Chapter 4 Probability and Probability Distributions. Sections

Size: px
Start display at page:

Download "Chapter 4 Probability and Probability Distributions. Sections"

Transcription

1 Chapter 4 Probabilit and Probabilit Distributions Sections

2 Sec Variables Variable: takes on different values (or attributes) Random variable: cannot be predicted with certaint Random Variables Qualitative eg. political affiliation, color preference, gender Quantitative measureable, numeric outcomes Discrete eg. # heads tossed, enrollement Continuous eg. Age of marriage, income tax return amts, height Recall: We want to know the probabilit of observing a particular sample

3 4.7 Probabilit Distributions for Discrete RVs Discrete random variable: quantitative random variable, the variable can onl assume a countable number of values What is the probabilit associated with each value of the variable,? Probabilit Distribution of : theoretical relative frequencies obtained from the probabilities for each value of The probabilit distribution for a discrete r.v., displas the probabilit P() associated with each value of.

4 Probabilit Distributions Discrete RVs Example. Consider the tossing of coins, and define the variable,, to be the number of heads observed. Possible values of : 0, 1,. Suppose that empirical sampling ields the following: freq Empirical probabilit distribution of : freq rel. freq Theoretical probabilit distribution of : P() **Theoretical and empirical probabilit distributions

5 4.9 Probabilit Distributions for Continuous RVs Continuous Random Variable: quantitative, variable assumes values on an interval, un-countabl man possible values Example. Consider the random variable,, that is the average height of 18 ear old males in the US. The following is sample data collected from 400 individuals:

6 Probabilit Distribution for Continuous RV Example (ctd). The variable values have to be binned relative frequenc histogram. The interval lengths and numbers of bins can be refined 18 bins here 40 bins here with more data, and finer binning, the histogram outline will approach a smooth curve.

7 1000 data points. Smooth curve outline appears to be emerging. The smooth curve is the probabilit distribution associated with variable, the height of an 18 r old male in the US.

8 Discrete and Continuous Probabilit Distributions Probabilit distributions provide a means of quantifing the probabilit of obtaining a certain sample outcome. Note: Probabilities are equal to the fraction of the total histogram area corresponding to the values of interest Discrete case: 1. Probabilit of observing two heads when a coin is tossed two times is Probabilit of observing at least one head is = 0.75 Probabilit of observing Either no heads or two Heads is

9 Discrete and Continuous Probabilit Distributions Continuous case: 1. Does it make sense to ask what is the probabilit that an 18.o. male is 5 10? NO. Note: The distribution plot was created using relative frequencies total area under the plot is We compute the probabilit of a value falling in a certain range of values, b computing the area that lies under the distribution plot, over that range. The probabilit that an 18.o. male has a height that lies between 5.7 and 5.8 feet is approx 0.1.

10 Half-wa Summar So far: 1. How to create probabilit distributions from empirical/theoretical discrete and continuous random variables.. How to determine probabilities of a variable attaining a certain value (discrete) or attaining a value that lies within a certain range (continuous). 3. Wh is this useful? (Q: what is the probabilit of obtaining a particular sample) 4. Some common known distributions bionomial (discrete), normal (continuous), t-distribution (continuous), chi-squared (continuous) 5. Can make assumptions about the tpe of distribution associated with particular populations of interest one of the known distributions 6. Can determine features of the underling distributions b simulation, other empirical observations

11 The Binomial Distribution - Discrete Binomial Distribution properties: 1. experiment has n identical trials. each trial is either a success or failure ( possible outcomes) 3. P(success) = π for ever trial, fixed 4. trials are independent 5. variable, = # of successes in the n trials Outcome of one trial does not affect the outcome of an other(s) Examples. 1. = # heads when a coin is tossed n times (success = heads). = # light bulbs that fail inspection when n selected from a batch are tested (success = failed inspection) 3. = # of people who test positive for a bacterial infection out of n who have been exposed to the bacteria (success = positive test result)

12 The Binomial Distribution (ctd) P() = probabilit of obtaining successes in n trials of a binomial exp Example (Computing P()). Suppose there is a 5% chance that a pregnanc test fails. What is the probabilit that out of a sample of 5 tests, all 5 fail? i.e. What is P(5)? P( 0) (0.5) * (0.5) *...* (0.5) Now, what is P()? P(5) = P(the 1 st test fails and the nd test fails and the 3 rd test fails and and the 5 th test fails) 5 (0.5)

13 The Binomial Distribution (ctd) What is P()? P() = P(1 st fails and nd fails and rest don t OR 1 st fails and 3 rd fails and rest don t OR ) P() (0.5)(0.5)(0.75)(0.75)(0.75) (0.5)(0.75)(0.5)(0.75)(0.75)... (0.75)(0.75)(0.75)(0.5)(0.5) P() 5 (0.5) (0.75) 5! !! P() = (# was to select failing tests out of 5)* (probabilit of test failing)*(probabilit of 3 tests not failing) = 5 C *0.5 *0.75 3

