6.11, 1.80, 2.32, 1.17, 5.28, 0.62, 0.68, 0.43, 1.18, 2.20, 1.24, 1.92, 0.63, 1.18

Size: px
Start display at page:

Download "6.11, 1.80, 2.32, 1.17, 5.28, 0.62, 0.68, 0.43, 1.18, 2.20, 1.24, 1.92, 0.63, 1.18"

Transcription

1 Solution Exercise 14.4 A) The approximate 90% confidence interval for for the data from exercise 12.9 can be calculated using the formula, where is the usual version of the standard deviation of the process and n is the sample size of the data. Given the x values from Exercise 12.9 as shown below, R can be used to find the sample average and the estimate of the standard deviation. 6.11, 1.80, 2.32, 1.17, 5.28, 0.62, 0.68, 0.43, 1.18, 2.20, 1.24, 1.92, 0.63, 1.18 Plugging in the values of the sample average (, 1.911, and, 1.717, and using the critical value for a 90% confidence interval, 1.645, the following is obtained: Usual standard deviation estimator: = [ ( ] Thus, using the usual standard deviation estimator, the 90% confidence interval is. R-Code: x=c(6.11,1.80,2.32,1.17,5.28,0.62,0.68,0.43,1.18,2.20,1.24,1.92,0.63,1.18) m=mean(x) n=length(x) sd=sd(x) left1=m-((1.645*sd)/sqrt(n)) left1 right1=m+((1.645*sd)/sqrt(n)) right1

2 B) Based on the calculations from Exercise 14.4A, it can be said that in 90% of repeated samples of size n=14 from the same process, similarly constructed intervals will give different upper and lower limits, because every sample produces a different data set. However, 90% of the intervals will capture the true, so we can be 90% confident that the interval, is correct. We cannot say that is absolutely within the confidence interval. There is still a 10% chance of being incorrect (i.e. not being within the confidence interval). E) Using R and utilizing bootstrap sampling to estimate the true confidence level of the interval calculated in 14.4A, the true confidence level of the interval is found to be 0.85 or 85%. R-Code: nsample =14 NREP = n = nsample*nrep x=c(6.11,1.80,2.32,1.17,5.28,0.62,0.68,0.43,1.18,2.20,1.24,1.92,0.63,1.18) l=length(x) p = rep(1/l,l) sim.surv.vec = sample(x, n, p, replace=t) sim.surv.matrix = matrix(sim.surv.vec, nrow=nrep, ncol = nsample, byrow=t) ybar = rowmeans(sim.surv.matrix) stdevs = apply(sim.surv.matrix, 1, sd) lower.90.limits = ybar *stdevs/sqrt(nsample) upper.90.limits = ybar *stdevs/sqrt(nsample) m=sum(x*p) correct.ci = (lower.90.limits<m)*(upper.90.limits>m) ci.limits = cbind(ybar, stdevs, lower.90.limits, upper.90.limits, m, correct.ci) head(ci.limits) mean(correct.ci) 2

3 Solution Exercise 14.5 A) The distribution that produced these data is (. In this case, specifically, the distribution is iid Bernoulli. In list form, the distribution can be described as the following: y p(y) 0 1 π 1 π Total 1.00 The mean of the distribution can be found as follows: ( ( ( ( ( The mean of the distribution is thus. The variance of the distribution can be found as follows: ( ( [ ] ( [ ] ( ( [ ] Thus, the variance of the distribution is. The standard deviation of the distribution is. 3

4 B) The bootstrap distribution for the data in list form is shown below. ( 0 7/ /20 Total 20/20 = 1.00 The mean of the bootstrap distribution can be found as follows: ( ( ) ( ) ( ) ( ) = Thus, the mean of the bootstrap distribution is The variance of the bootstrap distribution can be found as follows: ( ( [ ] ( ) [ ] ( ) Thus, the variance of the bootstrap distribution is The standard deviation of the bootstrap distribution is calculated as follows: Thus, the standard deviation of the bootstrap distribution is The distribution in Exercise 14.5A is different from the bootstrap distribution because the distribution in Exercise 14.5A is the distribution for the process that produces the data observed; it is the model that produces the data. The bootstrap distribution, however, is an actual observed distribution of data that has come from the distribution in Exercise 14.5A. However, it is only one possible set of values from that distribution, there could be many others. Hence, the bootstrap distribution offers a specific number for mean, variance, and standard deviation 4

