y p(y) y*p(y) Sum

Size: px
Start display at page:

Download "y p(y) y*p(y) Sum"

Transcription

1 ISQS 5347 Homework #5 1.A) The probabilities of the number of luxury cars sold in a month, p(y), are greater than zero for all y. The sum of the probabilities equals one: Both requirements for a discrete pdf are therefore fulfilled, so the table displays a valid pdf. B) The graph of the function p(y) and the R code to produce it are given below. y = 0:6 p(y) = c(0.18,0.16,0.14,0.34,0.10,0.05,0.03) plot(y,py,type="h", ylim = c(0,0.35), xlab = "Number of Luxury Cars Sold in a Month", ylab = "Density", yaxs="i") C) The expected value of the number of cars sold can be found by multiplying each y value with it s probability, and summing these values. This was done in the table below, and produced an expected value of 2.29.

2 y p(y) y*p(y) Sum D) According to the Law of Large Numbers, the average of n individual data points produced by this model will approach the true expected value of the distribution, 2.29, as n approaches infinity. E) To find the probability that Y is more than the mean, we can sum the probabilities of all possible y values that are greater than We can use the equation Pr> This means that in about 52 out of 100 months, the number of luxury cars sold in that month will be more than 2, and be greater than the expected number of cars sold in any given month. 2.A) The distribution /9 is always greater than or equal to zero because a squared term is always positive; therefore, the first requirement for a valid continuous pdf is fulfilled. The other requirement can be confirmed by calculating 01; therefore, this is a valid continuous pdf. B) The graph of the function p(y) and the R code to produce it are given below. y = seq(0,3,0.01) py = y^2/9 plot(y,py,type="l", ylab = "Density", yaxs="i", ylim=c(0,1.1))

3 C) The mean of p(y) can be calculated as follows: D) According to the Law of Large Numbers, the average of n data points produced by p(y) will approach 2.25, the true mean of the model, as n approaches infinity. E) To find the probability that Y is more than the mean, we can integrate p(y) over y values greater than We can use the equation Pr> This means that the value of y will be greater than 2.25, the distribution mean, in about 58 out of 100 y values produced by p(y). 3.A) I generated 100,000 values of U and Y using the R code below. u=runif(100000) y=202*u^3-5*u-7

4 B) The histogram of Y values and the R code used to produce it are given below. hist(y, freq=f) The normal q-q plot of the Y values and the R code used to produce it are below. qqnorm(y) qqline(y)

5 Neither the histogram nor the q-q plot suggests that the distribution of Y is approximately normal. From the histogram, it appears that the distribution of Y is extremely skewed relative to the normal; from the q-q plot, it appears that the distribution of Y does not produce as extreme upper or lower values as the normal produces. C) The R code to estimate Pr(Y>9) is given below. B = (y>9) mean(b) This outputs a value of This is the estimated expected value of the random variable B, which is bernoulli. Section 8.5 of the book gives the result that the average of an iid sample of bernoullli random variables approaches Pr(B = 1) as n approaches infinity. The B variable as I defined it in R is a simulation of a sample of 100,000 iid Bernoulli outcomes of 0 s and 1 s. Using the law of large numbers, we can use the average of this n = 100,000 sample to estimate the true parameter for this binomial distribution, Pr(B = 1), because n is large. Due to the way the B random variable was defined, Pr(B = 1) = Pr(Y>9), so the estimate of Pr(Y>9) is A) To construct a bootstrap distribution of the food expense data, we assign a probability of to each of the 20 observations. After adding the probabilities of observations that have the same food expense values, done with the help of the R code prop.table(table(food$food)), this results in the distribution shown in table form below. y p(y)

6 This bootstrap distribution is a very rough estimate of the true distribution of food expense obtained by assuming that 1) the only possible values of food expense are the 10 values that were actually observed and 2) each value of food expense has a probability equal to the number of students who reported that value divided by the total number of students surveyed. B) The bootstrap plug in estimate of the mean works by calculating the expected value of the bootstrap distribution created in 4.A. To do this, each value of y is multiplied by p(y), and then summed. y p(y) y*p(y) Sum The bootstrap estimated mean of the food expense data is therefore 13.2.

