Variation Spectrum Suppose ffl S(t) is a continuous function on [0;T], ffl N is a large integer. For n = 1;:::;N, set For p > 0, set vars;n(p) := S n

Size: px
Start display at page:

Download "Variation Spectrum Suppose ffl S(t) is a continuous function on [0;T], ffl N is a large integer. For n = 1;:::;N, set For p > 0, set vars;n(p) := S n"

Transcription

1 Lecture 7: Bachelier Glenn Shafer Rutgers Business School April 1, 2002 ffl Variation Spectrum and Variation Exponent ffl Bachelier's Central Limit Theorem ffl Discrete Bachelier Hedging 1

2 Variation Spectrum Suppose ffl S(t) is a continuous function on [0;T], ffl N is a large integer. For n = 1;:::;N, set For p > 0, set vars;n(p) := S n := S NX n=1 n T : N j S n j p = N 1 X n=0 jds n j p : ffl vars;n(p) is the p-variation of S. ffl vars;n is the variation spectrum for S. Variation Exponent For N sufficiently large, j S n j < 1 for all n, and so ffl vars;n(p) decreases continuously in p, ffl lim p!0 vars;n(p) = N, ffl lim p!1 vars;n(p) = 0. Let's pretend that there is a sharply defined value of p where vars;n(p) goes from being very large to being very small. This value of p is S's variation exponent. We write vex S for S's variation exponent. 2

3 Intuitively, S's variation exponent, vex S, is the value of p where vars;n(p) = goes from large to small. NX n=1 j S n j p To make this rigorous, think about the behavior of vars;n(p) for fixed p as N goes to infinity. If there is a value p 0 such that ffl lim N!1 vars;n(p) = 1 for p < p 0, and ffl lim N!1 vars;n(p) = 0 for p > p 0, then p 0 is S's variation exponent. This works for ffl ordinary functions (vex = 1) and ffl paths of diffusion processes (vex = 2). But beware the gap between continuous theory and discrete reality! ffl If we had a continuous function S, then we could (maybe) define vex S by letting N! 1 for each fixed p. ffl When we have only S 0 ;S 1 ;:::;S N for fixed N (always), there is no well-defined point where vars;n(p) transitions from large to small. 3

4 Intuitively, S's variation exponent, vex S, is the value of p where vars;n(p) = goes from large to small. N 1 X n=0 jds n j p Two reasons why the variation exponent is theoretically interesting: ffl It is related to the notion of the order of magnitude of ds relative to dt. ffl It is related to one notion of fractal dimension. Here we venture onto Benoit Mandelbrot's turf. Hölder's Exponent Suppose ds n has the order of magnitude (1=N) H. Then vars;n(p) has the same order of magnitude as N 1 X 1 Hp 1 Hp = N = N 1 Hp : N N n=0 This is large for p < 1=H ffl and small for p > 1=H + ffl. So H, which Mandelbrot calls the Hölder exponent, is the same as 1= vex. Fractal Dimension: See Figure 9.5 on p

5 Mandelbrot's concept of box dimension The box dimension of an object in the plane is the power to which we should raise 1=dt to get, to the right order of magnitude, the number of dt dt boxes required to cover it. ffl In the case of an object of area A, about A=(dt) 2 boxes are required, so the box dimension is 2. ffl In the case of a smooth curve of length T, T=dt boxes are required, so the box dimension is 1. ffl In the case of the graph of a function on [0;T] with Hölder exponent H, we must cover a vertical distance (dt) H above the typical increment dt on the horizontal axis, which requires (dt) H =dt boxes. So the order of magnitude of the number of boxes needed for all T=dt increments is (dt) H 2 ; the box dimension is 2 H. dim = 2 H vex = 1=H 5

6 Typical values for our three related measures of the jaggedness of a continuous real-valued function S. The figures for a substochastic function are reported for price series by Mandelbrot. H vex dim definition 1=H 2 H range [0; 1] [1; 1] [1; 2] smooth function substochastic diffusion A sample path for ordinary Brownian motion A sample path for fractional Brownian motion with H = 0:6 One of Mandelbrot's several alternatives to geometric Brownian motion is fractional Brownian motion with a larger Hölder exponent. This entails long-range correlation. 6