14 The Binomial Distribution (ctd) Probabilit of successes in n trials of a binomial experiment: P( ) n!!( n )! (1 ) ( n) = # successes in n trials n = # trials π = probabilit of success on a single trial Mean and Standard Deviation of the Binomial Distribution: Mean: n Standard n ( 1 ) Deviation:

15 The Binomial Distribution (ctd) Example. What is the probabilit that 6 out of 0 tests fail, if the probabilit that an one test fails is 5%? Success = test fails So, π = 0.5, n = 0, = 6 0! 6 14 P(6) ! 14! 0 *19 *18*17 *16 * *5* 4*3* * What are the mean and deviation of this distribution? 14 0 * * 0.5(0.75) Note: P( 7) = P(7) + P(8) + P(9) + + P(0) = 1 P( 6)

16 The Normal Distribution - Continuous Bell-shaped curve, smmetric about mean Numerous continuous random variables have a normal distribution eg. test scores, weight, 100m sprint times Normal curve is defined b μ and σ Empirical rule holds: approx 68% of the population lies within ± 1σ of μ P( 1 < ) = area under normal curve between = 1 and = f ( ) 1 e Normal curve, f() ( )

17 Computing probabilities for normall distributed populations: The Normal Distribution ) ( 1 ) ( e f 1 ) ( ) ( ) ( e f P P(5.5 x <5.7) =

18 The Normal Distribution Standard Normal Computing probabilities (ctd): - Normal curves var b variable values (x-axis), depend on μ and σ, but are identical in shape - Standard normal distribution: μ = 0 and σ = 1 - Tables exist for areas under this graph (Table 1, Appendix of text) - In a standards normal distribution, these are known as z- values x values between z = 0.5 and z = 1.1 are measurements that lie between 0.5 and 1.1 standard deviations awa from the mean of 0.

19 The Normal Distribution Reading from the table Table 1 contains areas under the standard normal curve that lie to the left of a particular z-value. P(z<0.5) i.e. Reading the entr corresponding to z 1 we obtain P(x < z 1 ) P(z<1.1) So P(0.5 x < 1.1) = P(x < 1.1) - P( x < 0.5) = = z-values P(0.5 z<1.1)

20 The Normal Distribution Z-scores We can use Table 1 for arbitrar normal distributions, as long μ and σ are known. This is done b standardizing the measurement values,, to standard normal values known as z-scores: z Example. Consider a normal distribution with μ = 5 and σ = 3.5. Compute the probabilit that the value of a measurement lies between 7 and P( 7 30) P( z ) P( z 1.486) P( z z 1 z ) There is a 0.79% probabilit that takes a value between 7 and 30.

21 The Normal Distribution Percentiles Def: The 100pth percentile of a distribution is the value p such that 100p% of the population values lie below p and 100(1-p)% lie above p. To find percentiles of standard normal distribution reverse lookup of Table 1 Example. Find the 33 rd percentile of the standard normal distribution. Need to find z p such that 100p% of values lies below z p. I.e. Find z p such that P(z z p ) = 33% From Table 1: z p = So, 33 rd percentile is -0.44

22 The Normal Distribution Percentiles To appl this idea to general normal distributions, we do a reverse standardizing: The 100pth percentile is p such that 100p% of measurements lie below p. I.e. P( p ) = 100p% we can find the z-score associated with 100p%, and convert it back to -values using: z p Example. For the normal distribution with μ =5.75 and σ = 0.4, find the 40 th percentile. p From Table 1, z p = -0.5 p = (-0.5)*0.4 = 5.65 The 40 th percentile of this distribution is is 5.65.

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Learning Objectives for Ch. 5

Learning Objectives for Ch. 5 Chapter : Probabilit Distributions Hildebrand, Ott and Gra Basic Statistical Ideas for Managers Second Edition Learning Objectives for Ch. Understanding the counting techniques needed for sequences and

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao The binomial: mean and variance Recall that the number of successes out of n, denoted

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The Normal Distribution.

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Density curves. (James Madison University) February 4, / 20

Density curves. (James Madison University) February 4, / 20 Density curves Figure 6.2 p 230. A density curve is always on or above the horizontal axis, and has area exactly 1 underneath it. A density curve describes the overall pattern of a distribution. Example

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION We have examined discrete random variables, those random variables for which we can list the possible values. We will now look at continuous random variables.

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Chapter 5 Normal Probability Distributions

Chapter 5 Normal Probability Distributions Chapter 5 Normal Probability Distributions Section 5-1 Introduction to Normal Distributions and the Standard Normal Distribution A The normal distribution is the most important of the continuous probability

More information

Probability Distributions II

Probability Distributions II Probability Distributions II Summer 2017 Summer Institutes 63 Multinomial Distribution - Motivation Suppose we modified assumption (1) of the binomial distribution to allow for more than two outcomes.

