Recap: MDPs. CS 188: Artificial Intelligence Fall Optimal Utilities. The Bellman Equations. Value Estimates. Practice: Computing Actions

Size: px
Start display at page:

Download "Recap: MDPs. CS 188: Artificial Intelligence Fall Optimal Utilities. The Bellman Equations. Value Estimates. Practice: Computing Actions"

Transcription

1 CS 188: Artificil Intelligence Fll 2008 Lecture 10: MDP 9/30/2008 Dn Klein UC Berkeley Recp: MDP Mrkov deciion procee: Stte S Action A Trnition P(,) (or T(,, )) Rewrd R(,, ) (nd dicount γ) Strt tte 0 Quntitie: Policy = mp of tte to ction Epiode = one run of n MDP Return = um of dicounted rewrd Vlue = expected future return from tte Q-Vlue = expected future return from q-tte,,, Mny lide over the coure dpted from either Sturt Ruell or Andrew Moore 1 [DEMO Grid Vlue] 3 Optiml Utilitie The Bellmn Eqution Fundmentl opertion: compute the optiml utilitie of ll tte Why? Optiml vlue define optiml policie! Define the utility of tte : V * () = expected return trting in nd cting optimlly Define the utility of q-tte (,): Q * () = expected return trting in, tking ction nd therefter cting optimlly,,, Definition of utility led to imple one-tep lookhed reltionhip mongt optiml utility vlue: Optiml rewrd = mximize over firt ction nd then follow optiml policy Formlly:,,, Define the optiml policy: π * () = optiml ction from tte 4 5 Prctice: Computing Action Vlue Etimte Which ction hould we choe from tte : Given optiml vlue V? Given optiml q-vlue Q? Leon: ction re eier to elect from Q! [DEMO Grid Policie] 6 Clculte etimte V k* () Not the optiml vlue of! The optiml vlue conidering only next k time tep (k rewrd) A k, it pproche the optiml vlue Why: If dicounting, ditnt rewrd become negligible If terminl tte rechble from everywhere, frction of epiode not ending become negligible Otherwie, cn get infinite expected utility nd then thi pproch ctully won t work [DEMO -- V k ] 9 1

2 Recurrence: Memoized Recurion? Vlue Itertion Problem with the recurive computtion: Hve to keep ll the V k* () round ll the time Don t know which depth π k () to k for when plnning Solution: vlue itertion Clculte vlue for ll tte, bottom-up Keep increing k until convergence Cche ll function cll reult o you never repet work Wht hppened to the evlution function? Vlue Itertion Exmple: Bellmn Updte Ide: Strt with V 0* () = 0, which we know i right (why?) Given V i*, clculte the vlue for ll tte for depth i+1: Throw out old vector V i * Thi i clled vlue updte or Bellmn updte Repet until convergence Theorem: will converge to unique optiml vlue Bic ide: pproximtion get refined towrd optiml vlue Policy my converge long before vlue do Exmple: Vlue Itertion V 2 V 3 Define the mx-norm: Convergence* Theorem: For ny two pproximtion U nd V Informtion propgte outwrd from terminl tte nd eventully ll tte hve correct vlue etimte [DEMO] 14 I.e. ny ditinct pproximtion mut get cloer to ech other, o, in prticulr, ny pproximtion mut get cloer to the true U nd vlue itertion converge to unique, tble, optiml olution Theorem: I.e. once the chnge in our pproximtion i mll, it mut lo be cloe to correct 15 2

3 Utilitie for Fixed Policie Policy Evlution Another bic opertion: compute the utility of tte under fixed (generlly non-optiml) policy Define the utility of tte, under fixed policy π: V π () = expected totl dicounted rewrd (return) trting in nd following π π(), π(),π(), How do we clculte the V for fixed policy? Ide one: turn recurive eqution into updte Recurive reltion (one-tep lookhed / Bellmn eqution): Ide two: it jut liner ytem, olve with Mtlb (or whtever) [DEMO Right-Only Policy] Policy Itertion Alterntive pproch: Step 1: Policy evlution: clculte utilitie for fixed policy (not optiml utilitie!) until convergence Step 2: Policy improvement: updte policy uing onetep lookhed with reulting converged (but not optiml!) utilitie Repet tep until policy converge Thi i policy itertion It till optiml! Cn converge fter under ome condition Policy Itertion Policy evlution: with fixed current policy π, find vlue with implified Bellmn updte: Iterte until vlue converge Policy improvement: with fixed utilitie, find the bet ction ccording to one-tep look-hed Comprion In vlue itertion: Every p (or bckup ) updte both utilitie (explicitly, bed on current utilitie) nd policy (poibly implicitly, bed on current policy) In policy itertion: Severl pe to updte utilitie with frozen policy Policy evlution pe re fter thn vlue itertion pe (why?) Occionl pe to updte policie Hybrid pproche (ynchronou policy itertion): Any equence of prtil updte to either policy entrie or utilitie will converge if every tte i viited infinitely often Reinforcement Lerning Reinforcement lerning: Still hve n MDP: A et of tte S A et of ction (per tte) A A model T(,, ) A rewrd function R(,, ) Still looking for policy π() [DEMO] New twit: don t know T or R I.e. don t know which tte re good or wht the ction do Mut ctully try ction nd tte out to lern