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

QQ PLOT Yunsi Wang, Tyler Steele, Eva Zhang Spring 2016

QQ PLOT Yunsi Wang, Tyler Steele, Eva Zhang Spring 2016 QQ PLOT INTERPRETATION: Quantiles: QQ PLOT Yunsi Wang, Tyler Steele, Eva Zhang Spring 2016 The quantiles are values dividing a probability distribution into equal intervals, with every interval having

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

4: Probability. What is probability? Random variables (RVs)

4: Probability. What is probability? Random variables (RVs) 4: Probability b binomial µ expected value [parameter] n number of trials [parameter] N normal p probability of success [parameter] pdf probability density function pmf probability mass function RV random

More information

Module 3: Sampling Distributions and the CLT Statistics (OA3102)

Module 3: Sampling Distributions and the CLT Statistics (OA3102) Module 3: Sampling Distributions and the CLT Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chpt 7.1-7.3, 7.5 Revision: 1-12 1 Goals for

More information

Session Window. Variable Name Row. Worksheet Window. Double click on MINITAB icon. You will see a split screen: Getting Started with MINITAB

Session Window. Variable Name Row. Worksheet Window. Double click on MINITAB icon. You will see a split screen: Getting Started with MINITAB STARTING MINITAB: Double click on MINITAB icon. You will see a split screen: Session Window Worksheet Window Variable Name Row ACTIVE WINDOW = BLUE INACTIVE WINDOW = GRAY f(x) F(x) Getting Started with

More information

23.1 Probability Distributions

23.1 Probability Distributions 3.1 Probability Distributions Essential Question: What is a probability distribution for a discrete random variable, and how can it be displayed? Explore Using Simulation to Obtain an Empirical Probability

More information

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc.

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc. 1 3.1 Describing Variation Stem-and-Leaf Display Easy to find percentiles of the data; see page 69 2 Plot of Data in Time Order Marginal plot produced by MINITAB Also called a run chart 3 Histograms Useful

More information

Sampling Distributions

Sampling Distributions Sampling Distributions This is an important chapter; it is the bridge from probability and descriptive statistics that we studied in Chapters 3 through 7 to inferential statistics which forms the latter

More information

Section 0: Introduction and Review of Basic Concepts

Section 0: Introduction and Review of Basic Concepts Section 0: Introduction and Review of Basic Concepts Carlos M. Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching 1 Getting Started Syllabus

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Continuous Random Variables and the Normal Distribution

Continuous Random Variables and the Normal Distribution Chapter 6 Continuous Random Variables and the Normal Distribution Continuous random variables are used to approximate probabilities where there are many possible outcomes or an infinite number of possible

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

4. Basic distributions with R

4. Basic distributions with R 4. Basic distributions with R CA200 (based on the book by Prof. Jane M. Horgan) 1 Discrete distributions: Binomial distribution Def: Conditions: 1. An experiment consists of n repeated trials 2. Each trial

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

LAB 2 Random Variables, Sampling Distributions of Counts, and Normal Distributions

LAB 2 Random Variables, Sampling Distributions of Counts, and Normal Distributions LAB 2 Random Variables, Sampling Distributions of Counts, and Normal Distributions The ECA 225 has open lab hours if you need to finish LAB 2. The lab is open Monday-Thursday 6:30-10:00pm and Saturday-Sunday

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao The binomial: mean and variance Recall that the number of successes out of n, denoted

More information

Lab#3 Probability

Lab#3 Probability 36-220 Lab#3 Probability Week of September 19, 2005 Please write your name below, tear off this front page and give it to a teaching assistant as you leave the lab. It will be a record of your participation

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

Frequency Distributions

Frequency Distributions Frequency Distributions January 8, 2018 Contents Frequency histograms Relative Frequency Histograms Cumulative Frequency Graph Frequency Histograms in R Using the Cumulative Frequency Graph to Estimate

More information

Probability and Statistics for Engineers

Probability and Statistics for Engineers Probability and Statistics for Engineers Chapter 4 Probability Distributions ruochen Liu ruochenliu@xidian.edu.cn Institute of Intelligent Information Processing, Xidian University Outline Random variables

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

Monte Carlo Simulation (General Simulation Models)

Monte Carlo Simulation (General Simulation Models) Monte Carlo Simulation (General Simulation Models) Revised: 10/11/2017 Summary... 1 Example #1... 1 Example #2... 10 Summary Monte Carlo simulation is used to estimate the distribution of variables when

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Lean Six Sigma: Training/Certification Books and Resources

Lean Six Sigma: Training/Certification Books and Resources Lean Si Sigma Training/Certification Books and Resources Samples from MINITAB BOOK Quality and Si Sigma Tools using MINITAB Statistical Software A complete Guide to Si Sigma DMAIC Tools using MINITAB Prof.

