Fully Observable. Perfect

Size: px
Start display at page:

Download "Fully Observable. Perfect"

Transcription

1 CS 188: Ar)ficil Intelligence Mrkov Deciion Procee II Stoch)c Plnning: MDP Sttic Environment Fully Obervble Perfect Wht ction next? Stochtic Intntneou Intructor: Dn Klein nd Pieter Abbeel Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mteril re vilble t hkp://i.berkeley.edu.] Percept Action 3 Recp: MDP Solving MDP Mrkov deciion procee: Stte S Ac)on A Trni)on P(,) (or T(,, )) Rewrd R(,, ) (nd dicount γ) Strt tte 0 Vlue Iter)on Rel- Time Dynmic Progrmming Policy Iter)on Qun))e: Policy = mp of tte to c)on U)lity = um of dicounted rewrd Vlue = expected future u)lity from tte (mx node) Q- Vlue = expected future u)lity from q- tte (chnce node),,, Reinforcement Lerning Op)ml Qun))e Gridworld Vlue V* The vlue (u)lity) of tte : V * () = expected u)lity tr)ng in nd c)ng op)mlly The vlue (u)lity) of q- tte (,): Q * (,) = expected u)lity tr)ng out hving tken c)on from tte nd (there]er) c)ng op)mlly The op)ml policy: π * () = op)ml c)on from tte,,, i tte (, ) i q-tte (,, ) i trnition [Demo: gridworld vlue (L9D1)]

2 Gridworld: Q* The Bellmn Equ)on How to be op)ml: Step 1: Tke correct firt c)on Step 2: Keep being op)ml The Bellmn Equ)on Defini)on of op)ml u)lity vi expec)mx recurrence give imple one- tep lookhed rel)onhip mongt op)ml u)lity vlue Thee re the Bellmn equ)on, nd they chrcterize op)ml vlue in wy we ll ue over nd over,,, We re doing wy too much work with expec)mx! Problem: Stte re repeted Ide: Only compute needed qun))e once Problem: Tree goe on forever Ide: Do depth- limited comput)on, but with increing depth un)l chnge i mll Note: deep prt of the tree eventully don t mker if γ < 1 Rcing Serch Tree Time- Limited Vlue Time- Limited Vlue: Avoiding Redundnt Comput)on Key ide: )me- limited vlue Define V k () to be the op)ml vlue of if the gme end in k more )me tep Equivlently, it wht depth- k expec)mx would give from [Demo )me- limited vlue (L8D6)]

3 Vlue Iter)on Exmple: Vlue Iter)on Aume no dicount (gmm=1) to keep mth imple! Clled Bellmn Bckup Vlue Iter)on Exmple: Bellmn Bckup Strt with V 0 () = 0: no 8me tep le9 men n expected rewrd um of zero Given vector of V k () vlue, do one ply of expec?mx from ech tte: Repet un?l convergence (trut me, it doe),,, V k ( ) V k+1 () V 1 = greedy = mx V 0 = 0 V 0 = 1 V 0 = 2 Q 1 (, 1 ) = 2 + γ 0 ~ 2 Q 1 (, 2 ) = 5 + γ 0.9~ 1 + γ 0.1~ 2 ~ 6.1 Q 1 (, 3 ) = γ 2 ~ 6.5 k=0 k=1 If gent i in 4,3, it only h one legl ction: get jewel. It get rewrd nd the gme i over. If gent i in the pit, it h only one legl ction, die. It get penlty nd the gme i over. Agent doe NOT get rewrd for moving INTO 4,3.

4 k=2 k=3 k=4 k=5 k=6 k=7

5 k=8 k=9 k=10 k=11 k=12 k=100

6 Strt with V 0 () = 0: Vlue Iter)on Given vector of V k () vlue, do one ply of expec?mx from ech tte: Repet un?l convergence Complexity of ech iter?on: O(S 2 A) Number of iter?on: poly( S, A, 1/(1- g)) Theorem: will converge to unique op?ml vlue,,, V k ( ) V k+1 () Vlue Iter)on Bellmn equ)on chrcterize the op)ml vlue: Vlue iter)on compute them: Vlue iter)on i jut fixed point olu)on method though the V k vector re lo interpretble )me- limited vlue V(),,, V( ) Convergence* Policy Extrc)on How do we know the V k vector will converge? Ce 1: If the tree h mximum depth M, then V M hold the ctul untruncted vlue Ce 2: If the dicount i le thn 1 Sketch: For ny tte V k nd V k+1 cn be viewed depth k+1 expec)mx reult in nerly iden)cl erch tree The mx difference hppen if big rewrd t k+1 level Tht lt lyer i t bet ll R MAX But everything i dicounted by γ k tht fr out So V k nd V k+1 re t mot γ k mx R different So k incree, the vlue converge Compu)ng Ac)on from Vlue Let imgine we hve the op)ml vlue V*() How hould we ct? It not obviou! Compu)ng Ac)on from Q- Vlue Let imgine we hve the op)ml q- vlue: How hould we ct? Completely trivil to decide! We need to do mini- expec)mx (one tep) Thi i clled policy extrc)on, ince it get the policy implied by the vlue Importnt leon: c)on re eier to elect from q- vlue thn vlue!