4 Exmple: Animl Lerning RL tudied experimentlly for more thn 60 yer in pychology Rewrd: food, pin, hunger, drug, etc. Mechnim nd ophitiction debted Exmple: forging Bee lern ner-optiml forging pln in field of rtificil flower with controlled nectr upplie Bee hve direct neurl connection from nectr intke meurement to motor plnning re Exmple: Bckgmmon Rewrd only for win / lo in terminl tte, zero otherwie TD-Gmmon lern function pproximtion to V() uing neurl network Combined with depth 3 erch, one of the top 3 plyer in the world You could imgine trining Pcmn thi wy but it tricky! Pive Lerning Simplified tk You don t know the trnition T(,, ) You don t know the rewrd R(,, ) You re given policy π() Gol: lern the tte vlue (nd mybe the model) In thi ce: No choice bout wht ction to tke Jut execute the policy nd lern from experience We ll get to the generl ce oon Exmple: Direct Etimtion Epiode: y γ = 1, R = -1 (4,2) exit -100 U(1,1) ~ ( ) / 2 = -7 U(3,3) ~ ( ) / 3 = 31.3 x Model-Bed Lerning In generl, wnt to lern the optiml policy, not evlute fixed policy Ide: dptive dynmic progrmming Lern n initil model of the environment: Solve for the optiml policy for thi model (vlue or policy itertion) Refine model through experience nd repet Crucil: we hve to mke ure we ctully lern bout ll of the model Model-Bed Lerning Ide: Lern the model empiriclly (rther thn vlue) Solve the MDP if the lerned model were correct Empiricl model lerning Simplet ce: Count outcome for ech, Normlize to give etimte of T(,, ) Dicover R(,, ) the firt time we experience (,, ) More complex lerner re poible (e.g. if we know tht ll qure hve relted ction outcome, e.g. ttionry noie )

5 Exmple: Model-Bed Lerning Epiode: (4,2) exit -100 y γ = 1 T(<3,3>, right, <4,3>) = 1 / 3 T(<2,3>, right, <3,3>) = 2 / 2 x Exmple: Greedy ADP Imgine we find the lower pth to the good exit firt Some tte will never be viited following thi policy from (1,1) We ll keep re-uing thi policy becue following it never collect the region of the model we need to lern the optiml policy?? Wht Went Wrong? Model-Free Lerning Problem with following optiml policy for current model: Never lern bout better region of the pce if current policy neglect them Fundmentl trdeoff: explortion v. exploittion Explortion: mut tke ction with uboptiml etimte to dicover new rewrd nd incree eventul utility Exploittion: once the true optiml policy i lerned, explortion reduce utility Sytem mut explore in the beginning nd exploit in the limit?? Big ide: why bother lerning T? Updte V ech time we experience trnition Frequent outcome will contribute more updte (over time) Temporl difference lerning (TD) Policy till fixed! Move vlue towrd vlue of whtever ucceor occur,,, Exmple: Pive TD Problem with TD Vlue Lerning TD vlue lening i model-free for policy evlution However, if we wnt to turn our vlue etimte into policy, we re unk:,,, (4,2) exit -100 Tke γ = 1, α = 0.5 Ide: lern Q-vlue directly Mke ction election model-free too!

Announcements. CS 188: Artificial Intelligence Fall Recap: MDPs. Recap: Optimal Utilities. Practice: Computing Actions. Recap: Bellman Equations

Announcements. CS 188: Artificial Intelligence Fall Recap: MDPs. Recap: Optimal Utilities. Practice: Computing Actions. Recap: Bellman Equations CS 188: Artificil Intelligence Fll 2009 Lecture 10: MDP 9/29/2009 Announcement P2: Due Wednedy P3: MDP nd Reinforcement Lerning i up! W2: Out lte thi week Dn Klein UC Berkeley Mny lide over the coure dpted

More information

Announcements. CS 188: Artificial Intelligence Fall Reinforcement Learning. Markov Decision Processes. Example Optimal Policies.

Announcements. CS 188: Artificial Intelligence Fall Reinforcement Learning. Markov Decision Processes. Example Optimal Policies. CS 188: Artificil Intelligence Fll 2008 Lecture 9: MDP 9/25/2008 Announcement Homework olution / review eion: Mondy 9/29, 7-9pm in 2050 Vlley LSB Tuedy 9/0, 6-8pm in 10 Evn Check web for detil Cover W1-2,

More information

Reinforcement Learning. CS 188: Artificial Intelligence Fall Grid World. Markov Decision Processes. What is Markov about MDPs?