7 ffl Does it make sense to model stock prices, a la Mandelbrot, using a stochastic process with Hölder exponent slightly larger than 1 (variation exponent 2 slightly smaller than 2)? ffl Does it make sense, with finite N, to try to identify so precisely the value p 0 where var(p) goes from large to small? NO. It is completely arbitrary to say where a decreasing function of p (going from N to 0 as p goes from 0 to 1) becomes small". Microsoft and the S&P 500 for 600 trading days starting January 1, Microsoft unit var(2) var(2:5) dollar 742 1; 100 median ($48:91) 0:310 0:066 initial ($22:44) 1:473 0:463 final ($86:06) 0:100 0:016 S&P 500 unit var(2) var(2:5) index point 37; ; 000 median (775) initial (621) 0:063 0:098 0:010 0:017 final (1124) 0:030 0:004 7

8 So what sense can we make of a variation exponent (or Hölder exponent or box dimension) for finite N? Remember the rigorous definition for continuous functions: If there is a value p 0 such that ffl lim N!1 vars;n(p) = 1 for p < p 0, and ffl lim N!1 vars;n(p) = 0 for p > p 0, then p 0 is S's variation exponent. This suggests a practical meaning for theoretical statements such as vex» 2. ffl Not var(p) is small for p larger than 2." ffl Rather for a fixed positive number ffl, we can make var(2 + ffl) as small as we want by making N sufficiently large (i.e., making dt sufficiently small)." This restricts the wildness of a price series without claiming that it is a realization of a stochastic process. 8

9 In order to understand our book's ideas about pricing derivatives, the reader must abandon the notion that progress can be made by finding a better" stochastic model. The issue is not what the variation exponent really is in the limit, because there is no limit. Perhaps at most daily rebalancing (or less) is feasible. vex» 2 means for a fixed positive number ffl, we can make var(2 + ffl) as small as we want by making dt sufficiently small." Maybe dt = 1 day is small enough for the ffl we need. Maybe not. This needs to be examined empirically. Asking for a true stochastic process (an exact variation exponent) is like asking what would happen in a different game, one in which rebalancing can be performed every millisecond rather than every day. What players would do in a different game may have little relevance to what the players in our game do. 9

10 Bachelier's Central Limit Theorem Parameters: N, C 1 Protocol: Market announces S n 2 R and D 0 > 0. K 0 = R 1 1 U(z) N S0 ;D 0 (dz). FOR n = 1;:::;N: Investor announces M n 2 R and V n 2 R. Market announces S n 2 R and D n 0. K n := K n 1 + M n x n + V n (( S n ) 2 + D n ). Additional Constraints on Market: ffl D n > 0 for n = 1;:::;N 1 ffl D N = 0 ffl j D n j» N C for all n ffl j S n j» p C N for all n Investor's Goal: K N U(S N ) ffl ffl j D n j» C N for all n implies var D;N(1)» C. ffl j S n j» C p N for all n implies vars;n(2)» C 2. 10

11 Review: Proof of the game-theoretic form of De Moivre's theorem R We want a martingale V starting at U(z) N0;1(dz) and ending up with U(S N )» V N + ffl. On round n + 1, Skeptic knows x 1 ;:::;x n. So he buys (@U=@s)(S n ;D n ) tickets, where with S n := S n = U(s; D) := nx x i ; D n := 1 n N ; i=1 Z 1 U(z) Ns;D(dz): 1 du(s n ;D n ) + 2 U (S n;d n )ds (S n;d n )dd 2 (S0 n ;D0 n)(ds n ) 2 2 (S0 n ;D0 n)ds n dd n + 1 2(S0 n ;D0 n)(dd n ) 2 ; for n = 0;:::;N 1, where (Sn;D 0 n) 0 is a point strictly between (S n ;D n ) and (S n+1 ;D n+1 ). Notation: A n := A n A n 1 and da n := A n+1 A n. 11