7 Problem with Vlue Iter)on Vlue iter)on repet the Bellmn updte: Problem 1: It low O(S 2,, A) per iter)on Problem 2: The mx t ech tte rrely chnge Problem 3: The policy o]en converge long before the vlue, VI à Aynchronou VI I it een)l to bck up ll tte in ech iter)on? No! Stte my be bcked up mny )me or not t ll in ny order A long no tte get trved convergence proper)e )ll hold!! [Demo: vlue iter)on (L9D2)] 44 Priori)z)on of Bellmn Bckup k=1 Are ll bckup eqully importnt? Cn we void ome bckup? Cn we chedule the bckup more ppropritely? 45 k=2 k=3

8 Aynch VI: Priori)zed Sweeping Why bckup tte if vlue of ucceor me? Prefer bcking tte whoe ucceor hd mot chnge Priority Queue of (tte, expected chnge in vlue) Bckup in the order of priority A]er bcking tte updte priority queue for ll predeceor Solving MDP Vlue Iter)on Policy Iter)on Reinforcement Lerning Policy Method Policy Evlu)on Fixed Policie U)li)e for Fixed Policy Do the op)ml c)on,,, Do wht π y to do π(), π(), π(), Another bic oper)on: compute the u)lity of tte under fixed (generlly non- op)ml) policy Define the u)lity of tte, under fixed policy π: V π () = expected totl dicounted rewrd tr)ng in nd following π Recurive rel)on (one- tep look- hed / Bellmn equ)on): π(), π(), π(), Expec)mx tree mx over ll c)on to compute the op)ml vlue If we fixed ome policy π(), then the tree would be impler only one c)on per tte though the tree vlue would depend on which policy we fixed

9 Exmple: Policy Evlu)on Exmple: Policy Evlu)on Alwy Go Right Alwy Go Forwrd Alwy Go Right Alwy Go Forwrd Policy Evlu)on Policy Extrc)on How do we clculte the V for fixed policy π? Ide 1: Turn recurive Bellmn equ)on into updte (like vlue iter)on) π(), π(), π(), Efficiency: O(S 2 ) per iter)on Ide 2: Without the mxe, the Bellmn equ)on re jut liner ytem Solve with Mtlb (or your fvorite liner ytem olver) Compu)ng Ac)on from Vlue Let imgine we hve the op)ml vlue V*() How hould we ct? It not obviou! Compu)ng Ac)on from Q- Vlue Let imgine we hve the op)ml q- vlue: How hould we ct? Completely trivil to decide! We need to do mini- expec)mx (one tep) Thi i clled policy extrc)on, ince it get the policy implied by the vlue Importnt leon: c)on re eier to elect from q- vlue thn vlue!

10 Policy Iter)on Policy Iter)on Altern)ve pproch for op)ml vlue: Step 1: Policy evlu)on: clculte u)li)e for ome fixed policy (not op)ml u)li)e!) un)l convergence Step 2: Policy improvement: updte policy uing one- tep look- hed with reul)ng converged (but not op)ml!) u)li)e future vlue Repet tep un)l policy converge Thi i policy iter)on It )ll op)ml! Cn converge (much) fter under ome condi)on Policy Iter)on Comprion Evlu)on: For fixed current policy π, find vlue with policy evlu)on: Iterte un)l vlue converge: Improvement: For fixed vlue, get beker policy uing policy extrc)on One- tep look- hed: Both vlue iter)on nd policy iter)on compute the me thing (ll op)ml vlue) In vlue iter)on: Every iter)on updte both the vlue nd (implicitly) the policy We don t trck the policy, but tking the mx over c)on implicitly recompute it In policy iter)on: We do everl pe tht updte u)li)e with fixed policy (ech p i ft becue we conider only one c)on, not ll of them) A]er the policy i evluted, new policy i choen (low like vlue iter)on p) The new policy will be beker (or we re done) Both re dynmic progrm for olving MDP Summry: MDP Algorithm Double Bndit So you wnt to. Compute op)ml vlue: ue vlue iter)on or policy iter)on Compute vlue for pr)culr policy: ue policy evlu)on Turn your vlue into policy: ue policy extrc)on (one- tep lookhed) Thee ll look the me! They biclly re they re ll vri)on of Bellmn updte They ll ue one- tep lookhed expec)mx frgment They differ only in whether we plug in fixed policy or mx over c)on

11 Double- Bndit MDP Offline Plnning Ac)on: Blue, Red Stte: Win, Loe $1 1.0 W 0.75 $ $ $ $0 L No dicount 100 8me tep Both tte hve the me vlue $1 1.0 Solving MDP i offline plnning You determine ll qun))e through comput)on You need to know the detil of the MDP You do not ctully ply the gme! Ply Red Ply Blue Vlue $1 1.0 W 0.75 $ $ $ $0 No dicount 100 8me tep Both tte hve the me vlue L $1 1.0 Let Ply! Online Plnning Rule chnged! Red win chnce i different.?? $0 $2 $2 $0 $2 $2 $2 $2 $0 $0 $0 $1 1.0 W?? $2?? $2?? $0 L $1 1.0 Let Ply! Wht Jut Hppened? Tht wn t plnning, it w lerning! Specificlly, reinforcement lerning There w n MDP, but you couldn t olve it with jut comput)on You needed to ctully ct to figure it out $0 $0 $0 $2 $0 $2 $0 $0 $0 $0 Importnt ide in reinforcement lerning tht cme up Explor)on: you hve to try unknown c)on to get inform)on Exploit)on: eventully, you hve to ue wht you know Regret: even if you lern intelligently, you mke mitke Smpling: becue of chnce, you hve to try thing repetedly Difficulty: lerning cn be much hrder thn olving known MDP

12 Next Time: Reinforcement Lerning!

Static Fully Observable Stochastic What action next? Instantaneous Perfect

Static Fully Observable Stochastic What action next?  Instantaneous Perfect CS 188: Ar)ficil Intelligence Mrkov Deciion Procee K+1 Intructor: Dn Klein nd Pieter Abbeel - - - Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to