Reinforcement Learning. CS 188: Artificial Intelligence Fall Grid World. Markov Decision Processes. What is Markov about MDPs? CS 188: Artificil Intelligence Fll 2010 Lecture 9: MDP 9/2/2010 Reinforcement Lerning [DEMOS] Bic ide: Receive feedbck in the form of rewrd Agent utility i defined by the rewrd function Mut (lern to) ct

More information

Gridworld Values V* Gridworld: Q*

Gridworld Values V* Gridworld: Q* CS 188: Artificil Intelligence Mrkov Deciion Procee II Intructor: Dn Klein nd Pieter Abbeel --- Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI

More information

Non-Deterministic Search. CS 188: Artificial Intelligence Markov Decision Processes. Grid World Actions. Example: Grid World

Non-Deterministic Search. CS 188: Artificial Intelligence Markov Decision Processes. Grid World Actions. Example: Grid World CS 188: Artificil Intelligence Mrkov Deciion Procee Non-Determinitic Serch Dn Klein, Pieter Abbeel Univerity of Cliforni, Berkeley Exmple: Grid World Grid World Action A mze-like problem The gent live

More information

4/30/2012. Overview. MDPs. Planning Agent. Grid World. Review: Expectimax. Introduction & Agents Search, Heuristics & CSPs Adversarial Search

4/30/2012. Overview. MDPs. Planning Agent. Grid World. Review: Expectimax. Introduction & Agents Search, Heuristics & CSPs Adversarial Search Overview CSE 473 Mrkov Deciion Procee Dn Weld Mny lide from Chri Bihop, Mum, Dn Klein, Sturt Ruell, Andrew Moore & Luke Zettlemoyer Introduction & Agent Serch, Heuritic & CSP Adverril Serch Logicl Knowledge

More information

Outline. CS 188: Artificial Intelligence Spring Speeding Up Game Tree Search. Minimax Example. Alpha-Beta Pruning. Pruning

Outline. CS 188: Artificial Intelligence Spring Speeding Up Game Tree Search. Minimax Example. Alpha-Beta Pruning. Pruning CS 188: Artificil Intelligence Spring 2011 Lecture 8: Gme, MDP 2/14/2010 Pieter Abbeel UC Berkeley Mny lide dpted from Dn Klein Outline Zero-um determinitic two plyer gme Minimx Evlution function for non-terminl

More information

Announcements. Maximizing Expected Utility. Preferences. Rational Preferences. Rational Preferences. Introduction to Artificial Intelligence

Announcements. Maximizing Expected Utility. Preferences. Rational Preferences. Rational Preferences. Introduction to Artificial Intelligence Introduction to Artificil Intelligence V22.0472-001 Fll 2009 Lecture 8: Utilitie Announcement Will hve Aignment 1 grded by Wed. Aignment 2 i up on webpge Due on Mon 19 th October (2 week) Rob Fergu Dept

More information

Maximum Expected Utility. CS 188: Artificial Intelligence Fall Preferences. MEU Principle. Rational Preferences. Utilities: Uncertain Outcomes

Maximum Expected Utility. CS 188: Artificial Intelligence Fall Preferences. MEU Principle. Rational Preferences. Utilities: Uncertain Outcomes CS 188: Artificil Intelligence Fll 2011 Mximum Expected Utility Why hould we verge utilitie? Why not minimx? Lecture 8: Utilitie / MDP 9/20/2011 Dn Klein UC Berkeley Principle of mximum expected utility:

More information

Static Fully Observable Stochastic What action next? Instantaneous Perfect

Static Fully Observable Stochastic What action next?  Instantaneous Perfect CS 188: Ar)ficil Intelligence Mrkov Deciion Procee K+1 Intructor: Dn Klein nd Pieter Abbeel - - - Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to

More information

Fully Observable. Perfect

Fully Observable. Perfect CS 188: Ar)ficil Intelligence Mrkov Deciion Procee II Stoch)c Plnning: MDP Sttic Environment Fully Obervble Perfect Wht ction next? Stochtic Intntneou Intructor: Dn Klein nd Pieter Abbeel - - - Univerity

More information

DYNAMIC PROGRAMMING REINFORCEMENT LEARNING. COGS 202 : Week 7 Presentation

DYNAMIC PROGRAMMING REINFORCEMENT LEARNING. COGS 202 : Week 7 Presentation DYNAMIC PROGRAMMING REINFORCEMENT LEARNING COGS 202 : Week 7 Preenttion OUTLINE Recp (Stte Vlue nd Action Vlue function) Computtion in MDP Dynmic Progrmming (DP) Policy Evlution Policy Improvement Policy

More information

CS 188: Artificial Intelligence Fall Markov Decision Processes

CS 188: Artificial Intelligence Fall Markov Decision Processes CS 188: Artificial Intelligence Fall 2007 Lecture 10: MDP 9/27/2007 Dan Klein UC Berkeley Markov Deciion Procee An MDP i defined by: A et of tate S A et of action a A A tranition function T(,a, ) Prob

More information

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011 CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDP 2/16/2011 Announcement Midterm: Tueday March 15, 5-8pm P2: Due Friday 4:59pm W3: Minimax, expectimax and MDP---out tonight, due Monday February

More information

Chapter 3: The Reinforcement Learning Problem. The Agent'Environment Interface. Getting the Degree of Abstraction Right. The Agent Learns a Policy

Chapter 3: The Reinforcement Learning Problem. The Agent'Environment Interface. Getting the Degree of Abstraction Right. The Agent Learns a Policy Chpter 3: The Reinforcement Lerning Problem The Agent'Environment Interfce Objectives of this chpter: describe the RL problem we will be studying for the reminder of the course present idelized form of

More information

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities CS 188: Artificial Intelligence Markov Deciion Procee II Intructor: Dan Klein and Pieter Abbeel --- Univerity of California, Berkeley [Thee lide were created by Dan Klein and Pieter Abbeel for CS188 Intro

More information

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 4

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 4 CS 188 Introduction to Artificil Intelligence Fll 2018 Note 4 These lecture notes re hevily bsed on notes originlly written by Nikhil Shrm. Non-Deterministic Serch Picture runner, coming to the end of

More information

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1)

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1) CS 188: Artificial Intelligence Fall 007 Lecture 9: Utilitie 9/5/007 Dan Klein UC Berkeley Project (due 10/1) Announcement SVN group available, email u to requet Midterm 10/16 in cla One ide of a page

More information

10/12/2012. Logistics. Planning Agent. MDPs. Review: Expectimax. PS 2 due Tuesday Thursday 10/18. PS 3 due Thursday 10/25.