12 Now 2 U=@s (S0 n;d 0 n) 2 (S n;d n ) 3 (S00 n;d 00 n)ds 0 n 2(S00 n;dn)dd 00 n; 0 where (Sn;D 00 n) 00 is a point strictly between (S n ;D n ) and (Sn 0 ;D0 n), and dsn 0 and ddn 0 satisfy jdsnj 0» jds n j, jddnj 0» jdd n j. Plugging this and the heat equation, into our expansion of du(s n ;D n ), we obtain du(s n ;D n (S n;d n )ds n + 3 U 3 (S00 n;dn)ds 00 n(ds 0 n ) (S n;d n ) (ds n ) 2 + dd 3 2(S00 n;dn)dd 00 n(ds 0 n ) 2 2(S0 n;dn)(dd 0 n ) 2 (S0 n;dn)ds 0 n dd n The first term on the right-hand side is the increment of our martingale V: the gain (S n;d n ) tickets on round n+1. So we only need to show that the other terms are negligible when N is sufficiently large. 12

13 du(s n ;D n (S n;d n )ds n + 3 U 3 (S00 n ;D00 n)dsn(ds 0 n ) (S n;d n ) (ds n ) 2 + dd 3 2(S00 n ;D00 n)dd 0 n(ds n ) 2 2(S0 n ;D0 n)(dd n ) 2 (S0 n ;D0 n)ds n dd n The second term is identically zero, because (ds n ) 2 = x 2 = n+1 1=N = dd n). All the partial derivatives involved in the last four terms are bounded: the heat equation 3 2 = ; 3 2 = = 1 2 = U=@s 3 4 U=@s 4, being averages of U (3) and U (4), are bounded. So the four terms will have at most the order of magnitude O(N 3=2 ), and their total cumulative contribution be at most O(N 1=2 ). 13

14 Proof that Investor has a winning strategy in the Bachelier game when N is sufficiently large For some c, ju (3) (s)j» c and ju (4) (s)j» c for all s 2 R. Notice that K 0 = U(S 0 ;D 0 ). As in our proof of De Moivre's theorem, du(s n ;D n (S n;d n )ds n + 3 U 3 (S00 n ;D00 n)dsn(ds 0 n ) (S0 n ;D0 n)ds n dd n + 1 (S n;d n ) (ds n ) 2 + dd 3 2(S00 n ;D00 n)dd 0 n(ds n ) 2 2(S0 n ;D0 n)(dd n ) 2 : To make du(s n ;D n ) approximate di n, Investor sets So M (S n;d n ) and V (S n;d n ): jdu(s n ;D n ) di n j 2» c jds n j 3 + jdd n jjds n j 2 + jdd n jjds n j + jdd 2 n j» c C 1:5 N 1:5 + C 3 N 2 + C 2 N 1:5 + C 2 N = O N 3=2 : Summing over n = 0;:::;N 1, we obtain fi fi U(S N ;D N ) U(S 0 ;D 0 ) fi (I N I 0 ) fi = O N 1=2 : 14

15 ffl j D n j» CN 1 vex D < 2, and implies vard;n(1)» C and hence ffl j S n j» CN 1=2 implies vars;n(2)» C 2 and hence that vex S» 2. While still remaining within the unrealistic Bachelier setting, we now take a step towards more useful bounds. Discrete Bachelier Hedging Parameters: N, I 0, ffi 2 (0; 1) Players: Market, Investor Protocol: Market announces S 0 2 R and D 0 > 0. FOR n = 1;:::;N: Investor announces M n 2 R and V n 2 R. Market announces S n 2 R and D n 0. I n := I n 1 + M n S n + V n (( S n ) 2 + D n ). Additional Constraints on Market: Market must set D N = 0, D n > 0 for n < N, and must make S 0 ;:::;S N, D 0 ;:::;D N and vars(2+ ffl) < ffi and vard(2 ffl) < ffi: I hope to have time to say a little about Volodya's proof that this weaker constraint suffices (pp ). 15