More information

Gridworld Values V* Gridworld: Q*

Gridworld Values V* Gridworld: Q* CS 188: Artificil Intelligence Mrkov Deciion Procee II Intructor: Dn Klein nd Pieter Abbeel --- Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI

More information

Non-Deterministic Search. CS 188: Artificial Intelligence Markov Decision Processes. Grid World Actions. Example: Grid World

Non-Deterministic Search. CS 188: Artificial Intelligence Markov Decision Processes. Grid World Actions. Example: Grid World CS 188: Artificil Intelligence Mrkov Deciion Procee Non-Determinitic Serch Dn Klein, Pieter Abbeel Univerity of Cliforni, Berkeley Exmple: Grid World Grid World Action A mze-like problem The gent live

More information

Reinforcement Learning. CS 188: Artificial Intelligence Fall Grid World. Markov Decision Processes. What is Markov about MDPs?

Reinforcement Learning. CS 188: Artificial Intelligence Fall Grid World. Markov Decision Processes. What is Markov about MDPs? CS 188: Artificil Intelligence Fll 2010 Lecture 9: MDP 9/2/2010 Reinforcement Lerning [DEMOS] Bic ide: Receive feedbck in the form of rewrd Agent utility i defined by the rewrd function Mut (lern to) ct

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: MDPs. Recap: Optimal Utilities. Practice: Computing Actions. Recap: Bellman Equations

Announcements. CS 188: Artificial Intelligence Fall Recap: MDPs. Recap: Optimal Utilities. Practice: Computing Actions. Recap: Bellman Equations CS 188: Artificil Intelligence Fll 2009 Lecture 10: MDP 9/29/2009 Announcement P2: Due Wednedy P3: MDP nd Reinforcement Lerning i up! W2: Out lte thi week Dn Klein UC Berkeley Mny lide over the coure dpted

More information

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities CS 188: Artificial Intelligence Markov Deciion Procee II Intructor: Dan Klein and Pieter Abbeel --- Univerity of California, Berkeley [Thee lide were created by Dan Klein and Pieter Abbeel for CS188 Intro

More information

Announcements. CS 188: Artificial Intelligence Fall Reinforcement Learning. Markov Decision Processes. Example Optimal Policies.

Announcements. CS 188: Artificial Intelligence Fall Reinforcement Learning. Markov Decision Processes. Example Optimal Policies. CS 188: Artificil Intelligence Fll 2008 Lecture 9: MDP 9/25/2008 Announcement Homework olution / review eion: Mondy 9/29, 7-9pm in 2050 Vlley LSB Tuedy 9/0, 6-8pm in 10 Evn Check web for detil Cover W1-2,

More information

Recap: MDPs. CS 188: Artificial Intelligence Fall Optimal Utilities. The Bellman Equations. Value Estimates. Practice: Computing Actions

Recap: MDPs. CS 188: Artificial Intelligence Fall Optimal Utilities. The Bellman Equations. Value Estimates. Practice: Computing Actions CS 188: Artificil Intelligence Fll 2008 Lecture 10: MDP 9/30/2008 Dn Klein UC Berkeley Recp: MDP Mrkov deciion procee: Stte S Action A Trnition P(,) (or T(,, )) Rewrd R(,, ) (nd dicount γ) Strt tte 0 Quntitie:

More information

Outline. CS 188: Artificial Intelligence Spring Speeding Up Game Tree Search. Minimax Example. Alpha-Beta Pruning. Pruning

Outline. CS 188: Artificial Intelligence Spring Speeding Up Game Tree Search. Minimax Example. Alpha-Beta Pruning. Pruning CS 188: Artificil Intelligence Spring 2011 Lecture 8: Gme, MDP 2/14/2010 Pieter Abbeel UC Berkeley Mny lide dpted from Dn Klein Outline Zero-um determinitic two plyer gme Minimx Evlution function for non-terminl

More information

4/30/2012. Overview. MDPs. Planning Agent. Grid World. Review: Expectimax. Introduction & Agents Search, Heuristics & CSPs Adversarial Search

4/30/2012. Overview. MDPs. Planning Agent. Grid World. Review: Expectimax. Introduction & Agents Search, Heuristics & CSPs Adversarial Search Overview CSE 473 Mrkov Deciion Procee Dn Weld Mny lide from Chri Bihop, Mum, Dn Klein, Sturt Ruell, Andrew Moore & Luke Zettlemoyer Introduction & Agent Serch, Heuritic & CSP Adverril Serch Logicl Knowledge

More information

DYNAMIC PROGRAMMING REINFORCEMENT LEARNING. COGS 202 : Week 7 Presentation

DYNAMIC PROGRAMMING REINFORCEMENT LEARNING. COGS 202 : Week 7 Presentation DYNAMIC PROGRAMMING REINFORCEMENT LEARNING COGS 202 : Week 7 Preenttion OUTLINE Recp (Stte Vlue nd Action Vlue function) Computtion in MDP Dynmic Progrmming (DP) Policy Evlution Policy Improvement Policy

More information

Maximum Expected Utility. CS 188: Artificial Intelligence Fall Preferences. MEU Principle. Rational Preferences. Utilities: Uncertain Outcomes

Maximum Expected Utility. CS 188: Artificial Intelligence Fall Preferences. MEU Principle. Rational Preferences. Utilities: Uncertain Outcomes CS 188: Artificil Intelligence Fll 2011 Mximum Expected Utility Why hould we verge utilitie? Why not minimx? Lecture 8: Utilitie / MDP 9/20/2011 Dn Klein UC Berkeley Principle of mximum expected utility:

More information

Announcements. Maximizing Expected Utility. Preferences. Rational Preferences. Rational Preferences. Introduction to Artificial Intelligence

Announcements. Maximizing Expected Utility. Preferences. Rational Preferences. Rational Preferences. Introduction to Artificial Intelligence Introduction to Artificil Intelligence V22.0472-001 Fll 2009 Lecture 8: Utilitie Announcement Will hve Aignment 1 grded by Wed. Aignment 2 i up on webpge Due on Mon 19 th October (2 week) Rob Fergu Dept

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

CS 188: Artificial Intelligence Fall Markov Decision Processes

CS 188: Artificial Intelligence Fall Markov Decision Processes CS 188: Artificial Intelligence Fall 2007 Lecture 10: MDP 9/27/2007 Dan Klein UC Berkeley Markov Deciion Procee An MDP i defined by: A et of tate S A et of action a A A tranition function T(,a, ) Prob

More information

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011 CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDP 2/16/2011 Announcement Midterm: Tueday March 15, 5-8pm P2: Due Friday 4:59pm W3: Minimax, expectimax and MDP---out tonight, due Monday February

More information

Chapter 3: The Reinforcement Learning Problem. The Agent'Environment Interface. Getting the Degree of Abstraction Right. The Agent Learns a Policy

Chapter 3: The Reinforcement Learning Problem. The Agent'Environment Interface. Getting the Degree of Abstraction Right. The Agent Learns a Policy Chpter 3: The Reinforcement Lerning Problem The Agent'Environment Interfce Objectives of this chpter: describe the RL problem we will be studying for the reminder of the course present idelized form of

More information

INF 4130 Exercise set 4

INF 4130 Exercise set 4 INF 4130 Exercise set 4 Exercise 1 List the order in which we extrct the nodes from the Live Set queue when we do redth first serch of the following grph (tree) with the Live Set implemented s LIFO queue.

More information

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1)

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1) CS 188: Artificial Intelligence Fall 007 Lecture 9: Utilitie 9/5/007 Dan Klein UC Berkeley Project (due 10/1) Announcement SVN group available, email u to requet Midterm 10/16 in cla One ide of a page

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 7: The Endowment Economy. Today s Aims. The Story So Far. An Endowment Economy.

3/1/2016. Intermediate Microeconomics W3211. Lecture 7: The Endowment Economy. Today s Aims. The Story So Far. An Endowment Economy. 1 Intermedite Microeconomics W3211 Lecture 7: The Endowment Economy Introduction Columbi University, Spring 2016 Mrk Den: mrk.den@columbi.edu 2 The Story So Fr. 3 Tody s Aims 4 Remember: the course hd

More information

Cache CPI and DFAs and NFAs. CS230 Tutorial 10

Cache CPI and DFAs and NFAs. CS230 Tutorial 10 Cche CPI nd DFAs nd NFAs CS230 Tutoril 10 Multi-Level Cche: Clculting CPI When memory ccess is ttempted, wht re the possible results? ccess miss miss CPU L1 Cche L2 Cche Memory L1 cche hit L2 cche hit

More information

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 4

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 4 CS 188 Introduction to Artificil Intelligence Fll 2018 Note 4 These lecture notes re hevily bsed on notes originlly written by Nikhil Shrm. Non-Deterministic Serch Picture runner, coming to the end of

More information

3: Inventory management

3: Inventory management INSE6300 Ji Yun Yu 3: Inventory mngement Concordi Februry 9, 2016 Supply chin mngement is bout mking sequence of decisions over sequence of time steps, fter mking observtions t ech of these time steps.

More information

CH 71 COMPLETING THE SQUARE INTRODUCTION FACTORING PERFECT SQUARE TRINOMIALS

CH 71 COMPLETING THE SQUARE INTRODUCTION FACTORING PERFECT SQUARE TRINOMIALS CH 7 COMPLETING THE SQUARE INTRODUCTION I t s now time to py our dues regrding the Qudrtic Formul. Wht, you my sk, does this men? It mens tht the formul ws merely given to you once or twice in this course,

More information

Arithmetic and Geometric Sequences

Arithmetic and Geometric Sequences Arithmetic nd Geometric Sequences A sequence is list of numbers or objects, clled terms, in certin order. In n rithmetic sequence, the difference between one term nd the next is lwys the sme. This difference

More information

10/12/2012. Logistics. Planning Agent. MDPs. Review: Expectimax. PS 2 due Tuesday Thursday 10/18. PS 3 due Thursday 10/25.

10/12/2012. Logistics. Planning Agent. MDPs. Review: Expectimax. PS 2 due Tuesday Thursday 10/18. PS 3 due Thursday 10/25. Logitic PS 2 due Tueday Thurday 10/18 CSE 473 Markov Deciion Procee PS 3 due Thurday 10/25 Dan Weld Many lide from Chri Bihop, Mauam, Dan Klein, Stuart Ruell, Andrew Moore & Luke Zettlemoyer MDP Planning

More information

ECE 410 Homework 1 -Solutions Spring 2008

ECE 410 Homework 1 -Solutions Spring 2008 ECE 410 Homework 1 -Solution Spring 2008 Prolem 1 For prolem 2-4 elow, ind the voltge required to keep the trnitor on ppling the rule dicued in cl. Aume VDD = 2.2V FET tpe Vt (V) Vg (V) Vi (V) n-tpe 0.5