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes Model Paper Statistics Objective Intermediate Part I (11 th Class) Examination Session 2012-2013 and onward Total marks: 17 Paper Code Time Allowed: 20 minutes Note:- You have four choices for each objective

More information

x f(x) D.N.E

x f(x) D.N.E Limits Consider the function f(x) x2 x. This function is not defined for x, but if we examine the value of f for numbers close to, we can observe something interesting: x 0 0.5 0.9 0.999.00..5 2 f(x).5.9.999

More information

Frequency Distribution Models 1- Probability Density Function (PDF)

Frequency Distribution Models 1- Probability Density Function (PDF) Models 1- Probability Density Function (PDF) What is a PDF model? A mathematical equation that describes the frequency curve or probability distribution of a data set. Why modeling? It represents and summarizes

More information

R Lab Session : Part 2

R Lab Session : Part 2 R Lab Session : Part 2 To see a review of how to start R, look at the beginning of Lab1 http://www-stat.stanford.edu/ epurdom/rlab.htm Probability Calculations The following examples demonstrate how to

More information

But suppose we want to find a particular value for y, at which the probability is, say, 0.90? In other words, we want to figure out the following:

But suppose we want to find a particular value for y, at which the probability is, say, 0.90? In other words, we want to figure out the following: More on distributions, and some miscellaneous topics 1. Reverse lookup and the normal distribution. Up until now, we wanted to find probabilities. For example, the probability a Swedish man has a brain

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

the number of correct answers on question i. (Note that the only possible values of X i

the number of correct answers on question i. (Note that the only possible values of X i 6851_ch08_137_153 16/9/02 19:48 Page 137 8 8.1 (a) No: There is no fixed n (i.e., there is no definite upper limit on the number of defects). (b) Yes: It is reasonable to believe that all responses are

More information

2. Modeling Uncertainty

2. Modeling Uncertainty 2. Modeling Uncertainty Models for Uncertainty (Random Variables): Big Picture We now move from viewing the data to thinking about models that describe the data. Since the real world is uncertain, our

More information

INSTITUTE AND FACULTY OF ACTUARIES SUMMARY

INSTITUTE AND FACULTY OF ACTUARIES SUMMARY INSTITUTE AND FACULTY OF ACTUARIES SUMMARY Specimen 2019 CP2: Actuarial Modelling Paper 2 Institute and Faculty of Actuaries TQIC Reinsurance Renewal Objective The objective of this project is to use random

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

Financial Econometrics Jeffrey R. Russell Midterm 2014

Financial Econometrics Jeffrey R. Russell Midterm 2014 Name: Financial Econometrics Jeffrey R. Russell Midterm 2014 You have 2 hours to complete the exam. Use can use a calculator and one side of an 8.5x11 cheat sheet. Try to fit all your work in the space

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be CHAPTER 3: PARAMETRIC FAMILIES OF UNIVARIATE DISTRIBUTIONS 1 Why do we need distributions?

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Scott Creel Wednesday, September 10, 2014 This exercise extends the prior material on using the lm() function to fit an OLS regression and test hypotheses about effects on a parameter.

More information

Web Appendix. Are the effects of monetary policy shocks big or small? Olivier Coibion

Web Appendix. Are the effects of monetary policy shocks big or small? Olivier Coibion Web Appendix Are the effects of monetary policy shocks big or small? Olivier Coibion Appendix 1: Description of the Model-Averaging Procedure This section describes the model-averaging procedure used in

More information

This homework assignment uses the material on pages ( A moving average ).

This homework assignment uses the material on pages ( A moving average ). Module 2: Time series concepts HW Homework assignment: equally weighted moving average This homework assignment uses the material on pages 14-15 ( A moving average ). 2 Let Y t = 1/5 ( t + t-1 + t-2 +

More information

Binomial and Normal Distributions

Binomial and Normal Distributions Binomial and Normal Distributions Bernoulli Trials A Bernoulli trial is a random experiment with 2 special properties: The result of a Bernoulli trial is binary. Examples: Heads vs. Tails, Healthy vs.

