Responses Continued Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University

More information

Logit Models for Binary Data

Logit Models for Binary Data Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis These models are appropriate when the response

More information

Logit Analysis. Using vttown.dta. Albert Satorra, UPF

Logit Analysis. Using vttown.dta. Albert Satorra, UPF Logit Analysis Using vttown.dta Logit Regression Odds ratio The most common way of interpreting a logit is to convert it to an odds ratio using the exp() function. One can convert back using the ln()

More information

STATISTICAL METHODS FOR CATEGORICAL DATA ANALYSIS

STATISTICAL METHODS FOR CATEGORICAL DATA ANALYSIS STATISTICAL METHODS FOR CATEGORICAL DATA ANALYSIS Daniel A. Powers Department of Sociology University of Texas at Austin YuXie Department of Sociology University of Michigan ACADEMIC PRESS An Imprint of

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

MCMC Package Example

MCMC Package Example MCMC Package Example Charles J. Geyer April 4, 2005 This is an example of using the mcmc package in R. The problem comes from a take-home question on a (take-home) PhD qualifying exam (School of Statistics,

More information

Categorical Outcomes. Statistical Modelling in Stata: Categorical Outcomes. R by C Table: Example. Nominal Outcomes. Mark Lunt.

Categorical Outcomes. Statistical Modelling in Stata: Categorical Outcomes. R by C Table: Example. Nominal Outcomes. Mark Lunt. Categorical Outcomes Statistical Modelling in Stata: Categorical Outcomes Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester Nominal Ordinal 28/11/2017 R by C Table: Example Categorical,

More information

Let us assume that we are measuring the yield of a crop plant on 5 different plots at 4 different observation times.

Let us assume that we are measuring the yield of a crop plant on 5 different plots at 4 different observation times. Mixed-effects models An introduction by Christoph Scherber Up to now, we have been dealing with linear models of the form where ß0 and ß1 are parameters of fixed value. Example: Let us assume that we are

More information

proc genmod; model malform/total = alcohol / dist=bin link=identity obstats; title 'Table 2.7'; title2 'Identity Link';

proc genmod; model malform/total = alcohol / dist=bin link=identity obstats; title 'Table 2.7'; title2 'Identity Link'; BIOS 6244 Analysis of Categorical Data Assignment 5 s 1. Consider Exercise 4.4, p. 98. (i) Write the SAS code, including the DATA step, to fit the linear probability model and the logit model to the data

More information

Lecture Note: Analysis of Financial Time Series Spring 2017, Ruey S. Tsay

Lecture Note: Analysis of Financial Time Series Spring 2017, Ruey S. Tsay Lecture Note: Analysis of Financial Time Series Spring 2017, Ruey S. Tsay Seasonal Time Series: TS with periodic patterns and useful in predicting quarterly earnings pricing weather-related derivatives

More information

6 Multiple Regression

6 Multiple Regression More than one X variable. 6 Multiple Regression Why? Might be interested in more than one marginal effect Omitted Variable Bias (OVB) 6.1 and 6.2 House prices and OVB Should I build a fireplace? The following

More information

Using R to Create Synthetic Discrete Response Regression Models

Using R to Create Synthetic Discrete Response Regression Models Arizona State University From the SelectedWorks of Joseph M Hilbe July 3, 2011 Using R to Create Synthetic Discrete Response Regression Models Joseph Hilbe, Arizona State University Available at: https://works.bepress.com/joseph_hilbe/3/

More information

sociology SO5032 Quantitative Research Methods Brendan Halpin, Sociology, University of Limerick Spring 2018 SO5032 Quantitative Research Methods

sociology SO5032 Quantitative Research Methods Brendan Halpin, Sociology, University of Limerick Spring 2018 SO5032 Quantitative Research Methods 1 SO5032 Quantitative Research Methods Brendan Halpin, Sociology, University of Limerick Spring 2018 Lecture 10: Multinomial regression baseline category extension of binary What if we have multiple possible