More information

MARKET POWER AND MISREPRESENTATION

MARKET POWER AND MISREPRESENTATION MARKET POWER AND MISREPRESENTATION MICROECONOMICS Principles nd Anlysis Frnk Cowell Note: the detil in slides mrked * cn only e seen if you run the slideshow July 2017 1 Introduction Presenttion concerns

More information

Addition and Subtraction

Addition and Subtraction Addition nd Subtrction Nme: Dte: Definition: rtionl expression A rtionl expression is n lgebric expression in frction form, with polynomils in the numertor nd denomintor such tht t lest one vrible ppers

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

Buckling of Stiffened Panels 1 overall buckling vs plate buckling PCCB Panel Collapse Combined Buckling

Buckling of Stiffened Panels 1 overall buckling vs plate buckling PCCB Panel Collapse Combined Buckling Buckling of Stiffened Pnels overll uckling vs plte uckling PCCB Pnel Collpse Comined Buckling Vrious estimtes hve een developed to determine the minimum size stiffener to insure the plte uckles while the

More information

Multi-Step Reinforcement Learning: A Unifying Algorithm

Multi-Step Reinforcement Learning: A Unifying Algorithm Multi-Step Reinforcement Lerning: A Unifying Algorithm Kristopher De Asis, 1 J. Fernndo Hernndez-Grci, 1 G. Zchris Hollnd, 1 Richrd S. Sutton Reinforcement Lerning nd Artificil Intelligence Lbortory, University

More information

(a) by substituting u = x + 10 and applying the result on page 869 on the text, (b) integrating by parts with u = ln(x + 10), dv = dx, v = x, and

(a) by substituting u = x + 10 and applying the result on page 869 on the text, (b) integrating by parts with u = ln(x + 10), dv = dx, v = x, and Supplementry Questions for HP Chpter 5. Derive the formul ln( + 0) d = ( + 0) ln( + 0) + C in three wys: () by substituting u = + 0 nd pplying the result on pge 869 on the tet, (b) integrting by prts with

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

Name Date. Find the LCM of the numbers using the two methods shown above.

Name Date. Find the LCM of the numbers using the two methods shown above. Lest Common Multiple Multiples tht re shred by two or more numbers re clled common multiples. The lest of the common multiples is clled the lest common multiple (LCM). There re severl different wys to

More information

A ppendix to. I soquants. Producing at Least Cost. Chapter

A ppendix to. I soquants. Producing at Least Cost. Chapter A ppendix to Chpter 0 Producing t est Cost This ppendix descries set of useful tools for studying firm s long-run production nd costs. The tools re isoqunts nd isocost lines. I soqunts FIGURE A0. SHOWS

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

What is Monte Carlo Simulation? Monte Carlo Simulation

What is Monte Carlo Simulation? Monte Carlo Simulation Wht is Monte Crlo Simultion? Monte Crlo methods re widely used clss of computtionl lgorithms for simulting the ehvior of vrious physicl nd mthemticl systems, nd for other computtions. Monte Crlo lgorithm

More information

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING UNIVERSITY OF NOTTINGHAM Discussion Ppers in Economics Discussion Pper No. 0/0 BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING by Arijit Mukherjee April 00 DP 0/0 ISSN 160-48

More information

Access your online resources today at

Access your online resources today at 978--07-670- - CmbridgeMths: NSW Syllbus for the Austrlin Curriculum: Yer 0: Stte./. Access your online resources tody t www.cmbridge.edu.u/go. Log in to your existing Cmbridge GO user ccount or crete

More information

Trigonometry - Activity 21 General Triangle Solution: Given three sides.

Trigonometry - Activity 21 General Triangle Solution: Given three sides. Nme: lss: p 43 Mths Helper Plus Resoure Set. opyright 003 rue. Vughn, Tehers hoie Softwre Trigonometry - tivity 1 Generl Tringle Solution: Given three sides. When the three side lengths '', '' nd '' of

More information

Chapter55. Algebraic expansion and simplification

Chapter55. Algebraic expansion and simplification Chpter55 Algebric expnsion nd simplifiction Contents: A The distributive lw B The product ( + b)(c + d) C Difference of two squres D Perfect squres expnsion E Further expnsion F The binomil expnsion 88

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

11.1 Two-Port Power Gains

11.1 Two-Port Power Gains 5//7 _ Twoort ower G /. Twoort ower G Redg Aignment: pp. 53654 pecifyg the g of n mplifier i it more miguou thn you my thk. The prolem i tht there re o mny wy to defe power! HO: THE OWER THAT BE HO: OWER

More information

Outline. CSE 326: Data Structures. Priority Queues Leftist Heaps & Skew Heaps. Announcements. New Heap Operation: Merge

Outline. CSE 326: Data Structures. Priority Queues Leftist Heaps & Skew Heaps. Announcements. New Heap Operation: Merge CSE 26: Dt Structures Priority Queues Leftist Heps & Skew Heps Outline Announcements Leftist Heps & Skew Heps Reding: Weiss, Ch. 6 Hl Perkins Spring 2 Lectures 6 & 4//2 4//2 2 Announcements Written HW

More information

UNIT 7 SINGLE SAMPLING PLANS

UNIT 7 SINGLE SAMPLING PLANS UNIT 7 SINGLE SAMPLING PLANS Structure 7. Introduction Objectives 7. Single Smpling Pln 7.3 Operting Chrcteristics (OC) Curve 7.4 Producer s Risk nd Consumer s Risk 7.5 Averge Outgoing Qulity (AOQ) 7.6

More information

Problem Set 2 Suggested Solutions

Problem Set 2 Suggested Solutions 4.472 Prolem Set 2 Suggested Solutions Reecc Zrutskie Question : First find the chnge in the cpitl stock, k, tht will occur when the OLG economy moves to the new stedy stte fter the government imposes

More information

The Market Approach to Valuing Businesses (Second Edition)

The Market Approach to Valuing Businesses (Second Edition) BV: Cse Anlysis Completed Trnsction & Guideline Public Comprble MARKET APPROACH The Mrket Approch to Vluing Businesses (Second Edition) Shnnon P. Prtt This mteril is reproduced from The Mrket Approch to

More information

Earning Money. Earning Money. Curriculum Ready ACMNA: 189.