More information

ECON Introductory Econometrics. Lecture 1: Introduction and Review of Statistics

ECON Introductory Econometrics. Lecture 1: Introduction and Review of Statistics ECON4150 - Introductory Econometrics Lecture 1: Introduction and Review of Statistics Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 1-2 Lecture outline 2 What is econometrics? Course

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

6.11, 1.80, 2.32, 1.17, 5.28, 0.62, 0.68, 0.43, 1.18, 2.20, 1.24, 1.92, 0.63, 1.18

6.11, 1.80, 2.32, 1.17, 5.28, 0.62, 0.68, 0.43, 1.18, 2.20, 1.24, 1.92, 0.63, 1.18 Solution Exercise 14.4 A) The approximate 90% confidence interval for for the data from exercise 12.9 can be calculated using the formula, where is the usual version of the standard deviation of the process

More information

Week 1 Quantitative Analysis of Financial Markets Distributions B

Week 1 Quantitative Analysis of Financial Markets Distributions B Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Intro to GLM Day 2: GLM and Maximum Likelihood

Intro to GLM Day 2: GLM and Maximum Likelihood Intro to GLM Day 2: GLM and Maximum Likelihood Federico Vegetti Central European University ECPR Summer School in Methods and Techniques 1 / 32 Generalized Linear Modeling 3 steps of GLM 1. Specify the

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Financial Econometrics (FinMetrics04) Time-series Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR

Financial Econometrics (FinMetrics04) Time-series Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR Financial Econometrics (FinMetrics04) Time-series Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR Nelson Mark University of Notre Dame Fall 2017 September 11, 2017 Introduction

More information

Lecture 3: Review of Probability, MATLAB, Histograms

Lecture 3: Review of Probability, MATLAB, Histograms CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 3: Review of Probability, MATLAB, Histograms Instructor: Daniel L. Pimentel-Alarcón Scribed and Ken Varghese This is preliminary work and

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

30 Wyner Statistics Fall 2013

30 Wyner Statistics Fall 2013 30 Wyner Statistics Fall 2013 CHAPTER FIVE: DISCRETE PROBABILITY DISTRIBUTIONS Summary, Terms, and Objectives A probability distribution shows the likelihood of each possible outcome. This chapter deals

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

When Is Factoring Used?

When Is Factoring Used? When Is Factoring Used? Name: DAY 9 Date: 1. Given the function, y = x 2 complete the table and graph. x y 2 1 0 1 2 3 1. A ball is thrown vertically upward from the ground according to the graph below.

More information

Continuous Random Variables and Probability Distributions

Continuous Random Variables and Probability Distributions CHAPTER 5 CHAPTER OUTLINE Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables The Uniform Distribution 5.2 Expectations for Continuous Random Variables 5.3 The Normal

More information

Stat 139 Homework 2 Solutions, Fall 2016

Stat 139 Homework 2 Solutions, Fall 2016 Stat 139 Homework 2 Solutions, Fall 2016 Problem 1. The sum of squares of a sample of data is minimized when the sample mean, X = Xi /n, is used as the basis of the calculation. Define g(c) as a function

More information

Discrete Probability Distributions

Discrete Probability Distributions 90 Discrete Probability Distributions Discrete Probability Distributions C H A P T E R 6 Section 6.2 4Example 2 (pg. 00) Constructing a Binomial Probability Distribution In this example, 6% of the human

More information

LAB 2 INSTRUCTIONS PROBABILITY DISTRIBUTIONS IN EXCEL

LAB 2 INSTRUCTIONS PROBABILITY DISTRIBUTIONS IN EXCEL LAB 2 INSTRUCTIONS PROBABILITY DISTRIBUTIONS IN EXCEL There is a wide range of probability distributions (both discrete and continuous) available in Excel. They can be accessed through the Insert Function

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

Basic Probability Distributions Tutorial From Cyclismo.org

Basic Probability Distributions Tutorial From Cyclismo.org Page 1 of 8 Basic Probability Distributions Tutorial From Cyclismo.org Contents: The Normal Distribution The t Distribution The Binomial Distribution The Chi-Squared Distribution We look at some of the

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 12: Continuous Distributions Uniform Distribution Normal Distribution (motivation) Discrete vs Continuous

More information

Chapter 5 Normal Probability Distributions

Chapter 5 Normal Probability Distributions Chapter 5 Normal Probability Distributions Section 5-1 Introduction to Normal Distributions and the Standard Normal Distribution A The normal distribution is the most important of the continuous probability

More information

Inequalities - Solve and Graph Inequalities

Inequalities - Solve and Graph Inequalities 3.1 Inequalities - Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value

More information

The probability of having a very tall person in our sample. We look to see how this random variable is distributed.