Introduction to Game-Theoretic Probability

Introduction to Game-Theoretic Probability Introduction to Game-Theoretic Probability Glenn Shafer Rutgers Business School January 28, 2002 The project: Replace measure theory with game theory. The game-theoretic strong law. Game-theoretic price

More information

Probability, Price, and the Central Limit Theorem. Glenn Shafer. Rutgers Business School February 18, 2002

Probability, Price, and the Central Limit Theorem. Glenn Shafer. Rutgers Business School February 18, 2002 Probability, Price, and the Central Limit Theorem Glenn Shafer Rutgers Business School February 18, 2002 Review: The infinite-horizon fair-coin game for the strong law of large numbers. The finite-horizon

More information

Randomness and Fractals

Randomness and Fractals Randomness and Fractals Why do so many physicists become traders? Gregory F. Lawler Department of Mathematics Department of Statistics University of Chicago September 25, 2011 1 / 24 Mathematics and the

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Continuous-Time Pension-Fund Modelling

Continuous-Time Pension-Fund Modelling . Continuous-Time Pension-Fund Modelling Andrew J.G. Cairns Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Riccarton, Edinburgh, EH4 4AS, United Kingdom Abstract This paper

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki Jena, March 29, 211 Fractional Lévy processes 1/36 Outline of the talk 1. Introduction 2. Main results 3. Methodology 4. Conclusions

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

The Game-Theoretic Framework for Probability

The Game-Theoretic Framework for Probability 11th IPMU International Conference The Game-Theoretic Framework for Probability Glenn Shafer July 5, 2006 Part I. A new mathematical foundation for probability theory. Game theory replaces measure theory.

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

No-arbitrage and the decay of market impact and rough volatility: a theory inspired by Jim

No-arbitrage and the decay of market impact and rough volatility: a theory inspired by Jim No-arbitrage and the decay of market impact and rough volatility: a theory inspired by Jim Mathieu Rosenbaum École Polytechnique 14 October 2017 Mathieu Rosenbaum Rough volatility and no-arbitrage 1 Table

More information

Martingale Approach to Pricing and Hedging

Martingale Approach to Pricing and Hedging Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advanced Stochastic Processes. David Gamarnik LECTURE 16 Applications of Ito calculus to finance Lecture outline Trading strategies Black Scholes option pricing formula 16.1. Security price processes,

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Introduction Credit risk

Introduction Credit risk A structural credit risk model with a reduced-form default trigger Applications to finance and insurance Mathieu Boudreault, M.Sc.,., F.S.A. Ph.D. Candidate, HEC Montréal Montréal, Québec Introduction

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Lecture 3 Growth Model with Endogenous Savings: Ramsey-Cass-Koopmans Model

Lecture 3 Growth Model with Endogenous Savings: Ramsey-Cass-Koopmans Model Lecture 3 Growth Model with Endogenous Savings: Ramsey-Cass-Koopmans Model Rahul Giri Contact Address: Centro de Investigacion Economica, Instituto Tecnologico Autonomo de Mexico (ITAM). E-mail: rahul.giri@itam.mx

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Chapter 2. An Introduction to Forwards and Options. Question 2.1

Chapter 2. An Introduction to Forwards and Options. Question 2.1 Chapter 2 An Introduction to Forwards and Options Question 2.1 The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram

More information

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren October, 2013 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that

More information

4.2 Therapeutic Concentration Levels (BC)

4.2 Therapeutic Concentration Levels (BC) 4.2 Therapeutic Concentration Levels (BC) Introduction to Series Many important sequences are generated through the process of addition. In Investigation 1, you see a particular example of a special type

More information

Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation

Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation Yifan Li 1,2 Ingmar Nolte 1 Sandra Nolte 1 1 Lancaster University 2 University of Manchester 4th Konstanz - Lancaster Workshop on