Earning Money. Earning Money. Curriculum Ready ACMNA: 189. Erning Money Curriculum Redy ACMNA: 189 www.mthletics.com Erning EARNING Money MONEY Different jos py different mounts of moneys in different wys. A slry isn t pid once in yer. It is pid in equl prts

More information

Long-term Memory Review PROFICIENCY PRACTICE: MONDAY REVIEW

Long-term Memory Review PROFICIENCY PRACTICE: MONDAY REVIEW PROFICINCY PRACTIC: MONDAY RVIW : A D 14 cm B 21 cm C 2) Use : The tringles in the figure ove re similr. ) nd re mesures of corresponding sides. ) nd re mesures of nother pir of corresponding sides. 3)

More information

Controlling a population of identical MDP

Controlling a population of identical MDP Controlling popultion of identicl MDP Nthlie Bertrnd Inri Rennes ongoing work with Miheer Dewskr (CMI), Blise Genest (IRISA) nd Hugo Gimert (LBRI) Trends nd Chllenges in Quntittive Verifiction Mysore,

More information

Smart Investment Strategies

Smart Investment Strategies Smrt Investment Strtegies Risk-Rewrd Rewrd Strtegy Quntifying Greed How to mke good Portfolio? Entrnce-Exit Exit Strtegy: When to buy? When to sell? 2 Risk vs.. Rewrd Strtegy here is certin mount of risk

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

3. Argumentation Frameworks

3. Argumentation Frameworks 3. Argumenttion Frmeworks Argumenttion current hot topic in AI. Historiclly more recent thn other pproches discussed here. Bsic ide: to construct cceptble set(s) of beliefs from given KB: 1 construct rguments

More information

CSCI 104 Splay Trees. Mark Redekopp

CSCI 104 Splay Trees. Mark Redekopp CSCI 0 Sply Trees Mrk edekopp Soures / eding Mteril for these slides ws derived from the following soures https://www.s.mu.edu/~sletor/ppers/selfdjusting.pdf http://digitl.s.usu.edu/~lln/ds/notes/ch.pdf

More information

Today s Outline. One More Operation. Priority Queues. New Operation: Merge. Leftist Heaps. Priority Queues. Admin: Priority Queues

Today s Outline. One More Operation. Priority Queues. New Operation: Merge. Leftist Heaps. Priority Queues. Admin: Priority Queues Tody s Outline Priority Queues CSE Dt Structures & Algorithms Ruth Anderson Spring 4// Admin: HW # due this Thursdy / t :9pm Printouts due Fridy in lecture. Priority Queues Leftist Heps Skew Heps 4// One

More information

production for Community & Culture Project Reference e 2 design episodes Bogotá: Building a Sustainable City and Affordable Green Housing.

production for Community & Culture Project Reference e 2 design episodes Bogotá: Building a Sustainable City and Affordable Green Housing. Community & Culture Project Reference e 2 design episodes Bogotá: Building Sustinble City nd Affordble Green Housing. 1) Red the bckground essy nd discussion questions for e 2 design episodes Bogotá: Building

More information

Economics Department Fall 2013 Student Learning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics)

Economics Department Fall 2013 Student Learning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics) Jnury 2014 Economics Deprtment Fll 2013 Stuent Lerning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics) Lerning Outcome Sttement: In the Fll 2013 semester the Economics Deprtment engge

More information

JFE Online Appendix: The QUAD Method

JFE Online Appendix: The QUAD Method JFE Online Appendix: The QUAD Method Prt of the QUAD technique is the use of qudrture for numericl solution of option pricing problems. Andricopoulos et l. (00, 007 use qudrture s the only computtionl

More information

Technical Appendix. The Behavior of Growth Mixture Models Under Nonnormality: A Monte Carlo Analysis

Technical Appendix. The Behavior of Growth Mixture Models Under Nonnormality: A Monte Carlo Analysis Monte Crlo Technicl Appendix 1 Technicl Appendix The Behvior of Growth Mixture Models Under Nonnormlity: A Monte Crlo Anlysis Dniel J. Buer & Ptrick J. Currn 10/11/2002 These results re presented s compnion

More information

Burrows-Wheeler Transform and FM Index

Burrows-Wheeler Transform and FM Index Burrows-Wheeler Trnsform nd M Index Ben ngmed You re free to use these slides. If you do, plese sign the guestbook (www.lngmed-lb.org/teching-mterils), or emil me (ben.lngmed@gmil.com) nd tell me briefly

More information

164 CHAPTER 2. VECTOR FUNCTIONS

164 CHAPTER 2. VECTOR FUNCTIONS 164 CHAPTER. VECTOR FUNCTIONS.4 Curvture.4.1 Definitions nd Exmples The notion of curvture mesures how shrply curve bends. We would expect the curvture to be 0 for stright line, to be very smll for curves

More information

Uncertain Outcomes. CS 232: Ar)ficial Intelligence Uncertainty and U)li)es Sep 24, Worst- Case vs. Average Case.