10/12/2012. Logistics. Planning Agent. MDPs. Review: Expectimax. PS 2 due Tuesday Thursday 10/18. PS 3 due Thursday 10/25. Logitic PS 2 due Tueday Thurday 10/18 CSE 473 Markov Deciion Procee PS 3 due Thurday 10/25 Dan Weld Many lide from Chri Bihop, Mauam, Dan Klein, Stuart Ruell, Andrew Moore & Luke Zettlemoyer MDP Planning

More information

CH 71 COMPLETING THE SQUARE INTRODUCTION FACTORING PERFECT SQUARE TRINOMIALS

CH 71 COMPLETING THE SQUARE INTRODUCTION FACTORING PERFECT SQUARE TRINOMIALS CH 7 COMPLETING THE SQUARE INTRODUCTION I t s now time to py our dues regrding the Qudrtic Formul. Wht, you my sk, does this men? It mens tht the formul ws merely given to you once or twice in this course,

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

3: Inventory management

3: Inventory management INSE6300 Ji Yun Yu 3: Inventory mngement Concordi Februry 9, 2016 Supply chin mngement is bout mking sequence of decisions over sequence of time steps, fter mking observtions t ech of these time steps.

More information

ECE 410 Homework 1 -Solutions Spring 2008

ECE 410 Homework 1 -Solutions Spring 2008 ECE 410 Homework 1 -Solution Spring 2008 Prolem 1 For prolem 2-4 elow, ind the voltge required to keep the trnitor on ppling the rule dicued in cl. Aume VDD = 2.2V FET tpe Vt (V) Vg (V) Vi (V) n-tpe 0.5

More information

Cache CPI and DFAs and NFAs. CS230 Tutorial 10

Cache CPI and DFAs and NFAs. CS230 Tutorial 10 Cche CPI nd DFAs nd NFAs CS230 Tutoril 10 Multi-Level Cche: Clculting CPI When memory ccess is ttempted, wht re the possible results? ccess miss miss CPU L1 Cche L2 Cche Memory L1 cche hit L2 cche hit

More information

Arithmetic and Geometric Sequences

Arithmetic and Geometric Sequences Arithmetic nd Geometric Sequences A sequence is list of numbers or objects, clled terms, in certin order. In n rithmetic sequence, the difference between one term nd the next is lwys the sme. This difference

More information

Multi-Step Reinforcement Learning: A Unifying Algorithm

Multi-Step Reinforcement Learning: A Unifying Algorithm Multi-Step Reinforcement Lerning: A Unifying Algorithm Kristopher De Asis, 1 J. Fernndo Hernndez-Grci, 1 G. Zchris Hollnd, 1 Richrd S. Sutton Reinforcement Lerning nd Artificil Intelligence Lbortory, University

More information

INF 4130 Exercise set 4

INF 4130 Exercise set 4 INF 4130 Exercise set 4 Exercise 1 List the order in which we extrct the nodes from the Live Set queue when we do redth first serch of the following grph (tree) with the Live Set implemented s LIFO queue.

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 9: MDPs 9/22/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 2 Grid World The agent lives in

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 7: The Endowment Economy. Today s Aims. The Story So Far. An Endowment Economy.

3/1/2016. Intermediate Microeconomics W3211. Lecture 7: The Endowment Economy. Today s Aims. The Story So Far. An Endowment Economy. 1 Intermedite Microeconomics W3211 Lecture 7: The Endowment Economy Introduction Columbi University, Spring 2016 Mrk Den: mrk.den@columbi.edu 2 The Story So Fr. 3 Tody s Aims 4 Remember: the course hd

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

UNIT 7 SINGLE SAMPLING PLANS

UNIT 7 SINGLE SAMPLING PLANS UNIT 7 SINGLE SAMPLING PLANS Structure 7. Introduction Objectives 7. Single Smpling Pln 7.3 Operting Chrcteristics (OC) Curve 7.4 Producer s Risk nd Consumer s Risk 7.5 Averge Outgoing Qulity (AOQ) 7.6

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Continuous Optimal Timing

Continuous Optimal Timing Srlnd University Computer Science, Srbrücken, Germny My 6, 205 Outline Motivtion Preliminries Existing Algorithms Our Algorithm Empiricl Evlution Conclusion Motivtion Probbilistic models unrelible/unpredictble

More information

Name Date. Find the LCM of the numbers using the two methods shown above.