More information

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin BACHELIER FINANCE SOCIETY 4 th World Congress Tokyo, 26 Investments and forward utilities Thaleia Zariphopoulou The University of Texas at Austin 1 Topics Utility-based measurement of performance Utilities

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

The Capital Asset Pricing Model as a corollary of the Black Scholes model

The Capital Asset Pricing Model as a corollary of the Black Scholes model he Capital Asset Pricing Model as a corollary of the Black Scholes model Vladimir Vovk he Game-heoretic Probability and Finance Project Working Paper #39 September 6, 011 Project web site: http://www.probabilityandfinance.com

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

MLC at Boise State Logarithms Activity 6 Week #8

MLC at Boise State Logarithms Activity 6 Week #8 Logarithms Activity 6 Week #8 In this week s activity, you will continue to look at the relationship between logarithmic functions, exponential functions and rates of return. Today you will use investing

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

The Game-Theoretic Capital Asset Pricing Model

The Game-Theoretic Capital Asset Pricing Model The Game-Theoretic Capital Asset Pricing Model Vladimir Vovk and Glenn Shafer The Game-Theoretic Probability and Finance Project Working Paper # First posted March 2, 2002. Last revised December 30, 207.

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Chapter 1. Bond Pricing (continued)

Chapter 1. Bond Pricing (continued) Chapter 1 Bond Pricing (continued) How does the bond pricing illustrated here help investors in their investment decisions? This pricing formula can allow the investors to decide for themselves what the

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Homework on Rational Functions - Solutions

Homework on Rational Functions - Solutions Homework on Rational Functions - Solutions Fall, 2 Philippe B. Laval Name 1. For each function below, do the following: find the domain find the intercepts find the asymptotes find the end behavior sketch

More information

A new formulation of asset trading games in continuous time with essential forcing of variation exponent

A new formulation of asset trading games in continuous time with essential forcing of variation exponent A new formulation of asset trading games in continuous time with essential forcing of variation exponent Kei Takeuchi Masayuki Kumon Akimichi Takemura December 2008 Abstract We introduce a new formulation

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Option Pricing. Chapter Discrete Time

Option Pricing. Chapter Discrete Time Chapter 7 Option Pricing 7.1 Discrete Time In the next section we will discuss the Black Scholes formula. To prepare for that, we will consider the much simpler problem of pricing options when there are

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

ECON385: A note on the Permanent Income Hypothesis (PIH). In this note, we will try to understand the permanent income hypothesis (PIH).

ECON385: A note on the Permanent Income Hypothesis (PIH). In this note, we will try to understand the permanent income hypothesis (PIH). ECON385: A note on the Permanent Income Hypothesis (PIH). Prepared by Dmytro Hryshko. In this note, we will try to understand the permanent income hypothesis (PIH). Let us consider the following two-period

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki St. Petersburg, April 12, 211 Fractional Lévy processes 1/26 Outline of the talk 1. Introduction 2. Main results 3. Conclusions

More information

Macroeconomics and finance

Macroeconomics and finance Macroeconomics and finance 1 1. Temporary equilibrium and the price level [Lectures 11 and 12] 2. Overlapping generations and learning [Lectures 13 and 14] 2.1 The overlapping generations model 2.2 Expectations

More information

Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous

Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous www.sbm.itb.ac.id/ajtm The Asian Journal of Technology Management Vol. 3 No. 2 (2010) 69-73 Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous Budhi Arta Surya *1 1

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

Option Pricing under Delay Geometric Brownian Motion with Regime Switching Science Journal of Applied Mathematics and Statistics 2016; 4(6): 263-268 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20160406.13 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ MAT5 LECTURE 0 NOTES NATHANIEL GALLUP. Algebraic Limit Theorem Theorem : Algebraic Limit Theorem (Abbott Theorem.3.3) Let (a n ) and ( ) be sequences of real numbers such that lim n a n = a and lim n =

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Financial Engineering. Craig Pirrong Spring, 2006