The probability of having a very tall person in our sample. We look to see how this random variable is distributed. Distributions We're doing things a bit differently than in the text (it's very similar to BIOL 214/312 if you've had either of those courses). 1. What are distributions? When we look at a random variable,

More information

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016.

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016. Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#3 4. Normal Curve Quiz Aug 23-8:31 PM 1 May 1-9:09 PM Apr 28-10:29 AM 2 27, 28, 29, 30 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.2 Transforming and Combining Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers 6.2 Reading Quiz (T or F)

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Random Variables 6.1 6.2 6.3 Discrete and Continuous Random Variables Transforming and Combining

More information

Homework 4 SOLUTION Out: April 18, 2014 LOOKUP and IF-THEN-ELSE Functions

Homework 4 SOLUTION Out: April 18, 2014 LOOKUP and IF-THEN-ELSE Functions I.E. 438 SYSTEM DYNAMICS SPRING 204 Dr.Onur ÇOKGÖR Homework 4 SOLUTION Out: April 8, 204 LOOKUP and IF-THEN-ELSE Functions Due: May 02, 204, Learning Objectives: In this homework you will use LOOKUP and

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

Business Statistics Midterm Exam Fall 2013 Russell

Business Statistics Midterm Exam Fall 2013 Russell Name SOLUTION Business Statistics Midterm Exam Fall 2013 Russell Do not turn over this page until you are told to do so. You will have 2 hours to complete the exam. There are a total of 100 points divided

More information

Econ 8602, Fall 2017 Homework 2

Econ 8602, Fall 2017 Homework 2 Econ 8602, Fall 2017 Homework 2 Due Tues Oct 3. Question 1 Consider the following model of entry. There are two firms. There are two entry scenarios in each period. With probability only one firm is able

More information

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution Chapter 11 Data Descriptions and Probability Distributions Section 4 Bernoulli Trials and Binomial Distribution 1 Learning Objectives for Section 11.4 Bernoulli Trials and Binomial Distributions The student

More information

Simulation Lecture Notes and the Gentle Lentil Case

Simulation Lecture Notes and the Gentle Lentil Case Simulation Lecture Notes and the Gentle Lentil Case General Overview of the Case What is the decision problem presented in the case? What are the issues Sanjay must consider in deciding among the alternative

More information

ก ก ก ก ก ก ก. ก (Food Safety Risk Assessment Workshop) 1 : Fundamental ( ก ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\

ก ก ก ก ก ก ก. ก (Food Safety Risk Assessment Workshop) 1 : Fundamental ( ก ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\ ก ก ก ก (Food Safety Risk Assessment Workshop) ก ก ก ก ก ก ก ก 5 1 : Fundamental ( ก 29-30.. 53 ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\ 1 4 2553 4 5 : Quantitative Risk Modeling Microbial

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Cambridge University Press Risk Modelling in General Insurance: From Principles to Practice Roger J. Gray and Susan M.

Cambridge University Press Risk Modelling in General Insurance: From Principles to Practice Roger J. Gray and Susan M. adjustment coefficient, 272 and Cramér Lundberg approximation, 302 existence, 279 and Lundberg s inequality, 272 numerical methods for, 303 properties, 272 and reinsurance (case study), 348 statistical

More information

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 The Poisson Distribution

More information

Chapter 4. The Normal Distribution

Chapter 4. The Normal Distribution Chapter 4 The Normal Distribution 1 Chapter 4 Overview Introduction 4-1 Normal Distributions 4-2 Applications of the Normal Distribution 4-3 The Central Limit Theorem 4-4 The Normal Approximation to the

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Random variables The binomial distribution The normal distribution Sampling distributions. Distributions. Patrick Breheny.

Random variables The binomial distribution The normal distribution Sampling distributions. Distributions. Patrick Breheny. Distributions September 17 Random variables Anything that can be measured or categorized is called a variable If the value that a variable takes on is subject to variability, then it the variable is a

More information

Intro to Likelihood. Gov 2001 Section. February 2, Gov 2001 Section () Intro to Likelihood February 2, / 44

Intro to Likelihood. Gov 2001 Section. February 2, Gov 2001 Section () Intro to Likelihood February 2, / 44 Intro to Likelihood Gov 2001 Section February 2, 2012 Gov 2001 Section () Intro to Likelihood February 2, 2012 1 / 44 Outline 1 Replication Paper 2 An R Note on the Homework 3 Probability Distributions

More information