Name Date. Find the LCM of the numbers using the two methods shown above. Lest Common Multiple Multiples tht re shred by two or more numbers re clled common multiples. The lest of the common multiples is clled the lest common multiple (LCM). There re severl different wys to

More information

Chapter55. Algebraic expansion and simplification

Chapter55. Algebraic expansion and simplification Chpter55 Algebric expnsion nd simplifiction Contents: A The distributive lw B The product ( + b)(c + d) C Difference of two squres D Perfect squres expnsion E Further expnsion F The binomil expnsion 88

More information

11.1 Two-Port Power Gains

11.1 Two-Port Power Gains 5//7 _ Twoort ower G /. Twoort ower G Redg Aignment: pp. 53654 pecifyg the g of n mplifier i it more miguou thn you my thk. The prolem i tht there re o mny wy to defe power! HO: THE OWER THAT BE HO: OWER

More information

(a) by substituting u = x + 10 and applying the result on page 869 on the text, (b) integrating by parts with u = ln(x + 10), dv = dx, v = x, and

(a) by substituting u = x + 10 and applying the result on page 869 on the text, (b) integrating by parts with u = ln(x + 10), dv = dx, v = x, and Supplementry Questions for HP Chpter 5. Derive the formul ln( + 0) d = ( + 0) ln( + 0) + C in three wys: () by substituting u = + 0 nd pplying the result on pge 869 on the tet, (b) integrting by prts with

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

A ppendix to. I soquants. Producing at Least Cost. Chapter

A ppendix to. I soquants. Producing at Least Cost. Chapter A ppendix to Chpter 0 Producing t est Cost This ppendix descries set of useful tools for studying firm s long-run production nd costs. The tools re isoqunts nd isocost lines. I soqunts FIGURE A0. SHOWS

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

Agent Commission and Coordinated Pricing For Online Group-Buying Channel

Agent Commission and Coordinated Pricing For Online Group-Buying Channel Interntionl Acdemic Workhop on Socil Science (IAW-SC 013) Agent Commiion nd Coordinted Pricing For Online Group-Buying Chnnel Hilin Su Jixing Univerity School of Buine Jixing, Chin huimeimumu198@16.com

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Addition and Subtraction

Addition and Subtraction Addition nd Subtrction Nme: Dte: Definition: rtionl expression A rtionl expression is n lgebric expression in frction form, with polynomils in the numertor nd denomintor such tht t lest one vrible ppers

More information

The Market Approach to Valuing Businesses (Second Edition)

The Market Approach to Valuing Businesses (Second Edition) BV: Cse Anlysis Completed Trnsction & Guideline Public Comprble MARKET APPROACH The Mrket Approch to Vluing Businesses (Second Edition) Shnnon P. Prtt This mteril is reproduced from The Mrket Approch to

More information

Problem Set 2 Suggested Solutions

Problem Set 2 Suggested Solutions 4.472 Prolem Set 2 Suggested Solutions Reecc Zrutskie Question : First find the chnge in the cpitl stock, k, tht will occur when the OLG economy moves to the new stedy stte fter the government imposes

More information

R-automata. 1 Introduction. Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi

R-automata. 1 Introduction. Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi R-utomt Proh Aziz Abdull, Pvel Krcl, nd Wng Yi Deprtment of Informtion Technology, Uppl Univerity, Sweden Emil: {proh,pvelk,yi}@it.uu.e Abtrct. We introduce R-utomt nite tte mchine which operte on nite

More information

MDPs: Bellman Equations, Value Iteration

MDPs: Bellman Equations, Value Iteration MDPs: Bellman Equations, Value Iteration Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) Adapted from slides kindly shared by Stuart Russell Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 1 Appreciations

More information

Access your online resources today at

Access your online resources today at 978--07-670- - CmbridgeMths: NSW Syllbus for the Austrlin Curriculum: Yer 0: Stte./. Access your online resources tody t www.cmbridge.edu.u/go. Log in to your existing Cmbridge GO user ccount or crete

More information

Smart Investment Strategies

Smart Investment Strategies Smrt Investment Strtegies Risk-Rewrd Rewrd Strtegy Quntifying Greed How to mke good Portfolio? Entrnce-Exit Exit Strtegy: When to buy? When to sell? 2 Risk vs.. Rewrd Strtegy here is certin mount of risk

More information

JFE Online Appendix: The QUAD Method

JFE Online Appendix: The QUAD Method JFE Online Appendix: The QUAD Method Prt of the QUAD technique is the use of qudrture for numericl solution of option pricing problems. Andricopoulos et l. (00, 007 use qudrture s the only computtionl

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

Roadmap of This Lecture

Roadmap of This Lecture Reltionl Model Rodmp of This Lecture Structure of Reltionl Dtbses Fundmentl Reltionl-Algebr-Opertions Additionl Reltionl-Algebr-Opertions Extended Reltionl-Algebr-Opertions Null Vlues Modifiction of the

More information

A Closer Look at Bond Risk: Duration

A Closer Look at Bond Risk: Duration W E B E X T E S I O 4C A Closer Look t Bond Risk: Durtion This Extension explins how to mnge the risk of bond portfolio using the concept of durtion. BOD RISK In our discussion of bond vlution in Chpter

More information

Open Space Allocation and Travel Costs

Open Space Allocation and Travel Costs Open Spce Alloction nd Trvel Costs By Kent Kovcs Deprtment of Agriculturl nd Resource Economics University of Cliforni, Dvis kovcs@priml.ucdvis.edu Pper prepred for presenttion t the Americn Agriculturl