5 unlike the distribution from 14.5A where we are unable to determine specific values because the parameters are unknown. However, even though the bootstrap distribution provides specific values for the parameters, they are not the true values and in repeated samples, those parameters would be similar but not exactly the same. C) The approximate 95% interval for the mean of the distribution in Exercise 14.5A using the formula where is the plug-in estimate from Exercise 14.5B can be found as follows: ( Thus, the 95% confidence interval is. D) The interval obtained in Exercise 14.5C is identical to the Bernoulli confidence interval represented as (. That fact can be shown by replacing with the value 0.65 which is the proportion of 1s from the bootstrap distribution which for a Bernoulli distribution is equal to the mean, of the distribution and replacing n with the sample size of 20. The calculation is shown below. ( Hence,. 5

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

Chapter 4: Estimation

Chapter 4: Estimation Slide 4.1 Chapter 4: Estimation Estimation is the process of using sample data to draw inferences about the population Sample information x, s Inferences Population parameters µ,σ Slide 4. Point and interval

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Chapter 23: accuracy of averages

Chapter 23: accuracy of averages Chapter 23: accuracy of averages Context: previous chapters...................................................... 2 Context: previous chapters...................................................... 3 Context:

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1 Stat 226 Introduction to Business Statistics I Spring 2009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:30-10:50 a.m. Chapter 6, Section 6.1 Confidence Intervals Confidence Intervals

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Business Statistics Midterm Exam Fall 2013 Russell

Business Statistics Midterm Exam Fall 2013 Russell Name Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided into

More information

STAT 157 HW1 Solutions

STAT 157 HW1 Solutions STAT 157 HW1 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/10/spring/stats157.dir/ Problem 1. 1.a: (6 points) Determine the Relative Frequency and the Cumulative Relative Frequency (fill

More information

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate.

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate. Chapter 7 Confidence Intervals and Sample Sizes 7. Estimating a Proportion p 7.3 Estimating a Mean µ (σ known) 7.4 Estimating a Mean µ (σ unknown) 7.5 Estimating a Standard Deviation σ In a recent poll,

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

Stats SB Notes 6.3 Completed.notebook April 03, Mar 23 5:22 PM. Chapter Outline. 6.1 Confidence Intervals for the Mean (σ Known)

Stats SB Notes 6.3 Completed.notebook April 03, Mar 23 5:22 PM. Chapter Outline. 6.1 Confidence Intervals for the Mean (σ Known) Stats SB Notes 63 Completednotebook April 03, 2017 Chapter 6 Confidence Intervals Chapter Outline 61 Confidence Intervals for the Mean (σ Known) 62 Confidence Intervals for the Mean (σ Unknown) 63 Confidence

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Lecture 9 - Sampling Distributions and the CLT

Lecture 9 - Sampling Distributions and the CLT Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel September 23, 2015 1 Variability of Estimates Activity Sampling distributions - via simulation Sampling distributions - via CLT

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

y p(y) y*p(y) Sum

y p(y) y*p(y) Sum ISQS 5347 Homework #5 1.A) The probabilities of the number of luxury cars sold in a month, p(y), are greater than zero for all y. The sum of the probabilities equals one: 0.180.160.14 0.340.100.050.031.00.

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

10/1/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

10/1/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Pivotal subject: distributions of statistics. Foundation linchpin important crucial You need sampling distributions to make inferences:

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

Business Statistics Midterm Exam Fall 2013 Russell

Business Statistics Midterm Exam Fall 2013 Russell Name SOLUTION Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Chapter 9-1/2 McGraw-Hill/Irwin Copyright 2011 by the McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO1. Define a point estimate. LO2. Define

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

MM and ML for a sample of n = 30 from Gamma(3,2) ===============================================

MM and ML for a sample of n = 30 from Gamma(3,2) =============================================== and for a sample of n = 30 from Gamma(3,2) =============================================== Generate the sample with shape parameter α = 3 and scale parameter λ = 2 > x=rgamma(30,3,2) > x [1] 0.7390502

More information

AP Statistics: Chapter 8, lesson 2: Estimating a population proportion

AP Statistics: Chapter 8, lesson 2: Estimating a population proportion Activity 1: Which way will the Hershey s kiss land? When you toss a Hershey Kiss, it sometimes lands flat and sometimes lands on its side. What proportion of tosses will land flat? Each group of four selects

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

MgtOp S 215 Chapter 8 Dr. Ahn

MgtOp S 215 Chapter 8 Dr. Ahn MgtOp S 215 Chapter 8 Dr. Ahn An estimator of a population parameter is a rule that tells us how to use the sample values,,, to estimate the parameter, and is a statistic. An estimate is the value obtained