Financial Engineering. Craig Pirrong Spring, 2006 Financial Engineering Craig Pirrong Spring, 2006 March 8, 2006 1 Levy Processes Geometric Brownian Motion is very tractible, and captures some salient features of speculative price dynamics, but it is

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Akimichi Takemura, Univ. of Tokyo March 31, 2008 1 Outline: A.Takemura 0. Background and our contributions

More information

Game Theory Problem Set 4 Solutions

Game Theory Problem Set 4 Solutions Game Theory Problem Set 4 Solutions 1. Assuming that in the case of a tie, the object goes to person 1, the best response correspondences for a two person first price auction are: { }, < v1 undefined,

More information

Linear Modeling Business 5 Supply and Demand

Linear Modeling Business 5 Supply and Demand Linear Modeling Business 5 Supply and Demand Supply and demand is a fundamental concept in business. Demand looks at the Quantity (Q) of a product that will be sold with respect to the Price (P) the product

More information

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory).

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory). 5. Itô Calculus Types of derivatives Consider a function F (S t,t) depending on two variables S t (say, price) time t, where variable S t itself varies with time t. In stard calculus there are three types

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

23 Stochastic Ordinary Differential Equations with Examples from Finance

23 Stochastic Ordinary Differential Equations with Examples from Finance 23 Stochastic Ordinary Differential Equations with Examples from Finance Scraping Financial Data from the Web The MATLAB/Octave yahoo function below returns daily open, high, low, close, and adjusted close

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

The Forward PDE for American Puts in the Dupire Model

The Forward PDE for American Puts in the Dupire Model The Forward PDE for American Puts in the Dupire Model Peter Carr Ali Hirsa Courant Institute Morgan Stanley New York University 750 Seventh Avenue 51 Mercer Street New York, NY 10036 1 60-3765 (1) 76-988

More information

Sequential Auctions and Auction Revenue

Sequential Auctions and Auction Revenue Sequential Auctions and Auction Revenue David J. Salant Toulouse School of Economics and Auction Technologies Luís Cabral New York University November 2018 Abstract. We consider the problem of a seller

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. A new formulation of asset trading games in continuous time with essential forcing of variation exponent

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. A new formulation of asset trading games in continuous time with essential forcing of variation exponent MATHEMATICAL ENGINEERING TECHNICAL REPORTS A new formulation of asset trading games in continuous time with essential forcing of variation exponent Kei TAKEUCHI, Masayuki KUMON and Akimichi TAKEMURA METR

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Sublinear Time Algorithms Oct 19, Lecture 1

Sublinear Time Algorithms Oct 19, Lecture 1 0368.416701 Sublinear Time Algorithms Oct 19, 2009 Lecturer: Ronitt Rubinfeld Lecture 1 Scribe: Daniel Shahaf 1 Sublinear-time algorithms: motivation Twenty years ago, there was practically no investigation

More information

The Role of Physical Capital

The Role of Physical Capital San Francisco State University ECO 560 The Role of Physical Capital Michael Bar As we mentioned in the introduction, the most important macroeconomic observation in the world is the huge di erences in

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Chapter 1 Microeconomics of Consumer Theory

Chapter 1 Microeconomics of Consumer Theory Chapter Microeconomics of Consumer Theory The two broad categories of decision-makers in an economy are consumers and firms. Each individual in each of these groups makes its decisions in order to achieve

More information

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli 6 Martingales in continuous time Just as in discrete time, the notion of a martingale will play a key r^ole in our continuous time models. Recall that in discrete time, a sequence ; 1 ;::: ; n for which

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

p 1 _ x 1 (p 1 _, p 2, I ) x 1 X 1 X 2

p 1 _ x 1 (p 1 _, p 2, I ) x 1 X 1 X 2 Today we will cover some basic concepts that we touched on last week in a more quantitative manner. will start with the basic concepts then give specific mathematical examples of the concepts. f time permits

More information

Dynamic Hedging and PDE Valuation

Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation 1/ 36 Introduction Asset prices are modeled as following di usion processes, permitting the possibility of continuous trading. This environment

More information