More information

A portfolio approach to the optimal funding of pensions

A portfolio approach to the optimal funding of pensions Economics Letters 69 (000) 01 06 www.elsevier.com/ locte/ econbse A portfolio pproch to the optiml funding of pensions Jysri Dutt, Sndeep Kpur *, J. Michel Orszg b, b Fculty of Economics University of

More information

9.3. Regular Languages

9.3. Regular Languages 9.3. REGULAR LANGUAGES 139 9.3. Regulr Lnguges 9.3.1. Properties of Regulr Lnguges. Recll tht regulr lnguge is the lnguge ssocited to regulr grmmr, i.e., grmmr G = (N, T, P, σ) in which every production

More information

arxiv: v1 [cs.lg] 23 Jan 2019

arxiv: v1 [cs.lg] 23 Jan 2019 Robust temporl difference lerning for criticl domins rxiv:1901.08021v1 [cs.lg] 23 Jn 2019 Richrd Klim University of Liverpool, UK richrd.klim@liverpool.c.uk Michel Kisers Centrum Wiskunde & Informtic,

More information

A Fuzzy Inventory Model With Lot Size Dependent Carrying / Holding Cost

A Fuzzy Inventory Model With Lot Size Dependent Carrying / Holding Cost IOSR Journl of Mthemtics (IOSR-JM e-issn: 78-578,p-ISSN: 9-765X, Volume 7, Issue 6 (Sep. - Oct. 0, PP 06-0 www.iosrournls.org A Fuzzy Inventory Model With Lot Size Dependent Crrying / olding Cost P. Prvthi,

More information

MARKET POWER AND MISREPRESENTATION

MARKET POWER AND MISREPRESENTATION MARKET POWER AND MISREPRESENTATION MICROECONOMICS Principles nd Anlysis Frnk Cowell Note: the detil in slides mrked * cn only e seen if you run the slideshow July 2017 1 Introduction Presenttion concerns

More information

3. Argumentation Frameworks

3. Argumentation Frameworks 3. Argumenttion Frmeworks Argumenttion current hot topic in AI. Historiclly more recent thn other pproches discussed here. Bsic ide: to construct cceptble set(s) of beliefs from given KB: 1 construct rguments

More information

What is Monte Carlo Simulation? Monte Carlo Simulation

What is Monte Carlo Simulation? Monte Carlo Simulation Wht is Monte Crlo Simultion? Monte Crlo methods re widely used clss of computtionl lgorithms for simulting the ehvior of vrious physicl nd mthemticl systems, nd for other computtions. Monte Crlo lgorithm

More information

Chapter 2: Relational Model. Chapter 2: Relational Model

Chapter 2: Relational Model. Chapter 2: Relational Model Chpter : Reltionl Model Dtbse System Concepts, 5 th Ed. See www.db-book.com for conditions on re-use Chpter : Reltionl Model Structure of Reltionl Dtbses Fundmentl Reltionl-Algebr-Opertions Additionl Reltionl-Algebr-Opertions

More information

Buckling of Stiffened Panels 1 overall buckling vs plate buckling PCCB Panel Collapse Combined Buckling

Buckling of Stiffened Panels 1 overall buckling vs plate buckling PCCB Panel Collapse Combined Buckling Buckling of Stiffened Pnels overll uckling vs plte uckling PCCB Pnel Collpse Comined Buckling Vrious estimtes hve een developed to determine the minimum size stiffener to insure the plte uckles while the

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

Controlling a population of identical MDP

Controlling a population of identical MDP Controlling popultion of identicl MDP Nthlie Bertrnd Inri Rennes ongoing work with Miheer Dewskr (CMI), Blise Genest (IRISA) nd Hugo Gimert (LBRI) Trends nd Chllenges in Quntittive Verifiction Mysore,

More information

Technical Appendix. The Behavior of Growth Mixture Models Under Nonnormality: A Monte Carlo Analysis

Technical Appendix. The Behavior of Growth Mixture Models Under Nonnormality: A Monte Carlo Analysis Monte Crlo Technicl Appendix 1 Technicl Appendix The Behvior of Growth Mixture Models Under Nonnormlity: A Monte Crlo Anlysis Dniel J. Buer & Ptrick J. Currn 10/11/2002 These results re presented s compnion

More information

MATH 236 ELAC MATH DEPARTMENT FALL 2017 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC MATH DEPARTMENT FALL 2017 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC MATH DEPARTMENT FALL 2017 TEST 1 REVIEW SHORT ANSWER. Write the word or phrse tht best completes ech sttement or nswers the question. 1) The supply nd demnd equtions for certin product re

More information

THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA.

THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA. THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA. I would like to thnk Aris for his mthemticl contriutions nd his swet which hs enled deeper understnding of the turnover formul to emerge. His contriution

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Financial Mathematics 3: Depreciation

Financial Mathematics 3: Depreciation Finncil Mthemtics 3: Deprecition Student Book - Series M-1 25% p.. over 8 yers Mthletics Instnt Workooks Copyright Finncil mthemtics 3: Deprecition Student Book - Series M Contents Topics Topic 1 - Modelling

More information

checks are tax current income.

checks are tax current income. Humn Short Term Disbility Pln Wht is Disbility Insurnce? An esy explntion is; Disbility Insurnce is protection for your pycheck. Imgine if you were suddenly disbled, unble to work, due to n ccident or

More information

Burrows-Wheeler Transform and FM Index

Burrows-Wheeler Transform and FM Index Burrows-Wheeler Trnsform nd M Index Ben ngmed You re free to use these slides. If you do, plese sign the guestbook (www.lngmed-lb.org/teching-mterils), or emil me (ben.lngmed@gmil.com) nd tell me briefly

More information

On-demand, Spot, or Both: Dynamic Resource Allocation for Executing Batch Jobs in the Cloud

On-demand, Spot, or Both: Dynamic Resource Allocation for Executing Batch Jobs in the Cloud On-demnd, Spot, or Both: Dynmic Resource Alloction for Executing Btch Jobs in the Cloud Ishi Menche Microsoft Reserch Ohd Shmir Weizmnn Institute Nvendu Jin Microsoft Reserch Abstrct Cloud computing provides

More information

Patents, R&D investments, and Competition

Patents, R&D investments, and Competition Ptents, R&D investments, nd Competition Tois Mrkepnd June 8, 2008 Astrct We nlyze the incentives of firm to crete sleeping ptents, i.e., to tke out ptents which re not exploited. We show tht sleeping ptents

More information

The Option-Critic Architecture

The Option-Critic Architecture The Option-Critic Architecture Pierre-Luc Bcon nd Jen Hrb nd Doin Precup Resoning nd Lerning Lb, School of Computer Science McGill University {pbcon, jhrb, dprecup}@cs.mcgill.c Preliminries nd Nottion

More information

Asset finance (US) Opportunity. Flexibility. Planning. Develop your capabilities using the latest equipment

Asset finance (US) Opportunity. Flexibility. Planning. Develop your capabilities using the latest equipment Asset finnce (US) Opportunity Develop your cpbilities using the ltest equipment Flexibility Mnge your cshflow nd ccess the technology you need Plnning Mnge your investment with predictble costs nd plnned

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Decision Making Under Uncertainty

Decision Making Under Uncertainty CSC384: Intro to Artificil Intelligence Preferences Decision Mking Under Uncertinty Decision Trees DBN: 15.1 nd 15.5 Decision Network: 16.1,16.2,16.5,16.6 I give root plnning prolem: I wnt coffee ut coffee

More information

production for Community & Culture Project Reference e 2 design episodes Bogotá: Building a Sustainable City and Affordable Green Housing.

production for Community & Culture Project Reference e 2 design episodes Bogotá: Building a Sustainable City and Affordable Green Housing. Community & Culture Project Reference e 2 design episodes Bogotá: Building Sustinble City nd Affordble Green Housing. 1) Red the bckground essy nd discussion questions for e 2 design episodes Bogotá: Building

More information

164 CHAPTER 2. VECTOR FUNCTIONS

164 CHAPTER 2. VECTOR FUNCTIONS 164 CHAPTER. VECTOR FUNCTIONS.4 Curvture.4.1 Definitions nd Exmples The notion of curvture mesures how shrply curve bends. We would expect the curvture to be 0 for stright line, to be very smll for curves

More information

This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON

This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ~~FN3092 ZA 0 his pper is not to be remove from the Exmintion Hlls UNIESIY OF LONDON FN3092 ZA BSc egrees n Diploms for Grutes in Economics, Mngement, Finnce n the Socil Sciences, the Diploms in Economics

More information

ESL Helpful Handouts The Verb Have Page 1 of 7 Talking About Health Problems When someone has a health problem, the verb have is often used.

ESL Helpful Handouts The Verb Have Page 1 of 7 Talking About Health Problems When someone has a health problem, the verb have is often used. ESL Helpful Hndouts The Verb Hve Pge 1 of 7 When someone hs helth problem, the verb hve is often used. I hve n llergy. You hve n llergy. He hs n llergy. She hs n llergy. Helth Problems We hve n llergy.

More information

FINANCIAL ANALYSIS I. INTRODUCTION AND METHODOLOGY

FINANCIAL ANALYSIS I. INTRODUCTION AND METHODOLOGY Dhk Wter Supply Network Improvement Project (RRP BAN 47254003) FINANCIAL ANALYSIS I. INTRODUCTION AND METHODOLOGY A. Introduction 1. The Asin Development Bnk (ADB) finncil nlysis of the proposed Dhk Wter

More information

Math 205 Elementary Algebra Fall 2010 Final Exam Study Guide

Math 205 Elementary Algebra Fall 2010 Final Exam Study Guide Mth 0 Elementr Algebr Fll 00 Finl Em Stud Guide The em is on Tuesd, December th from :0m :0m. You re llowed scientific clcultor nd " b " inde crd for notes. On our inde crd be sure to write n formuls ou

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Research Article Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales

Research Article Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales Hindwi Publishing Corportion Boundry Vlue Problems Volume 2009, Article ID 685040, 6 pges doi:10.1155/2009/685040 Reserch Article Existence of Positive Solution to Second-Order hree-point BVPs on ime Scles

More information

Economics Department Fall 2013 Student Learning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics)

Economics Department Fall 2013 Student Learning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics) Jnury 2014 Economics Deprtment Fll 2013 Stuent Lerning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics) Lerning Outcome Sttement: In the Fll 2013 semester the Economics Deprtment engge