More information

Intro to GLM Day 2: GLM and Maximum Likelihood

Intro to GLM Day 2: GLM and Maximum Likelihood Intro to GLM Day 2: GLM and Maximum Likelihood Federico Vegetti Central European University ECPR Summer School in Methods and Techniques 1 / 32 Generalized Linear Modeling 3 steps of GLM 1. Specify the

More information

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form:

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form: 1 Exercise One Note that the data is not grouped! 1.1 Calculate the mean ROI Below you find the raw data in tabular form: Obs Data 1 18.5 2 18.6 3 17.4 4 12.2 5 19.7 6 5.6 7 7.7 8 9.8 9 19.9 10 9.9 11

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

ECE 295: Lecture 03 Estimation and Confidence Interval

ECE 295: Lecture 03 Estimation and Confidence Interval ECE 295: Lecture 03 Estimation and Confidence Interval Spring 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 23 Theme of this Lecture What is Estimation? You

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel February 6, 2015 http:// pewresearch.org/ pubs/ 2191/ young-adults-workers-labor-market-pay-careers-advancement-recession Sta102/BME102

More information

Monte Carlo Simultions and Bootstrap Yen-Chi Chen 5/20/2017

Monte Carlo Simultions and Bootstrap Yen-Chi Chen 5/20/2017 Monte Carlo Simultions and Bootstrap Yen-Chi Chen 5/20/2017 Monte Carlo Simulations Assume in a dataset, we observe n values, denoted as X 1,, X n. For simplicity, we assume that these observations are

More information

Confidence Intervals for Paired Means with Tolerance Probability

Confidence Intervals for Paired Means with Tolerance Probability Chapter 497 Confidence Intervals for Paired Means with Tolerance Probability Introduction This routine calculates the sample size necessary to achieve a specified distance from the paired sample mean difference

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Application of the Bootstrap Estimating a Population Mean

Application of the Bootstrap Estimating a Population Mean Application of the Bootstrap Estimating a Population Mean Movie Average Shot Lengths Sources: Barry Sands Average Shot Length Movie Database L. Chihara and T. Hesterberg (2011). Mathematical Statistics

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

12 The Bootstrap and why it works

12 The Bootstrap and why it works 12 he Bootstrap and why it works For a review of many applications of bootstrap see Efron and ibshirani (1994). For the theory behind the bootstrap see the books by Hall (1992), van der Waart (2000), Lahiri

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Time Observations Time Period, t

Time Observations Time Period, t Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Time Series and Forecasting.S1 Time Series Models An example of a time series for 25 periods is plotted in Fig. 1 from the numerical

More information

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/11-11:17:37) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 2 2.2 Unknown

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Section 2: Estimation, Confidence Intervals and Testing Hypothesis

Section 2: Estimation, Confidence Intervals and Testing Hypothesis Section 2: Estimation, Confidence Intervals and Testing Hypothesis Tengyuan Liang, Chicago Booth https://tyliang.github.io/bus41000/ Suggested Reading: Naked Statistics, Chapters 7, 8, 9 and 10 OpenIntro

More information

Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion. Instructor: Elvan Ceyhan

Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion. Instructor: Elvan Ceyhan 1 Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion Instructor: Elvan Ceyhan Outline of this chapter: Large-Sample Interval for µ Confidence Intervals for Population Proportion

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

Stat 213: Intro to Statistics 9 Central Limit Theorem

Stat 213: Intro to Statistics 9 Central Limit Theorem 1 Stat 213: Intro to Statistics 9 Central Limit Theorem H. Kim Fall 2007 2 unknown parameters Example: A pollster is sure that the responses to his agree/disagree questions will follow a binomial distribution,

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

CHAPTER 5 STOCHASTIC SCHEDULING

CHAPTER 5 STOCHASTIC SCHEDULING CHPTER STOCHSTIC SCHEDULING In some situations, estimating activity duration becomes a difficult task due to ambiguity inherited in and the risks associated with some work. In such cases, the duration

More information

Chapter 7. Confidence Intervals and Sample Size. Bluman, Chapter 7. Friday, January 25, 13

Chapter 7. Confidence Intervals and Sample Size. Bluman, Chapter 7. Friday, January 25, 13 Chapter 7 Confidence Intervals and Sample Size 1 1 Chapter 7 Overview Introduction 7-1 Confidence Intervals for the Mean When σ Is Known and Sample Size 7-2 Confidence Intervals for the Mean When σ Is

More information

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables STA 220H1F LEC0201 Week 7: More Probability: Discrete Random Variables Recall: A sample space for a random experiment is the set of all possible outcomes of the experiment. Random Variables A random variable

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables ST 370 A random variable is a numerical value associated with the outcome of an experiment. Discrete random variable When we can enumerate the possible values of the variable

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

Lecture 12: The Bootstrap

Lecture 12: The Bootstrap Lecture 12: The Bootstrap Reading: Chapter 5 STATS 202: Data mining and analysis October 20, 2017 1 / 16 Announcements Midterm is on Monday, Oct 30 Topics: chapters 1-5 and 10 of the book everything until

More information

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example...