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/14 MTH 245: Mathematics for Management, Life, and Social Sciences May 18, 2015 Section 7.6 Section 7.6: The Normal Distribution. 2/14 The Normal Distribution. Figure: Abraham DeMoivre Section 7.6: The

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Distribution of the Sample Mean

Distribution of the Sample Mean Distribution of the Sample Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Experiment (1 of 3) Suppose we have the following population : 4 8 1 2 3 4 9 1

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Normal Curves & Sampling Distributions

Normal Curves & Sampling Distributions Chapter 7 Name Normal Curves & Sampling Distributions Section 7.1 Graphs of Normal Probability Distributions Objective: In this lesson you learned how to graph a normal curve and apply the empirical rule

More information

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of Stat 400, section 4.3 Normal Random Variables notes prepared by Tim Pilachowski Another often-useful probability density function is the normal density function, which graphs as the familiar bell-shaped

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions Topic 6 - Continuous Distributions I Discrete RVs Recall the discrete distributions STAT 511 Professor Bruce Craig Binomial - X= number of successes (x =, 1,...,n) Geometric - X= number of trials (x =,...)

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Stats CH 6 Intro Activity 1

Stats CH 6 Intro Activity 1 Stats CH 6 Intro Activit 1 1. Purpose can ou tell the difference between bottled water and tap water? You will drink water from 3 samples. 1 of these is bottled water.. You must test them in the following

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Continuous Probability Distributions & Normal Distribution

Continuous Probability Distributions & Normal Distribution Mathematical Methods Units 3/4 Student Learning Plan Continuous Probability Distributions & Normal Distribution 7 lessons Notes: Students need practice in recognising whether a problem involves a discrete

More information

4: Probability. What is probability? Random variables (RVs)

4: Probability. What is probability? Random variables (RVs) 4: Probability b binomial µ expected value [parameter] n number of trials [parameter] N normal p probability of success [parameter] pdf probability density function pmf probability mass function RV random

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

A.REPRESENTATION OF DATA

A.REPRESENTATION OF DATA A.REPRESENTATION OF DATA (a) GRAPHS : PART I Q: Why do we need a graph paper? Ans: You need graph paper to draw: (i) Histogram (ii) Cumulative Frequency Curve (iii) Frequency Polygon (iv) Box-and-Whisker

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) Normal and Binomial Distribution Applied to Construction Management Sampling and Confidence Intervals Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile:

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Introduction to Statistical Data Analysis II

Introduction to Statistical Data Analysis II Introduction to Statistical Data Analysis II JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics: - Descriptive Statistics - Inferential Statistics Preface What is Inferential Statistics? Preface

More information

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics.

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics. ENM 207 Lecture 12 Some Useful Continuous Distributions Normal Distribution The most important continuous probability distribution in entire field of statistics. Its graph, called the normal curve, is

More information

Continuous Probability Distributions

Continuous Probability Distributions 8.1 Continuous Probability Distributions Distributions like the binomial probability distribution and the hypergeometric distribution deal with discrete data. The possible values of the random variable

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information

Prob and Stats, Nov 7

Prob and Stats, Nov 7 Prob and Stats, Nov 7 The Standard Normal Distribution Book Sections: 7.1, 7.2 Essential Questions: What is the standard normal distribution, how is it related to all other normal distributions, and how

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3 Estimation 7 Copyright Cengage Learning. All rights reserved. Section 7.3 Estimating p in the Binomial Distribution Copyright Cengage Learning. All rights reserved. Focus Points Compute the maximal length

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Statistics 511 Supplemental Materials

Statistics 511 Supplemental Materials Gaussian (or Normal) Random Variable In this section we introduce the Gaussian Random Variable, which is more commonly referred to as the Normal Random Variable. This is a random variable that has a bellshaped

More information

A random variable is a quantitative variable that represents a certain

A random variable is a quantitative variable that represents a certain Section 6.1 Discrete Random Variables Example: Probability Distribution, Spin the Spinners Sum of Numbers on Spinners Theoretical Probability 2 0.04 3 0.08 4 0.12 5 0.16 6 0.20 7 0.16 8 0.12 9 0.08 10

More information

Continuous Random Variables and the Normal Distribution

Continuous Random Variables and the Normal Distribution Chapter 6 Continuous Random Variables and the Normal Distribution Continuous random variables are used to approximate probabilities where there are many possible outcomes or an infinite number of possible

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2

On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2 Continuous Random Variable If I spin a spinner, what is the probability the pointer lands... On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2 )? 360 = 1 180.

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Chapter 3. Density Curves. Density Curves. Basic Practice of Statistics - 3rd Edition. Chapter 3 1. The Normal Distributions

Chapter 3. Density Curves. Density Curves. Basic Practice of Statistics - 3rd Edition. Chapter 3 1. The Normal Distributions Chapter 3 The Normal Distributions BPS - 3rd Ed. Chapter 3 1 Example: here is a histogram of vocabulary scores of 947 seventh graders. The smooth curve drawn over the histogram is a mathematical model

More information