More information

2x2x2 Heckscher-Ohlin-Samuelson (H-O-S) Model with no factor substitution

2x2x2 Heckscher-Ohlin-Samuelson (H-O-S) Model with no factor substitution 2x2x2 Heckscher-Ohlin-Smuelson (H-O-S) odel with no fctor substitution In the H-O-S model we will focus entirely on the role of fctor sulies nd ssume wy differences in technology. Therefore, unlike in

More information

Problem Set for Chapter 3: Simple Regression Analysis ECO382 Econometrics Queens College K.Matsuda

Problem Set for Chapter 3: Simple Regression Analysis ECO382 Econometrics Queens College K.Matsuda Problem Set for Chpter 3 Simple Regression Anlysis ECO382 Econometrics Queens College K.Mtsud Excel Assignments You re required to hnd in these Excel Assignments by the due Mtsud specifies. Legibility

More information

Lecture 9: The E/R Model II. 2. E/R Design Considerations 2/7/2018. Multiplicity of E/R Relationships. What you will learn about in this section

Lecture 9: The E/R Model II. 2. E/R Design Considerations 2/7/2018. Multiplicity of E/R Relationships. What you will learn about in this section Leture 9: The E/R Moel II Leture n tivity ontents re se on wht Prof Chris Ré use in his CS 45 in the fll 06 term with permission.. E/R Design Consiertions Wht you will lern out in this setion Multipliity

More information

Information Acquisition and Disclosure: the Case of Differentiated Goods Duopoly

Information Acquisition and Disclosure: the Case of Differentiated Goods Duopoly Informtion Acquisition nd Disclosure: the Cse of Differentited Goods Duopoly Snxi Li Jinye Yn Xundong Yin We thnk Dvid Mrtimort, Thoms Mriotti, Ptrick Rey, Wilfried Snd-Zntmn, Frnces Xu nd Yongsheng Xu

More information

International Economics. Topics in Comparative Advantage

International Economics. Topics in Comparative Advantage Lecture 3 Interntionl Economics: Lecture 4 Topics in Comprtive Advntge Armn Gbrielyn ATC, Februry 13, 2017 Armn Gbrielyn(ATC) Interntionl Economics 1 Misconceptions Misconceptions bout Ricrdo s Model Myth

More information

Revision Topic 14: Algebra

Revision Topic 14: Algebra Revision Topi 1: Algebr Indies: At Grde B nd C levels, you should be fmilir with the following rules of indies: b b y y y i.e. dd powers when multiplying; y b b y y i.e. subtrt powers when dividing; b

More information

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING UNIVERSITY OF NOTTINGHAM Discussion Ppers in Economics Discussion Pper No. 0/0 BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING by Arijit Mukherjee April 00 DP 0/0 ISSN 160-48

More information

)''/?\Xck_

)''/?\Xck_ bcbsnc.com Deductible options: $250, $500, $1,000 or $2,500 Deductible options $500, $1,000, $2,500, $3,500 or $5,000 D or (100% coinsurnce is not vilble on the $2,500 deductible option) coinsurnce plns:

More information

Outline. CSE 326: Data Structures. Priority Queues Leftist Heaps & Skew Heaps. Announcements. New Heap Operation: Merge

Outline. CSE 326: Data Structures. Priority Queues Leftist Heaps & Skew Heaps. Announcements. New Heap Operation: Merge CSE 26: Dt Structures Priority Queues Leftist Heps & Skew Heps Outline Announcements Leftist Heps & Skew Heps Reding: Weiss, Ch. 6 Hl Perkins Spring 2 Lectures 6 & 4//2 4//2 2 Announcements Written HW

More information

International Budget Partnership OPEN BUDGET QUESTIONNAIRE Sri Lanka, September 2009

International Budget Partnership OPEN BUDGET QUESTIONNAIRE Sri Lanka, September 2009 Interntionl Budget Prtnership OPEN BUDGET QUESTIONNAIRE Sri Lnk, September 2009 Interntionl Budget Prtnership Center on Budget nd Policy Priorities 820 First Street NE, Suite 510 Wshington, DC 20002 www.interntionlbudget.org

More information

Math-3 Lesson 2-5 Quadratic Formula

Math-3 Lesson 2-5 Quadratic Formula Mth- Lesson - Qudrti Formul Quiz 1. Complete the squre for: 10. Convert this perfet squre trinomil into the squre of inomil: 6 9. Solve ompleting the squre: 0 8 Your turn: Solve ftoring. 1.. 6 7 How would

More information

THE URBAN- RURAL DIVIDE IN THE PERSISTENCE OF POVERTY. Iryna Kyzyma* Luxembourg Institute of Socio-economic Research and IZA Bonn

THE URBAN- RURAL DIVIDE IN THE PERSISTENCE OF POVERTY. Iryna Kyzyma* Luxembourg Institute of Socio-economic Research and IZA Bonn THE URBAN- RURAL DIVIDE IN THE PERSISTENCE OF POVERTY Iryn Kyzym* Luxembourg Intitute of Socio-economic Reerch nd IZA Bonn Firt drft (preliminry nd incomplete) Abtrct Thi pper nlyze the urbn-rurl divide

More information