4.1 Introduction Estimating a population mean The problem with estimating a population mean with a sample mean: an example... Chapter 4 Point estimation Contents 4.1 Introduction................................... 2 4.2 Estimating a population mean......................... 2 4.2.1 The problem with estimating a population mean

More information

9/17/2015. Basic Statistics for the Healthcare Professional. Relax.it won t be that bad! Purpose of Statistic. Objectives

9/17/2015. Basic Statistics for the Healthcare Professional. Relax.it won t be that bad! Purpose of Statistic. Objectives Basic Statistics for the Healthcare Professional 1 F R A N K C O H E N, M B B, M P A D I R E C T O R O F A N A L Y T I C S D O C T O R S M A N A G E M E N T, LLC Purpose of Statistic 2 Provide a numerical

More information

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options Real Options for Engineering Systems Session 4: Valuation of financial options Stefan Scholtes Judge Institute of Management, CU Slide 1 Financial Options Option: Right (but not obligation) to buy ( call

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Chapter 9. Sampling Distributions. A sampling distribution is created by, as the name suggests, sampling.

Chapter 9. Sampling Distributions. A sampling distribution is created by, as the name suggests, sampling. Chapter 9 Sampling Distributions 9.1 Sampling Distributions A sampling distribution is created by, as the name suggests, sampling. The method we will employ on the rules of probability and the laws of

More information

Review. Preview This chapter presents the beginning of inferential statistics. October 25, S7.1 2_3 Estimating a Population Proportion

Review. Preview This chapter presents the beginning of inferential statistics. October 25, S7.1 2_3 Estimating a Population Proportion MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Chapter 9 McGraw-Hill/Irwin Copyright 2010 by The McGraw-Hill Companies, Inc. All rights reserved. GOALS 1. Define a point estimate. 2. Define level of confidence. 3.

More information

6.5: THE NORMAL APPROXIMATION TO THE BINOMIAL AND

6.5: THE NORMAL APPROXIMATION TO THE BINOMIAL AND CD6-12 6.5: THE NORMAL APPROIMATION TO THE BINOMIAL AND POISSON DISTRIBUTIONS In the earlier sections of this chapter the normal probability distribution was discussed. In this section another useful aspect

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

We take up chapter 7 beginning the week of October 16.

We take up chapter 7 beginning the week of October 16. STT 315 Week of October 9, 2006 We take up chapter 7 beginning the week of October 16. This week 10-9-06 expands on chapter 6, after which you will be equipped with yet another powerful statistical idea

More information

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE 19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Statistics & Statistical Tests: Assumptions & Conclusions

Statistics & Statistical Tests: Assumptions & Conclusions Degrees of Freedom Statistics & Statistical Tests: Assumptions & Conclusions Kinds of degrees of freedom Kinds of Distributions Kinds of Statistics & assumptions required to perform each Normal Distributions

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

* Point estimate for P is: x n

* Point estimate for P is: x n Estimation and Confidence Interval Estimation and Confidence Interval: Single Mean: To find the confidence intervals for a single mean: 1- X ± ( Z 1 σ n σ known S - X ± (t 1,n 1 n σ unknown Estimation

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get MATH 111: REVIEW FOR FINAL EXAM SUMMARY STATISTICS Spring 2005 exam: 1(A), 2(E), 3(C), 4(D) Comments: This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var

More information

Section 7.2. Estimating a Population Proportion

Section 7.2. Estimating a Population Proportion Section 7.2 Estimating a Population Proportion Overview Section 7.2 Estimating a Population Proportion Section 7.3 Estimating a Population Mean Section 7.4 Estimating a Population Standard Deviation or

More information

Problem max points points scored Total 120. Do all 6 problems.

Problem max points points scored Total 120. Do all 6 problems. Solutions to (modified) practice exam 4 Statistics 224 Practice exam 4 FINAL Your Name Friday 12/21/07 Professor Michael Iltis (Lecture 2) Discussion section (circle yours) : section: 321 (3:30 pm M) 322

More information

Random Variables and Probability Functions

Random Variables and Probability Functions University of Central Arkansas Random Variables and Probability Functions Directory Table of Contents. Begin Article. Stephen R. Addison Copyright c 001 saddison@mailaps.org Last Revision Date: February

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information