More information

Predicting Charitable Contributions

Predicting Charitable Contributions Predicting Charitable Contributions By Lauren Meyer Executive Summary Charitable contributions depend on many factors from financial security to personal characteristics. This report will focus on demographic

More information

Addiction - Multinomial Model

Addiction - Multinomial Model Addiction - Multinomial Model February 8, 2012 First the addiction data are loaded and attached. > library(catdata) > data(addiction) > attach(addiction) For the multinomial logit model the function multinom

More information

Intro to GLM Day 2: GLM and Maximum Likelihood

Intro to GLM Day 2: GLM and Maximum Likelihood Intro to GLM Day 2: GLM and Maximum Likelihood Federico Vegetti Central European University ECPR Summer School in Methods and Techniques 1 / 32 Generalized Linear Modeling 3 steps of GLM 1. Specify the

More information

Generalized Multilevel Regression Example for a Binary Outcome

Generalized Multilevel Regression Example for a Binary Outcome Psy 510/610 Multilevel Regression, Spring 2017 1 HLM Generalized Multilevel Regression Example for a Binary Outcome Specifications for this Bernoulli HLM2 run Problem Title: no title The data source for

More information

Multiple regression - a brief introduction

Multiple regression - a brief introduction Multiple regression - a brief introduction Multiple regression is an extension to regular (simple) regression. Instead of one X, we now have several. Suppose, for example, that you are trying to predict

More information

Ordinal and categorical variables

Ordinal and categorical variables Ordinal and categorical variables Ben Bolker October 29, 2018 Licensed under the Creative Commons attribution-noncommercial license (http: //creativecommons.org/licenses/by-nc/3.0/). Please share & remix

More information

SLIDES. BY. John Loucks. St. Edward s University

SLIDES. BY. John Loucks. St. Edward s University . SLIDES. BY John Loucks St. Edward s University 1 Chapter 10, Part A Inference About Means and Proportions with Two Populations n Inferences About the Difference Between Two Population Means: σ 1 and

More information

Assessing Model Stability Using Recursive Estimation and Recursive Residuals

Assessing Model Stability Using Recursive Estimation and Recursive Residuals Assessing Model Stability Using Recursive Estimation and Recursive Residuals Our forecasting procedure cannot be expected to produce good forecasts if the forecasting model that we constructed was stable

More information

Non-linearities in Simple Regression

Non-linearities in Simple Regression Non-linearities in Simple Regression 1. Eample: Monthly Earnings and Years of Education In this tutorial, we will focus on an eample that eplores the relationship between total monthly earnings and years

More information

Internet Appendix to The Booms and Busts of Beta Arbitrage

Internet Appendix to The Booms and Busts of Beta Arbitrage Internet Appendix to The Booms and Busts of Beta Arbitrage Table A1: Event Time CoBAR This table reports some basic statistics of CoBAR, the excess comovement among low beta stocks over the period 1970

More information

book 2014/5/6 15:21 page 261 #285

book 2014/5/6 15:21 page 261 #285 book 2014/5/6 15:21 page 261 #285 Chapter 10 Simulation Simulations provide a powerful way to answer questions and explore properties of statistical estimators and procedures. In this chapter, we will

More information

Econometric Methods for Valuation Analysis

Econometric Methods for Valuation Analysis Econometric Methods for Valuation Analysis Margarita Genius Dept of Economics M. Genius (Univ. of Crete) Econometric Methods for Valuation Analysis Cagliari, 2017 1 / 25 Outline We will consider econometric

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

ORDERED MULTINOMIAL LOGISTIC REGRESSION ANALYSIS. Pooja Shivraj Southern Methodist University

ORDERED MULTINOMIAL LOGISTIC REGRESSION ANALYSIS. Pooja Shivraj Southern Methodist University ORDERED MULTINOMIAL LOGISTIC REGRESSION ANALYSIS Pooja Shivraj Southern Methodist University KINDS OF REGRESSION ANALYSES Linear Regression Logistic Regression Dichotomous dependent variable (yes/no, died/