Uncertain Outcomes. CS 232: Ar)ficial Intelligence Uncertainty and U)li)es Sep 24, Worst- Case vs. Average Case. 1 CS 232: Ar)ficial Intelligence Uncertainty and U)li)es Sep 24, 2015 Uncertain Outcomes [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

A Closer Look at Bond Risk: Duration

A Closer Look at Bond Risk: Duration W E B E X T E S I O 4C A Closer Look t Bond Risk: Durtion This Extension explins how to mnge the risk of bond portfolio using the concept of durtion. BOD RISK In our discussion of bond vlution in Chpter

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 9: MDPs 9/22/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 2 Grid World The agent lives in

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

why who when best resource

why who when best resource g ds r o C chin Tow formnce A Mngers Guide to Coch nd Inspire Empoyees when At the beginning of new [stretch] ssignment. Yer round nd during performnce reviews. At the beginning of new stff/empoyee retionship.

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Uncertainty and Utilities Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides are based on those of Dan Klein and Pieter Abbeel for

More information

Decision Making Under Uncertainty

Decision Making Under Uncertainty CSC384: Intro to Artificil Intelligence Preferences Decision Mking Under Uncertinty Decision Trees DBN: 15.1 nd 15.5 Decision Network: 16.1,16.2,16.5,16.6 I give root plnning prolem: I wnt coffee ut coffee

More information

International Budget Partnership OPEN BUDGET QUESTIONNAIRE POLAND

International Budget Partnership OPEN BUDGET QUESTIONNAIRE POLAND Interntionl Budget Prtnership OPEN BUDGET QUESTIONNAIRE POLAND September 28, 2007 Interntionl Budget Prtnership Center on Budget nd Policy Priorities 820 First Street, NE Suite 510 Wshington, DC 20002

More information

JOURNAL THE ERGODIC TM CANDLESTICK OSCILLATOR ROBERT KRAUSZ'S. Volume 1, Issue 7

JOURNAL THE ERGODIC TM CANDLESTICK OSCILLATOR ROBERT KRAUSZ'S. Volume 1, Issue 7 ROBERT KRUSZ'S JOURNL Volume 1, Issue 7 THE ERGODIC TM CNDLESTICK OSCILLTOR S ometimes we re lucky (due to our diligence) nd we find tool tht is useful nd does the jo etter thn previous tools, or nswers

More information

Roadmap of This Lecture

Roadmap of This Lecture Reltionl Model Rodmp of This Lecture Structure of Reltionl Dtbses Fundmentl Reltionl-Algebr-Opertions Additionl Reltionl-Algebr-Opertions Extended Reltionl-Algebr-Opertions Null Vlues Modifiction of the

More information

THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA.

THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA. THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA. I would like to thnk Aris for his mthemticl contriutions nd his swet which hs enled deeper understnding of the turnover formul to emerge. His contriution

More information

R-automata. 1 Introduction. Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi

R-automata. 1 Introduction. Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi R-utomt Proh Aziz Abdull, Pvel Krcl, nd Wng Yi Deprtment of Informtion Technology, Uppl Univerity, Sweden Emil: {proh,pvelk,yi}@it.uu.e Abtrct. We introduce R-utomt nite tte mchine which operte on nite

More information

Continuous Optimal Timing

Continuous Optimal Timing Srlnd University Computer Science, Srbrücken, Germny My 6, 205 Outline Motivtion Preliminries Existing Algorithms Our Algorithm Empiricl Evlution Conclusion Motivtion Probbilistic models unrelible/unpredictble

More information

Ratio and Proportion Long-Term Memory Review Day 1 - Review

Ratio and Proportion Long-Term Memory Review Day 1 - Review Rtio nd Proportion Dy 1 - Review 1. Provide omplete response to eh of the following: ) A rtio ompres two. ) A proportion sets two rtios to eh other. ) Wht re similr figures? 2. Drw two similr figures.

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

Interest. Interest. Curriculum Ready ACMNA: 211, 229,

Interest. Interest. Curriculum Ready ACMNA: 211, 229, Inteest Cuiulum Redy ACMNA: 211, 229, 234 www.mthletis.om INTEREST The whole point of Finnil Mths is to pedit wht will hppen to money ove time. This is so you n e peped y knowing how muh money you will

More information

Siemens Investor Plan

Siemens Investor Plan Siemens Investor Pln Your complete guide to mking the most of your Siemens pension If you nee d dvice... IFA Pro motion cn pro indepe v ndent finnci ide contct d Visit th et l dvise eir web rs in yo ils

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Section 2.2 Trigonometry: The Triangle Identities

Section 2.2 Trigonometry: The Triangle Identities Se. 2.2 Trigonometry: The Tringle Identities 7 Setion 2.2 Trigonometry: The Tringle Identities DJENT ND OPPOSITE SIDES The study of tringle trigonometry is entered round the ute ngles in right tringle.

More information

Chapter 2: Relational Model. Chapter 2: Relational Model

Chapter 2: Relational Model. Chapter 2: Relational Model Chpter : Reltionl Model Dtbse System Concepts, 5 th Ed. See www.db-book.com for conditions on re-use Chpter : Reltionl Model Structure of Reltionl Dtbses Fundmentl Reltionl-Algebr-Opertions Additionl Reltionl-Algebr-Opertions

More information

International Budget Partnership OPEN BUDGET QUESTIONNAIRE Sri Lanka, September 2009

International Budget Partnership OPEN BUDGET QUESTIONNAIRE Sri Lanka, September 2009 Interntionl Budget Prtnership OPEN BUDGET QUESTIONNAIRE Sri Lnk, September 2009 Interntionl Budget Prtnership Center on Budget nd Policy Priorities 820 First Street NE, Suite 510 Wshington, DC 20002 www.interntionlbudget.org

More information

ESL Helpful Handouts The Verb Have Page 1 of 7 Talking About Health Problems When someone has a health problem, the verb have is often used.