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2018 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Determining Probability Estimates From Logistic Regression Results Vartanian: SW 541

Determining Probability Estimates From Logistic Regression Results Vartanian: SW 541 Determining Probability Estimates From Logistic Regression Results Vartanian: SW 541 In determining logistic regression results, you will generally be given the odds ratio in the SPSS or SAS output. However,

More information

Sensitivity Analysis for Unmeasured Confounding: Formulation, Implementation, Interpretation

Sensitivity Analysis for Unmeasured Confounding: Formulation, Implementation, Interpretation Sensitivity Analysis for Unmeasured Confounding: Formulation, Implementation, Interpretation Joseph W Hogan Department of Biostatistics Brown University School of Public Health CIMPOD, February 2016 Hogan

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2019 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

Finance Practice Midterm #1 Solutions

Finance Practice Midterm #1 Solutions Finance 30210 Practice Midterm #1 Solutions 1) Suppose that you have the opportunity to invest $50,000 in a new restaurant in South Bend. (FYI: Dr. HG Parsa of Ohio State University has done a study that

More information

AIC = Log likelihood = BIC =

AIC = Log likelihood = BIC = - log: /mnt/ide1/home/sschulh1/apc/apc_examplelog log type: text opened on: 21 Jul 2006, 18:08:20 *replicate table 5 and cols 7-9 of table 3 in Yang, Fu and Land (2004) *Stata can maximize GLM objective

More information

Chapter 7. Inferences about Population Variances

Chapter 7. Inferences about Population Variances Chapter 7. Inferences about Population Variances Introduction () The variability of a population s values is as important as the population mean. Hypothetical distribution of E. coli concentrations from

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay. Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay. Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Final Exam Booth Honor Code: I pledge my honor that I have not violated the Honor Code during this

More information

Regression and Simulation

Regression and Simulation Regression and Simulation This is an introductory R session, so it may go slowly if you have never used R before. Do not be discouraged. A great way to learn a new language like this is to plunge right

More information

Lapse Modeling for the Post-Level Period

Lapse Modeling for the Post-Level Period Lapse Modeling for the Post-Level Period A Practical Application of Predictive Modeling JANUARY 2015 SPONSORED BY Committee on Finance Research PREPARED BY Richard Xu, FSA, Ph.D. Dihui Lai, Ph.D. Minyu

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Midterm GSB Honor Code: I pledge my honor that I have not violated the Honor Code during this examination.

More information

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS TASK Run intervention analysis on the price of stock M: model a function of the price as ARIMA with outliers and interventions. SOLUTION The document below is an abridged version of the solution provided

More information

Random Effects ANOVA

Random Effects ANOVA Random Effects ANOVA Grant B. Morgan Baylor University This post contains code for conducting a random effects ANOVA. Make sure the following packages are installed: foreign, lme4, lsr, lattice. library(foreign)

More information

SUPPLEMENTARY ONLINE APPENDIX FOR: TECHNOLOGY AND COLLECTIVE ACTION: THE EFFECT OF CELL PHONE COVERAGE ON POLITICAL VIOLENCE IN AFRICA

SUPPLEMENTARY ONLINE APPENDIX FOR: TECHNOLOGY AND COLLECTIVE ACTION: THE EFFECT OF CELL PHONE COVERAGE ON POLITICAL VIOLENCE IN AFRICA SUPPLEMENTARY ONLINE APPENDIX FOR: TECHNOLOGY AND COLLECTIVE ACTION: THE EFFECT OF CELL PHONE COVERAGE ON POLITICAL VIOLENCE IN AFRICA 1. CELL PHONES AND PROTEST The Afrobarometer survey asks whether respondents

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD

Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD Hypothesis Tests: One Sample Mean Cal State Northridge Ψ320 Andrew Ainsworth PhD MAJOR POINTS Sampling distribution of the mean revisited Testing hypotheses: sigma known An example Testing hypotheses:

More information

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models So now we are moving on to the more advanced type topics. To begin

More information

Chapter 4 Level of Volatility in the Indian Stock Market

Chapter 4 Level of Volatility in the Indian Stock Market Chapter 4 Level of Volatility in the Indian Stock Market Measurement of volatility is an important issue in financial econometrics. The main reason for the prominent role that volatility plays in financial

More information

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers Diploma Part 2 Quantitative Methods Examiner s Suggested Answers Question 1 (a) The binomial distribution may be used in an experiment in which there are only two defined outcomes in any particular trial

More information

Exchange Rate Regime Analysis for the Indian Rupee

Exchange Rate Regime Analysis for the Indian Rupee Exchange Rate Regime Analysis for the Indian Rupee Achim Zeileis Ajay Shah Ila Patnaik Abstract We investigate the Indian exchange rate regime starting from 1993 when trading in the Indian rupee began.

More information

Duration Models: Modeling Strategies

Duration Models: Modeling Strategies Bradford S., UC-Davis, Dept. of Political Science Duration Models: Modeling Strategies Brad 1 1 Department of Political Science University of California, Davis February 28, 2007 Bradford S., UC-Davis,

More information

MODEL SELECTION CRITERIA IN R:

MODEL SELECTION CRITERIA IN R: 1. R 2 statistics We may use MODEL SELECTION CRITERIA IN R R 2 = SS R SS T = 1 SS Res SS T or R 2 Adj = 1 SS Res/(n p) SS T /(n 1) = 1 ( ) n 1 (1 R 2 ). n p where p is the total number of parameters. R

More information

Empirical Asset Pricing for Tactical Asset Allocation

Empirical Asset Pricing for Tactical Asset Allocation Introduction Process Model Conclusion Department of Finance The University of Connecticut School of Business stephen.r.rush@gmail.com May 10, 2012 Background Portfolio Managers Want to justify fees with

More information

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2.

More information

Lecture 1: Empirical Properties of Returns

Lecture 1: Empirical Properties of Returns Lecture 1: Empirical Properties of Returns Econ 589 Eric Zivot Spring 2011 Updated: March 29, 2011 Daily CC Returns on MSFT -0.3 r(t) -0.2-0.1 0.1 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Mixed models in R using the lme4 package Part 3: Inference based on profiled deviance

Mixed models in R using the lme4 package Part 3: Inference based on profiled deviance Mixed models in R using the lme4 package Part 3: Inference based on profiled deviance Douglas Bates Department of Statistics University of Wisconsin - Madison Madison January 11, 2011

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Ordinal Logistic Regression Dr. Tackett 11.27.2018 1 / 26 Announcements HW 8 due Thursday, 11/29 Lab 10 due Sunday, 12/2 Exam II, Thursday 12/6 2 / 26 Packages library(knitr)

More information

Building and Checking Survival Models

Building and Checking Survival Models Building and Checking Survival Models David M. Rocke May 23, 2017 David M. Rocke Building and Checking Survival Models May 23, 2017 1 / 53 hodg Lymphoma Data Set from KMsurv This data set consists of information

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Study 2: data analysis. Example analysis using R

Study 2: data analysis. Example analysis using R Study 2: data analysis Example analysis using R Steps for data analysis Install software on your computer or locate computer with software (e.g., R, systat, SPSS) Prepare data for analysis Subjects (rows)

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

Predicting the Direction of Swap Spreads

Predicting the Direction of Swap Spreads Predicting the Direction of Swap Spreads Paul Teetor March, 2007 Abstract A model is developed for predicting the direction of 10-year swap spreads from related financial time series, such as Treasury

More information

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 10, 2017

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 10, 2017 Maximum Likelihood Estimation Richard Williams, University of otre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 0, 207 [This handout draws very heavily from Regression Models for Categorical

More information

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley.

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley. Appendix: Statistics in Action Part I Financial Time Series 1. These data show the effects of stock splits. If you investigate further, you ll find that most of these splits (such as in May 1970) are 3-for-1

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 18, 2006, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTIONS

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 18, 2006, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTIONS COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 18, 2006, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTIONS Answer all parts. Closed book, calculators allowed. It is important to show all working,

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

Mean Note: Weights were measured to the nearest 0.1 kg.

Mean Note: Weights were measured to the nearest 0.1 kg. Purpose of the Sign Test Supplement 16A: Sign Test The sign test is a simple and versatile test that requires few assumptions. It is based on the binomial distribution. The test involves simply counting

More information

Probability Distribution Unit Review

Probability Distribution Unit Review Probability Distribution Unit Review Topics: Pascal's Triangle and Binomial Theorem Probability Distributions and Histograms Expected Values, Fair Games of chance Binomial Distributions Hypergeometric

More information

Correcting for Survival Effects in Cross Section Wage Equations Using NBA Data

Correcting for Survival Effects in Cross Section Wage Equations Using NBA Data Correcting for Survival Effects in Cross Section Wage Equations Using NBA Data by Peter A Groothuis Professor Appalachian State University Boone, NC and James Richard Hill Professor Central Michigan University

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Final Exam GSB Honor Code: I pledge my honor that I have not violated the Honor Code during this

More information

Lecture Data Science

Lecture Data Science Web Science & Technologies University of Koblenz Landau, Germany Lecture Data Science Statistics Foundations JProf. Dr. Claudia Wagner Learning Goals How to describe sample data? What is mode/median/mean?

More information

Modelling Bank Loan LGD of Corporate and SME Segment

Modelling Bank Loan LGD of Corporate and SME Segment 15 th Computing in Economics and Finance, Sydney, Australia Modelling Bank Loan LGD of Corporate and SME Segment Radovan Chalupka, Juraj Kopecsni Charles University, Prague 1. introduction 2. key issues

More information

Loss Simulation Model Testing and Enhancement

Loss Simulation Model Testing and Enhancement Loss Simulation Model Testing and Enhancement Casualty Loss Reserve Seminar By Kailan Shang Sept. 2011 Agenda Research Overview Model Testing Real Data Model Enhancement Further Development Enterprise

More information

Lecture Note: Analysis of Financial Time Series Spring 2008, Ruey S. Tsay. Seasonal Time Series: TS with periodic patterns and useful in

Lecture Note: Analysis of Financial Time Series Spring 2008, Ruey S. Tsay. Seasonal Time Series: TS with periodic patterns and useful in Lecture Note: Analysis of Financial Time Series Spring 2008, Ruey S. Tsay Seasonal Time Series: TS with periodic patterns and useful in predicting quarterly earnings pricing weather-related derivatives

More information

Online Appendix for Inferring Latent Social Networks from Stock Holdings

Online Appendix for Inferring Latent Social Networks from Stock Holdings Online Appendix for Inferring Latent Social Networks from Stock Holdings Harrison Hong Jiangmin Xu September 8, 2017 Columbia University, NBER, CAFR (e-mail: hh2679@columbia.edu), Guanghua School of Management,

More information

Exchange Rate Regime Classification with Structural Change Methods

Exchange Rate Regime Classification with Structural Change Methods Exchange Rate Regime Classification with Structural Change Methods Achim Zeileis Ajay Shah Ila Patnaik http://statmath.wu-wien.ac.at/ zeileis/ Overview Exchange rate regimes What is the new Chinese exchange

More information

R is a collaborative project with many contributors. Type contributors() for more information.

R is a collaborative project with many contributors. Type contributors() for more information. R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type license() or licence() for distribution details. R is a collaborative project

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Copyright 2005 Pearson Education, Inc. Slide 6-1

Copyright 2005 Pearson Education, Inc. Slide 6-1 Copyright 2005 Pearson Education, Inc. Slide 6-1 Chapter 6 Copyright 2005 Pearson Education, Inc. Measures of Center in a Distribution 6-A The mean is what we most commonly call the average value. It is

More information