ESL Helpful Handouts The Verb Have Page 1 of 7 Talking About Health Problems When someone has a health problem, the verb have is often used. ESL Helpful Hndouts The Verb Hve Pge 1 of 7 When someone hs helth problem, the verb hve is often used. I hve n llergy. You hve n llergy. He hs n llergy. She hs n llergy. Helth Problems We hve n llergy.

More information

OPEN BUDGET QUESTIONNAIRE UKRAINE

OPEN BUDGET QUESTIONNAIRE UKRAINE Interntionl Budget Prtnership OPEN BUDGET QUESTIONNAIRE UKRAINE September 28, 2007 Interntionl Budget Prtnership Center on Budget nd Policy Priorities 820 First Street, NE Suite 510 Wshington, DC 20002

More information

Problem Set for Chapter 3: Simple Regression Analysis ECO382 Econometrics Queens College K.Matsuda

Problem Set for Chapter 3: Simple Regression Analysis ECO382 Econometrics Queens College K.Matsuda Problem Set for Chpter 3 Simple Regression Anlysis ECO382 Econometrics Queens College K.Mtsud Excel Assignments You re required to hnd in these Excel Assignments by the due Mtsud specifies. Legibility

More information

OPEN BUDGET QUESTIONNAIRE

OPEN BUDGET QUESTIONNAIRE Interntionl Budget Prtnership OPEN BUDGET QUESTIONNAIRE SOUTH KOREA September 28, 2007 Interntionl Budget Prtnership Center on Budget nd Policy Priorities 820 First Street, NE Suite 510 Wshington, DC 20002

More information

PSAS: Government transfers what you need to know

PSAS: Government transfers what you need to know PSAS: Government trnsfers wht you need to know Ferury 2018 Overview This summry will provide users with n understnding of the significnt recognition, presenttion nd disclosure requirements of the stndrd.

More information

checks are tax current income.

checks are tax current income. Humn Short Term Disbility Pln Wht is Disbility Insurnce? An esy explntion is; Disbility Insurnce is protection for your pycheck. Imgine if you were suddenly disbled, unble to work, due to n ccident or

More information

Option exercise with temptation

Option exercise with temptation Economic Theory 2008) 34: 473 501 DOI 10.1007/s00199-006-0194-3 RESEARCH ARTICLE Jinjun Mio Option exercise with tempttion Received: 25 Jnury 2006 / Revised: 5 December 2006 / Published online: 10 Jnury

More information

Asset finance (US) Opportunity. Flexibility. Planning. Develop your capabilities using the latest equipment

Asset finance (US) Opportunity. Flexibility. Planning. Develop your capabilities using the latest equipment Asset finnce (US) Opportunity Develop your cpbilities using the ltest equipment Flexibility Mnge your cshflow nd ccess the technology you need Plnning Mnge your investment with predictble costs nd plnned

More information

MATH 236 ELAC MATH DEPARTMENT FALL 2017 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC MATH DEPARTMENT FALL 2017 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC MATH DEPARTMENT FALL 2017 TEST 1 REVIEW SHORT ANSWER. Write the word or phrse tht best completes ech sttement or nswers the question. 1) The supply nd demnd equtions for certin product re

More information

Research Article Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales

Research Article Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales Hindwi Publishing Corportion Boundry Vlue Problems Volume 2009, Article ID 685040, 6 pges doi:10.1155/2009/685040 Reserch Article Existence of Positive Solution to Second-Order hree-point BVPs on ime Scles

More information

Revision Topic 14: Algebra

Revision Topic 14: Algebra Revision Topi 1: Algebr Indies: At Grde B nd C levels, you should be fmilir with the following rules of indies: b b y y y i.e. dd powers when multiplying; y b b y y i.e. subtrt powers when dividing; b

More information

A Fuzzy Inventory Model With Lot Size Dependent Carrying / Holding Cost

A Fuzzy Inventory Model With Lot Size Dependent Carrying / Holding Cost IOSR Journl of Mthemtics (IOSR-JM e-issn: 78-578,p-ISSN: 9-765X, Volume 7, Issue 6 (Sep. - Oct. 0, PP 06-0 www.iosrournls.org A Fuzzy Inventory Model With Lot Size Dependent Crrying / olding Cost P. Prvthi,

More information

Func%on Approxima%on. Pieter Abbeel UC Berkeley EECS

Func%on Approxima%on. Pieter Abbeel UC Berkeley EECS Func%on Approxima%on Pieter Abbeel UC Berkeley EECS Value Itera5on Algorithm: Start with for all s. For i = 1,, H For all states s in S: Imprac5cal for large state spaces This is called a value update

More information

Worst-Case vs. Average Case. CSE 473: Artificial Intelligence Expectimax, Uncertainty, Utilities. Expectimax Search. Worst-Case vs.

Worst-Case vs. Average Case. CSE 473: Artificial Intelligence Expectimax, Uncertainty, Utilities. Expectimax Search. Worst-Case vs. CSE 473: Artificial Intelligence Expectimax, Uncertainty, Utilities Worst-Case vs. Average Case max min 10 10 9 100 Dieter Fox [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro

More information